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A second-order optimized monotonicity-preserving MUSCL scheme (OMUSCL2) is developed based on the dispersion and 
dissipation optimization and monotonicity-preserving technique. The new scheme (OMUSCL2) is simple in expression and is 
easy for use in CFD codes. Compared with the original second-order or third-order MUSCL scheme, the new scheme shows 
nearly the same CPU cost and higher resolution to shockwaves and small-scale waves. This new scheme has been tested 
through a set of one-dimensional and two-dimensional tests, including the Shu-Osher problem, the Sod problem, the Lax prob-
lem, the two-dimensional double Mach reflection and the RAE2822 transonic airfoil test. All numerical tests show that, com-
pared with the original MUSCL schemes, the new scheme causes fewer dispersion and dissipation errors and produces higher 
resolution.  
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Computational fluid dynamics (CFD) plays an important 
role in the aerospace engineering, and one of its main tasks 
is to develop a high resolution scheme [1]. Generally spea-               
king, the resolution of numerical solution means the ability 
to describe flow characteristics which attract us. High reso-
lution scheme [1] means that the numerical solution of this 
scheme can give a sharp and vivid picture to the flow char-
acteristics which are in the range of interesting physical 
scale. This scale usually contains a small-scale flow struc-
ture which is difficult to simulate correctly. For shock 
waves, the resolution means the numerical shock is sharp 
and the flow variables (such as density, velocity, and pres-
sure) have no or small oscillation through shock. When the 
shock wave is generated in the flow field, the characteristic 
scale of flow structure shows a sharp discrepancy among 
different regions [2]. The characteristic scale of inviscid 
shock is zero, while the characteristic scale of flow is finite. 

Furthermore, flow variables are discontinuous through 
shock. All of these cause difficulties in numerical calcula-
tion. A good scheme should be high in resolution and strong 
in ability to capture shock for multi-scale complex flow (e.g. 
turbulence) with shock. In addition, numerical solution 
should be free from non-physical high frequency oscillation 
near the shock, and different scale physical parameters can’t 
be polluted through shock wave. Therefore, it’s necessary to 
develop high resolution schemes for engineering application. 

Numerical simulation of shock has made significant pro-
gress since the 1980s. In 1983, Harten [1] introduced the 
concept of total variation diminishing (TVD), and came up 
with a second order TVD scheme. Based on Harten’s TVD 
concept and condition [1], limiters can be defined to restore 
the TVD property of the scheme and to prevent the non- 
physical oscillations near the discontinuities. TVD limiters 
are bounded non-linear functions following Harten’s TVD 
condition. These limiters ensure that any reconstructed 
values at any time don’t lie outside the range of the initial 
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data [3]. Sweby [4] proposed a series of second order TVD 
schemes using the flux limiters. In addition, Van Leer [5] 
developed a high-resolution method called MUSCL 
(monotonic upstream-centered scheme for conservation 
law). This method first extrapolated interface values by 
using the cell averages, and then generated flux through the 
flux splitting technique. This avoids under and overshoots 
phenomena and leads to a maximum principle on the dis-
crete solution. MUSCL methods are one of the most popu-
lar second-order or third-order finite volume methods. Al-
though TVD schemes show highly efficient and stable 
shock capturing ability, the order in the local extreme point 
is only first-order for satisfying the TVD property. To 
avoid this drawback, Harten [6] introduced the essentially 
non-oscillatory concept (ENO). Then many researchers 
have constructed high-order ENO [6,7] and WENO [7,8] 
schemes. There are also the total variation bounded (TVB) 
[9] method and monotonicity-preserving (MP) [10] method. 
However, more stencil points are used in high-order (more 
than three-order) schemes, and this limits the flexibility in 
complex geometries. 

The finite volume method (FVM) is widely used in en-
gineering applications due to its simplicity for complex 
geometries and built-in conservative property. To be flexi-
ble for complex geometries, the scheme stencil in most 
FVM codes are four points, i.e. four points are used to 
compute the face value UI+1/2. For engineering CFD codes, 
the MUSCL scheme is one of the most popular schemes to 
compute UI+1/2. This scheme is modified from the base 
schemes by using limiter techniques. The base schemes of 
MUSCL are the second-order central scheme, the sec-
ond-order upwind scheme, and the third-order upwind 
scheme or the Fromm scheme. Although the MUSCL 
scheme contains many good properties, it still has room for 
optimization. For example, four points are used to compute 
UI+1/2, and only three points are used to compute the Left 

and the Right face values 1/2
L
IU  , 1/ 2

R
IU . The message of 

one point is not used in the computation of 1/2
L
IU   and 

1/2
R
IU  , i.e. the message of this point is wasted. Additionally, 

the base scheme (such as the ordinary third-order upwind 
scheme) can be optimized by using the dispersion and dis-
sipation optimization techniques [11,12]. 

In this work, based on the dispersion and dissipation op-
timization and monotonicity-preserving technique, a second 
order optimized MUSCL scheme (OMUSCL2) is proposed. 
Compared with the classical second or third order MUSCL 
scheme, the new scheme has less dissipation and dispersion 
and thus has higher resolution for shockwave and small 
scale waves. The new scheme bears the same stencil and 
nearly the same computational cost as that of the classical 
MUSCL scheme, so it is easy to be used or be migrated in 
the finite volume CFD code.  

1  Description of the numerical scheme 

1.1  The scalar conservation law 

In this section, we start with the description in the one-  
dimensional case. Consider the scalar hyperbolic conserva-
tion law given by  

 
( )
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 
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 
u f u

t x
 (1) 

For simplicity, assuming the grids points xj are uniform, that 
is, 1 1/ 2,  / 2.    j j j jx x h x x h  Defined 1/ 2 1/ 2[ , ] j j jI x x  

is a uniform partition of the solution domain in space. The 
semi-discrete conservative scheme of eq. (1) is  
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where 
1/ 2

ˆ
jf 

 is the numerical flux. The details of how to get 

it will be described in the following. Define  
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and eq. (2) can be written as: 
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In this paper, eq. (4) is discrete in time by the TVD Runge- 
Kutta scheme [13].  
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1.2  A brief review on MUSCL and TVD property 

1.2.1  Van Leer’s MUSCL method 

In 1979, Van Leer [5] proposed the MUSCL method. Con-
sidering eq. (1) and its semi-discrete form eq. (2), many 
different semi-discrete schemes can be obtained after split-
ting flux, such as the second-order central scheme, and the 
second-order or third-order upwind scheme. Different 
schemes which depend on the expression of 1/ 2,ˆ j Lu   and 

1/ 2,ˆ j Ru   can be written in a unified form:  

 1/ 2 1/2, 1/ 2,
ˆ ˆ ˆ( ) ( ).j j L j Rf f u f u 
     (6) 

A more general form is  
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k=1 is the upwind scheme; k=1 is the central scheme and 
k=0 is the Fromm scheme. They are all second-order accu-
rate, while k=1/3 is a third-order accurate scheme. If these 
schemes are used simply, they will produce numerical os-
cillations. Van Leer [5] improved eq. (7) to 
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by reducing significant changes in 1/ 2,ˆ j Lu   and 1/ 2,ˆ j Lu   to 

improve the ability of capturing shock. 

1.2.2  TVD scheme 

In 1959, Godunov [14] proposed the monotonicity scheme. 
Then Jenning [15] proposed the monotonicity–preserving 
scheme by extending the concept of monotone to non-linear 
scheme. The numerical solution avoids oscillation near the 
shock using the monotonicity or monotonicity-preserving 
scheme.  

TVD, first introduced by Harten, means total variation 
diminishing. The basic idea is to apply the characteristics 
which are total variation diminishing of differential equa-
tions in constructing a difference scheme. In order to con-
struct the TVD scheme, Harten gave a sufficient condition. 
That is, if the scheme can be written as: 

 1
1/ 2 1 1/ 2 1( ) ( ),
       n n n n n n n n

j j j j j j j ju u C u u D u u  (9a) 

and for any j satisfies: 

 1/ 2 1/ 2 1/ 2 1/ 20,  0,  1,      n n n n
j j j jC D C D  (9b) 

the scheme is a TVD scheme. 

1.3  Optimized MUSCL scheme (OMUSCL2) by con-
trolling dispersion and dissipation 

1.3.1  Fourier analysis of dispersion and dissipation 

The scalar hyperbolic equation (1) is discrete on the stencil 

2 1 1 2[ , , , , ]j j j j jx x x x x    . Clearly, five points can construct 

the 4th order scheme at most. Here five points are used to 
construct a second-order scheme, then getting a spatial dis-
crete expression with two free coefficients: 
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where a and b are free coefficients.  
In order to analyze the dispersion and dissipation errors 

quantitatively, consider the model problem 
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with the initial condition:  

( ,0) e jikx

ju x . 

Suppose the exact solution of differential equation has the 

form i ( )ˆ( , ) ( )e  jk x ct

ju x t u t , then i ( )ˆ( )e   jk x ct

j eF K u t  is ob- 

tained, i . e r ik k k  The solution is 
i( )

( , ) e e
 


ir

j
kk

c t kx c t
h h

ju x t . 

Note that kr=0, ki=kh for the exact solution. So the disper-
sion and dissipation errors can be reflected by the functions 
kr and ki [16]. 

For eq. (10) the functions of dispersion and dissipation 
are expressed as (kh=): 
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Define: 

1 2 4 ,
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a b
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and eq. (11) is rewritten as:  

 
2 2(cos ( ) 1) ,

(1 cos( ))sin( ).

 
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 
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r

i

K

K
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Here ,  are the dissipation and dispersion coefficients, 
respectively, i.e. the dissipation property of the scheme (10) 
is determined only by the free parameter , and the disper-
sion property of scheme (10) is determined only by the free 
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parameter . Since  and  are independent parameters, the 
dissipation and dispersion can be the optimized property of 
scheme (10) independently. 

Particularly when =0, =1/3, scheme (10) is a fourth- 
order central scheme.  

1.3.2  Optimization for dissipation and dispersion coeffi-
cients 

Eq. (12) requires 0 since the dissipation must be positive. 
In the application of specific physical problem,  can be 
given an appropriate value to avoid over smoothed discon-
tinuities. So  is a controllable parameter. Here =0.2 is 
determined by tests. The following is optimized mainly for 
dispersion coefficient using the best square approximation 
method. 

The exact value of dispersion is ki=, by the best square 
approximation: 
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In Table 1, for given x value,  value is presented when 
F() obtains the minimum value. Figure 1 shows the dis-
persion curve with different  values and the exact value. 
Figure 1 shows that the dispersion curve will approach ex-
act value better in the range of high wave number as  de-
creases. But Figure 2 shows  can’t be decreased infinitely. 
So it is chosen in the range of max ( ( ) 0.05.  ki  Fi-

nally = 0.55 when max  ( ( )  ki =0.05. 

As is addressed above, the scheme is the 4th order central 
scheme when =1/3. Seen from Figure 3, the region is 
increased by 50% through choosing a new  value. That is, 
for the same resolution, our grid’s number is 2/3 of the 
original fourth-order scheme. 

1.3.3  Improving shock capturing ability by adding a TVD 
limiter 

In the above work, =0.2 and = 0.55 have been defined. 
So far the scheme is linear, which can’t calculate shock. The 
following is to add a limiter. Flux can be split into f = 

 f f , satisfying d / d 0 f u  and d / d 0 f u . Consider 

Table 1  x and  values for minimum F() value 

x 
/2 0.49269 

2/3 0.35613 

5/6 0.07565 

 

Figure 1  Dispersion curves for different . 

 

Figure 2  Dispersion curves by decreasing the  value. 

 

Figure 3  Comparison of =1/3 with = 0.55. 
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eq. (1) only for the case of d / d f u c = const 0 . For 

the case c<0, the scheme is easy to be developed due to the 
symmetry. 

The stencil in the reconstruction of Uj+1/2 in the classical 
MUSCL and the new scheme is shown in Figure 4. Classi-
cal MUSCL reconstructs left and right states by using three 
points. Totally four points are used to compute Uj+1/2, and 
the message in one additional point is not used, i.e. one 
point’s message is wasted. This inspires us to reconstruct 
the left and right states by all four points: 

1/ 2 1/ 2 1 1 2

1/ 2 1/ 2 1 1 2

( , , , ),

( , , , ).
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U U U U U U

U U U U U U
 

So, the new scheme uses the same stencil points in the 
computation of Uj+1/2 as that used in the classical MUSCL 
scheme.   

According to the above idea, from eq. (10) we obtain 
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where = 0.55 and =0.2, which are chosen by the above 
optimization process.  

Based on the limiter technique [17], scheme (13) can be 
rewritten as a first-order upwind part and a correction part, 
and then the limiter factor is used in the correction part to 
keep TVD property. Now, the schemes are 
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Figure 4  Stencils for the reconstruction of Uj+1/2. 

Ref. [18] demonstrated that this method is identical to the 
TVD method and gave the range of j+1/2: 

1/ 2

1/ 2
1/ 2

2
0 ,

1
2

0 ,












   

  

j

j
j

r
 

where  is the CFL number, and the common value is 
0 1  .  

Finally we choose 

 1/ 2 1/ 2 1/ 2max(0, min(2, , 2 )).   
j j jr  

Now the OMSCL2 scheme is obtained in the scalar hy-
perbolic conservation equation. The following will extend it 
to the Euler equations.  

2  Extension to the Euler equations 

In this section, the OMUSCL2 method is extended to the 
Euler equations. The one-dimension Euler equations of gas 
dynamics can be written as the following conservative form: 
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With the idea of MUSCL and TVD, the second-order op-

timized scheme (OMUSCL2) is got. In order to apply the 
finite volume method easily and compare it with the 
MUSCL method, it is rewritten in the same way as the 
MUSCL method. Here is how to apply this algorithm to the 
finite volume method.  
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where  is a small value (e.g.  =106). 
(2) Then, the fluxes in the face of control volume can be 

computed by using the flux technique, such as Steger- 
Warming splitting [19], Van Leer splitting [20], and Roe 
[21] or the AUSM [22 ] method. 

3  Numerical tests 

In this section, this new scheme is used to do some one- 
dimensional and two-dimensional tests for the sake of com-
paring it with the original MUSCL schemes. 

In the following tests, the original second-order MUSCL 
scheme (MUSCL2), the third-order MUSCL scheme 
(MUSCL3) and the new scheme (OMUSCL2) are used to 
compute the face values, and the Steger-Warming [19] 
method for one dimension tests and the AUSM-PW [23,24] 
method for two dimension tests with characteristic-wise are 
used to compute the flux, The third-order TVD type Runge- 
Kutta method is used for time advance. 

3.1  One-dimensional problems 

3.1.1  Several convergence studies for the advection equa-
tions [8,25] 

The following equation is solved on the domain [1, 1] with 
periodic boundary conditions: 

0,

( ,0) sin(π ).

 



t xu u

u x x
 

The computed L1 error and order of accuracy are listed in 
Table 2. The error was measured at t=1 with the CFL num-
ber equal to 0.001. Where OMUSCL2 represents the current 
second-order optimized scheme, MUSCL2 and MUSCL3 
represent the second-order and the third-order MUSCL 
schemes, respectively.  

The results in Table 2 tell us that the OMUSCL2 scheme 
gives the second-order accuracy, which meets the designa-
tion order, while the L1 order of MUSCL2 and MUSCL3 is 
less than their theoretical order. 

3.1.2  Shu-Osher problem [13] 

This test indicates that Mach 3 shock interacts with a den-
sity disturbance. And this is a good model to test the 
scheme’s resolution for both shocks and fine scale waves. 
The governing equations are one-dimensional Euler equa-
tions and solved on the spatial domain [0,10]x . The initial  

Table 2  L1 error and order with u(x, 0)=sin(x) 

Method N L1 error L1 order 

10 0.3515 - 

20 0.1316 1.42 

40 4.8703×102 1.43 

80 1.4067×102 1.79 

160 3.8667×103 1.86 

MUSCL2 

320 1.0453×103 1.89 

10 0.1867 - 

20 7.8412×102 1.25 

40 1.8282×102 2.10 

80 4.1645×103 2.13 

160 8.7331×104 2.25 

MUSCL3 

320 1.7762×104 2.30 

10 0.1910 - 

20 6.6878×102 1.51 

40 2.1127×102 1.66 

80 5.5547×103 1.93 

160 1.3730×103 2.02 

OMUSCL2 

320 3.4528×104 2.00 

 
conditions are 

3.857143,   2.629369,  10.333333,  when 1,

1 0.2sin(5 ),  0,        1,                 when 1.



   


    

u p x

x u p x
 

The solution is advanced up to 1.8t  with 400 points. 
Since the real exact solution is unknown, the “exact” solu-
tion here is obtained by 4000 points. Figure 5 shows the 
comparison between the OMUSCL2 and MUSCL schemes. 
Figure 5(b) is the locally enlarged plot of Figure 5(a). The 
figure shows clearly that OMUSCL2 has better resolution 
than the original MUSCL schemes, especially, in the region 
of high wave number. 

3.1.3  One-dimensional Sod problem [26] 

The governing equations are one-dimensional Euler equa-
tions, and the computation domain is [0,1]x . The initial 

conditions are 

1,          0,  1,     when 0.5,

0.125,  0,  0.1,   when 0.5.



   


   

u p x

u p x
 

The solution is advanced up to 0.14t  with 200 points 
and compared with the exact solution, where the exact solu-
tion is computed by using an exact (Godunov) Riemann 
solver. 

The density and velocity distribution obtained by 
MUSCL schemes and OMUSCL2 are shown in Figures 6 
and 7. Where Figures 6(b) and 6(c) are locally enlarged 
plots of Figure 6(a), Figures 7(b) and 7(c) are locally enlarged 
plots of Figure 7(a). These figures show that the new scheme 
produces a better result than the original MUSCL schemes.  
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Figure 5  Plots of density at t=1.8. N=400. (b) is the locally enlarged plot 
of (a). 

3.1.4  One-dimensional Lax problem [27,28] 

The governing equations are 1D Euler equations and solved 
on the spatial domain [0,2]x . The initial conditions are 

0.445,  0.698,  3.528,   when 1,

0.5,      0,         0.571,   when 1.



   


   

u p x

u p x
 

The solution is advanced up to t =0.32 with 100 points. 
The density distributions obtained by MUSCL and 
OMUSCL2 are shown in Figure 8, where Figure 8(b) is the 
locally enlarged plot. From these figures we can observe 
that the best solutions are given by OMUSCL2, and the 
original MUSCL method has more dissipation around the 
discontinuities and non-physical oscillation. 

3.2   Two-dimensional problems 

3.2.1  Double Mach reflection problem [29] 

The governing equations are two-dimensional Euler equa-
tions, and the computational domain for this problem is 
chosen to be [0, 4]×[0, 1]. Only the region [0, 3]×[0, 1]is 
used during the computing. The reflecting wall lies at the  

 

Figure 6  Plots of density at t=0.14, N=200. (b) and (c) are locally 
enlarged plots of (a). 

bottom of the computational domain starting from x=1/6. 
Initially a right-moving Mach 10 shock in air (=1.4) is 
positioned at x=1/6, y=0, and makes a 60° angle with the 
x-axis. For the bottom boundary, the region from x=0 to  
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Figure 7  Plots of velocity at t=0.14, N=200. (b) and (c) are locally 
enlarged plots of (a). 

x=1/6 is always assigned the initial values. The boundary 
with x>1/6 on the x-axis is taken to be a reflecting boundary. 
At the top boundary of our computational domain, the flow 
values are set to describe the exact motion of the Mach 10  

 

Figure 8  Plots of density at t=0.32, N=100. (b) is locally enlarged plots 
of (a). 

shock. The problem is run with a CFL number of 0.6 and 
the results are shown at a simulation time of 0.2. The grid 
resolution is 960×240 points. 

The density distribution obtained by OMUSCL2 is 
shown in Figure 9, where Figure 9(b) is the locally enlarged 
plot. The result obtained by MUSCL3 is shown in Figure 10. 
Figure 9(a) shows that both Mach stems and shocks in this 
problem are properly captured. By comparing these figures, 
it’s clear that the new scheme (OMUSCL2) achieves a 
high-resolution in the numerical solution, especially in the 
region near the Mach stems. The new scheme can capture 
the rollup of the slip lines which emanate from the head of 
head clearly. This result also shows that the dissipation of 
the new scheme is much smaller than that of MUSCL3.  

3.2.2  RAE2822 transonic airfoil [30] 

The transonic flow over a RAE2822 airfoil is a classical 
validation test of CFD codes. This airfoil is transonic super-
critical airfoil and there’s a shock in the leeward side. Nu-
merical solution of the shock position is sensitive to the  
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Figure 9  Contours of the density (from 1.731 to 20.92 with 30 equally 
spaced contours), using OMUSCL2. (b) is locally enlarged plots of (a). 

 

Figure 10  Contours of the density (from 1.731 to 20.92 with 30 equally 
spaced contours), using MUSCL3. (b) is locally enlarged plots of (a). 

numerical methods. So it’s a good example to verify the 
shock resolution of numerical methods.  

The grid, a multi-block C-grid, is provided by J.W. Slater 
from NASA Web1). The total mesh number is 369×69. The 
grid around the airfoil is shown in Figure 11. The free  

stream flow conditions are 0.729 Ma ; the chord-based 

Reynolds number is Re=6.5×106; the angle of attack is 2.31°. 
The surface pressure coefficient for the comparison results 
from [30] (or downloads from the website1)). 

Figure 12 shows the distribution of the pressure coeffi-
cient on the surface of the airfoil. This figure shows that the 
result of OMUSCL2 is most close to the experimental data, 
and is better than MUSCL3 and MUSCL2. Especially, the 
shock’s location computed by OMUSCL2 agrees very well 
with the experimental data. That shows that OMUSCL2 has 
a higher shock resolution and lower dissipation than the 
original second-order or third-order MUSCL schemes. 

Table 3 gives the CPU time per 1000 steps in this test. 
The CPU is Intel i7-920 at 2.66 GHz. This table shows that 
OMUSCL2’s computational cost is nearly the same as that 
of the MUSCL schemes. The new scheme’s CPU cost is  

 

 
Figure 11  RAE2822 computational grids. 

 
Figure 12  Distribution of the pressure coefficient on the surface of airfoil. 

                           
1) http://www.grc.nasa.gov/WWW/wind/valid/raetaf/raetaf.html 
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Table 3  Comparisons of the CPU time  

Scheme Computational efficiency (per 1000 steps) 

MUSCL2 207 s 

MUSCL3 215 s 

OMUSCL2 224 s 

 
only 8% more than MUSCL2 and only 4% more than 
MUSCL3. Therefore, the CPU cost can be ignored when the 
original MUSCL scheme is switched to OMUSCL2 in CFD 
codes. 

4  Conclusion 

A second-order optimized monotonicity-preserving MUSCL 
scheme (OMUSCL2) is developed based on the dispersion 
and dissipation optimization and monotonicity-preserving 
technique. The new scheme (OMUSCL2) is simple in ex-
pression and is easy to be used in CFD codes. Compared 
with the original second-order or third-order MUSCL 
scheme, the new scheme shows nearly the same CPU cost 
and higher resolution to shockwaves and small- scale 
waves. 

The new scheme is tested through a set of one- dimen-
sional and two-dimensional tests, including the Shu-Osher 
problem, the Sod problem, the Lax problem, two dimension 
double Mach reflection and RAE2822 transonic airfoil test. 
All numerical tests show that, compared with the original 
MUSCL schemes, the new scheme has lower dispersion and 
dissipation errors and higher resolution. 
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