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SUMMARY

A conservative, single-cell-based semi-Lagrangian transport model is proposed in this paper. Using multi-
moment concept, an additional moment, i.e. volume-integrated average (VIA), is treated as the model
variable besides the point value (PV) updated in the traditional semi-Lagrangian schemes. A quadratic
interpolation function is constructed based on local degrees of freedom defined within each single cell.
The PV moment is advanced by the semi-Lagrangian formulation, whereas the VIA moment is updated
by a finite volume formulation to rigorously ensure the numerical conservation. The numerical fluxes are
computed from the PV moments defined along the boundary edges of the control volume. The scheme
is extended to the spherical geometry through the application of the cubed-sphere grid that eliminates
the polar singularity in the conventional longitude/latitude coordinates by using the quasi-uniform grid
spacing covering the whole sphere. The single-cell-based scheme is well suited for the treatment of the
connections between different patches. A simple quasi-monotone limiter to the PV moment is applied to
suppress non-physical oscillations. The proposed scheme has been validated via representative benchmark
tests and the performance is competitive to other existing transport schemes. Copyright � 2010 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Computation of the trace constituent transport is critical to the general circulation models (GCMs).
It is not a trivial work to develop numerical transport model of adequate accuracy and efficiency,
especially in the spherical geometry which is in general involved in the global GCMs. The conven-
tional longitude/latitude (LON/LAT) grid has singularity at two poles. Moreover the convergence
of the meridians in the polar region gives rise to a serious reduction in the mesh spacing, and
thus the time stepping due to the CFL stability condition. Semi-Lagrangian schemes have gained
popularity in constructing the transport model on the LON/LAT grid because of the larger allow-
able CFL number for computational stability. As reviewed in [1], the semi-Lagrangian schemes
are able to produce accurate results even for considerably large time steps. One of the major
drawbacks of the semi-Lagrangian schemes, however, is that they are not inherently conservative.
The conservation error is particularly important and fatal in some cases for long-term simulations.

Many efforts have been made to develop the conservative semi-Lagrangian schemes. Among
others, a class of conservative semi-Lagrangian schemes, which follow the underlying concept of
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the CIP (Cubic Polynomial Interpolation [2] or more generally Constrained Interpolation Profile [3])
method and are so-called CIP (Constrained Interpolation Profile) Conservative Semi-Lagrangian
(CIP-CSL) schemes, were proposed in [4–8] by introducing multi moments [9, 10] as the compu-
tational variables. A convenient and efficient transport model with numerical conservation can be
constructed by making use of two kinds of moments, i.e. point value (PV moment) and volume-
integrated average (VIA moment). PV moment can be predicted by the normal semi-Lagrangian
schemes, whereas the VIA moment is updated by the flux-form finite volume formulation and thus
is exactly conserved. The original CIP-CSL schemes use the rigorous integration of the interpo-
lation function to obtain the numerical flux, and meet substantial complexity when one tries to
integrate an interpolation function in higher dimensions in two-dimensional or three-dimensional
applications where a dimensional splitting is often implemented as a practical way. In this paper,
we report a more flexible extension of the semi-Lagrangian multi-moment advection schemes by
using high-order quadrature along the trajectory for the computation of the numerical flux. The
present method can be straightforwardly implemented to multi-dimensional computation without
the dimensional splitting. It also should be pointed out that some conservative semi-Lagrangian
transport models [11, 12] have been constructed through the rigorously integrating spatial recon-
struction polynomials although the numerical procedure is very complicated.

Another important part of this paper is to build up a practical numerical formulation for advection
transport in spherical geometry using quasi-uniform mesh. The efforts to represent the sphere
with quasi-uniform grid spacing, in fact, started more than 40 years ago. Two representatives of
the non-LON/LAT grids, i.e. icosahedron grid [13, 14] and cubic grid [15], were used to solve
barotropic models on sphere. Owing to the complex structures of the these grids, however, they had
not gotten a wide popularity until the practice to implement some modern sophisticated numerical
methods in the past decade. The recent success with these uniformly spaced spherical grids has
made them widely accepted in developing next generation global models for geophysical flows.

The icosahedron grid possesses a more uniform grid spacing compared with the cubic grid,
but involves significant complexity and requires numerical techniques considerably different from
those developed for the structured grids. Contrarily, the cubic grid projects the surface of the
sphere onto an inscribed cube and the computational domain is mapped to six square patches
where structured grid topologically equivalent to the Cartesian one is constructed. Some numerical
models have been developed on cubic grid for both transport and shallow-water flows as given in
[12, 16–25]. On cubic grid, the curvilinear coordinates within each patch can be constructed by
a gnomonic projection [15] or a conformal projection [20]. The gnomonic projection has more
uniform grid spacing, but encounters the broken coordinates along the boundary edges between
different patches. It brings about difficulties to communicate data from one patch to another. Extra
numerical manipulations are required for the computations over the stencils next to the boundary
edges. The conformal projection method is proposed to overcome this difficulty, but at a cost
of losing the uniformity of the grid and analytic transformation laws. In our former work [26],
a global shallow-water model has been constructed on cubed-sphere grid using multi-moment
concept. Different from the original CIP-CSL schemes, the PV moment is computed by solving
a derivative Riemann problem (DRP) at cell interface and time integration was implemented by
the Runge–Kutta scheme. Under this numerical framework, we can conveniently treat the forcing
terms of shallow-water equations.

As an efficient semi-Lagrangian advection transport model in spherical geometry, we present
in this paper a CIP-type multi-moment conservative scheme on cubed-sphere grid. The major
difference from the existing CIP-CSL schemes [4–8] is that the numerical flux in the present
scheme is computed from the values sampled along the semi-Lagrangian trajectory instead of
the rigorous integration of the interpolation function, and only two kinds of moments, i.e. PV
and VIA, are used as the computational variables even in multi-dimensional cases. The present
formulation is well suited for the cubed-sphere grid, where the data transfer is required on the
patch boundaries. Especially, in the present model the single-cell quadratic reconstruction based
on the local degrees of freedom (DOFs) of multi moments minimizes the ghost cells required for
inter-patch data communication.
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The remainder of this paper is organized as follows. The basic formulation of semi-Lagrangian
multi-moment transport scheme for one-dimensional case is described in Section 2 with numerical
tests. The scheme on two-dimensional Cartesian grid is given in Section 3 and extended to spherical
geometry with the application of cubed-sphere grid in Section 4. We evaluate the proposed scheme
with some representative benchmark numerical experiments in Section 5. A few concluding remarks
are given in Section 6.

2. BASIC FORMULATION IN ONE DIMENSION

To build a multi-moment scheme, the first step is to decide the moment configuration. As shown
in Figure 1, we consider the one-dimensional control volume Ci ≡ [xi− 1

2
, xi+ 1

2
]. Without losing

generality, the uniform grid spacing �x is adopted here. The PV moment and VIA moment of the
transported field �(x, t) are defined as

• The PV moment

P�i± 1
2
(t)=�(xi± 1

2
, t) at the endpoints of Ci , (1)

• The VIA moment over Ci

V �i (t)=
1

�x

∫ x
i+ 1

2

x
i− 1

2

�(x, t)dx . (2)

Then we build the spatial reconstruction with the two moments defined above. With two PV
moments and one VIA moment in each control volume, a piecewise quadratic interpolation function
(same as that used in the CIP-CSL2 scheme [4]) can be constructed piecewisely for cell i as

�i (x)=c0
i +c1

i x̃ +c2
i x̃2, (3)

where x̃ = x −xi−1/2.
By solving the constraints in terms of both PV and VIA moments as

P�i± 1
2
=�i (xi± 1

2
),

V �i =
1

�x

∫ x
i+ 1

2

x
i− 1

2

�i (x)dx,
(4)

the coefficients read as

c0
i = P�i− 1

2
,

c1
i =− 2

�x
(2P�i− 1

2
+ P�i+ 1

2
−3V �i ),

c2
i = 3

�x2
(P�i− 1

2
+ P�i+ 1

2
−2V �i ).

(5)

Figure 1. Moment configuration for one-dimensional case.
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The governing equation for one-dimensional transport of physical field �(x, t) is written as

��

�t
+ �(u�)

�x
=0. (6)

The PV moment is updated by using the semi-Lagrangian scheme. The governing equation is
recast into advection form using substantial derivative as

D�

Dt
=−�

�u

�x
. (7)

Provided the PV moment and VIA moment at time tn , i.e. P�
n
i±1/2 and V �

n
i for the i th cell,

the reconstruction polynomial �n
i (x) in (3) is found with the coefficients given in (5). Considering

the problems with constant speed, the right-hand side term of (7) vanishes. According to the
Lagrangian invariant solution, we obtain the PV moment at the next time step as

P�
n+1
i− 1

2
=�n

I (x P
i− 1

2
), (8)

where x P
i−1/2 is the location of the departure point corresponding to grid point xi−1/2 at t = tn ,

which can be simply computed by x P
i−1/2 = xi−1/2 −u�t in the case where the advecting velocity

is constant. The subscript I means the index of the cell in which the departure point x P
i−1/2 falls in.

For the problems with variable speed, the right-hand side term of (7) is considered as a source
term and should be integrated along the trajectory. The departure point should be calculated by

time integration as x P
i−1/2 = xi−1/2 −∫ tn+1

tn u(x)dt , where some high-order numerical schemes for
ODE can be used, e.g. the multi-step Runge Kutta scheme described later in this paper.

By integrating (6) over the i th element, the VIA moment can be updated using the formulation of

�V �i

�t
=− 1

�x
( fi+ 1

2
− fi− 1

2
), (9)

where f =u� is the flux function. This finite volume formulation guarantees the numerical conser-
vation of the VIA moment.

To solve the ODE (9), the time integration of the numerical flux can be computed by analytically
integrating the interpolation function along the trajectory as in the original CIP-CSL schemes [4, 5],

gi− 1
2
=

∫ tn+1

tn
fi− 1

2
dt =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�x V �I −
∫ x P

i− 1
2

x
I− 1

2

�I (x)dx +�x
i−1∑

p=I+1

V �p if u>0,

−
∫ x P

i− 1
2

x
I− 1

2

�I (x)dx −�x
I−1∑
p=i

V �p if u<0.

(10)

However, it is very complicated and costly, even possible, to get a rigorous integration of
the interpolation function over a multi-dimensional area in two- or three-dimensional cases. An
alternative method used by Ii and Xiao [27] to evaluate the numerical flux is to compute the
numerical quadrature in terms of the values sampled along the trajectory by an explicit multi-point
integration scheme, e.g. M-point Simpson’s rule, as

gi− 1
2
=�

M∑
p=1

�p�Ip (xi− 1
2
−�p�), (11)

where �= xi−1/2 −x P
i−1/2, Ip is the index of the cell in which the pth sampled point with the

location of xi−1/2 −�p� falls in. When a quadratic interpolation function is adopted in spatial
reconstruction, one arrives at the 3-point Simpson’s quadrature formula. Thus, the coefficients are

�1 =0, �1 = 1
2 , �2 =1 and �1 =�3 = 1

6 , �2 = 2
3 . (12)
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In case of constant speed, numerical flux in (11) is computed by

gi− 1
2
=�t

M∑
p=1

�p fi− 1
2
(tn +�p�t)=�t

M∑
p=1

�pui− 1
2

P�i− 1
2
(tn +�p�t), (13)

where P�i−1/2(tn +�p�t) is the value of PV moment at the time of tn +�p�t , which is calculated
by the same semi-Lagrangian scheme mentioned above using �p�t as the time increment.

Once gi−1/2 is obtained at the interfaces of all cells, the VIA moment at tn+1 is advanced by

V �
n+1
i = V �

n
i − 1

�x
(gi+ 1

2
−gi− 1

2
). (14)

Being a semi-Lagrangian type, the present scheme works stably even with large CFL as in the
original CIP-CSL schemes [4, 5], where the common parts of the fluxes passing through xi−1/2
and xi+1/2 are canceled out in the numerical integration. However, it should be notified that the
computational stability is somewhat dependent on the order of the numerical quadrature for the
flux function in the present scheme. The Von Neumann analysis given in Appendix A shows that
a 3-point Simpson’s rule requires the all sampled points to be within the mesh cell containing the
departure point, which means that the local CFL number (CFLloc) must satisfy CFLloc<1, and the
5-point Simpson’s quadrature is stable where even the sampled points spread over more than one
cell and thus allows a larger CFLloc for stability.

Same as other high-resolution schemes, in the presence of discontinuity or large gradient, a
properly chosen limiter is necessary to suppress the non-physical oscillations. A simple limiter
proposed in [28] is used in the present study, i.e. after being updated from the Lagrangian invariant
solution (8), the PV moments should be limited by the local extremes. We set the extremes for the
i th cell as the maximal and minimal PV moments

�+
i =max(P�

n
i± 1

2
) and �−

i =min(P�
n
i± 1

2
). (15)

The PV moment at time step tn+1 is limited to be

P�
n+1
i− 1

2
=max{�−

I ,min[�+
I ,�n

I (x P )]}. (16)

It should be pointed out that we only apply the limiter to the PV moment here. It guarantees the
oscillation-less results for PV moment, at the same time, as can be seen from the numerical results
the non-physical oscillations of VIA moment can be effectively controlled as well. It should be
noted that this limiting procedure does not cause any detriment to the conservation of the VIA
moment.

Example 2.1
We use this numerical test to evaluate the convergence rate of the scheme discussed above. The
initial condition is given by

�(x,0)=sin(�x) , x ∈ [−1,1] (17)

with a constant speed u =1.

The numerical experiments are carried out on gradually refined grids with the CFL number
fixed at 0.25, 0.8 by the 3-point scheme and 1.25 by the 5-point scheme. The accuracy of the
present scheme is examined by the normalized l2 error defined in [29]. The numerical errors and
the convergence rate are shown in Table I. The third-order accuracy is achieved as expected. In
practical use, the number of sampled points along trajectory for numerical quadrature of flux is
problem-dependent and usually determined on a trade-off between computational accuracy and
cost. In this paper, we only give the numerical results by 3-point scheme hereafter for the sake of
brevity.
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Table I. Convergence test for one-dimensional case.

CFL=0.25 CFL=0.8 CFL=1.25

Grid l2 error l2 order l2 error l2 order l2 error l2 order

20 1.6302e−3 — 4.4347e−4 — 3.3696e−4 —
40 2.0536e−4 2.99 5.6217e−5 2.98 4.3219e−5 2.96
80 2.5729e−5 3.00 7.0679e−6 2.99 5.4584e−6 2.99
160 3.2187e−6 3.00 8.8576e−7 3.00 6.8537e−7 2.99
320 4.0246e−7 3.00 1.1085e−7 3.00 8.5848e−8 3.00

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2 Numerical result
Initial

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2 Numerical result
Initial

Figure 2. One-dimensional advection test with a composite initial distribution. Shown are the result without
limiter (left) and the result with PV limiter (right).

Example 2.2
A one-dimensional test with complex initial distribution including both smooth and discontinuous
parts is computed. The transported field consists of a Gaussian distribution, a square wave, a
sharp triangle and a half ellipse. The detailed expressions can be found in [30]. The computational
domain (x ∈ [−1,1]) is divided into 200 cells, the CFL number is specified as 0.8. We ran the
numerical test for four revolutions, respectively, with and without the numerical limiter. The
numerical result without limiting is shown in the left panel in Figure 2. Obvious oscillations
are observed. The overshooting and undershooting errors in the numerical solution of the VIA
moment are 5.3617×10−2 and −5.3617×10−2, respectively. The numerical result with the limiting
projection (16) onto the PV moment is shown in the right panel in Figure 2. The overshooting
and undershooting errors in the PV moment are completely eliminated, and those in the VIA
moment are significantly reduced to 4.6152×10−4 and −5.4457×10−4, an acceptable extent to
many practical applications. It reveals that the simple limiter used in the present scheme effectively
controls the spurious oscillations while keeping the accuracy of the numerical schemes. We have got
at the same time the numerical solution to PV moment completely free from numerical oscillation
and an exactly conserved solution to VIA moment.

3. EXTENSION TO TWO-DIMENSIONAL CARTESIAN GRID

To construct a single-cell-based piecewise quadratic reconstruction polynomial for two-dimensional
rectangular control volume, nine DOFs are required [26]. The moment configuration for the
transported field �(x, t) on two-dimensional control volume Cij ( [xi−1/2, xi+1/2]×[y j−1/2, y j+1/2])
is shown in Figure 3. Four PV moments are located at the vertices of the control volume, two PV
moments are defined at the midpoints of the x-direction edges and other two at the midpoints of
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Figure 3. Moment configuration for two-dimensional case.

the y-direction edges,

P�i± 1
2 j± 1

2
(t)=�(xi± 1

2
, y j± 1

2
, t) at vertices,

P�i j±1/2(t)=�(xi , y j± 1
2
, t) at midpoints of x-direction edges,

P�i± 1
2 j (t)=�(xi± 1

2
, y j , t) at midpoints of y-direction edges.

(18)

A VIA moment is defined over Cij as

V �ij(t)=
1

|Vij|
∫ x

i+ 1
2

x
i− 1

2

∫ y
i+ 1

2

y
i− 1

2

�(x, y, t)dx dy, (19)

where |Vij| is the area of the control volume in two dimensions, for two-dimensional uniform grid
in Cartesian coordinates |Vij|=�x ×�y. As we will see later, the PV moments defined on the
boundary edges of the control volume provide the sampled values for numerical quadrature of the
desired accuracy for the computation of the flux during updating the VIA moment.

With the moments given above, a quadratic interpolation function can be constructed for control
volume Cij as follows:

�ij(x, y)=c00
ij +c10

ij x̃ +c01
ij ỹ+c11

ij x̃ ỹ+c20
ij x̃2 +c02

ij ỹ2 +c21
ij x̃2 ỹ++c12

ij x̃ ỹ2 +c22
ij x̃2 ỹ2, (20)

where x̃ = x −xi−1/2 and ỹ = y− y j−1/2.
The nine coefficients are uniquely determined by nine constraint conditions in terms of the

moments defined in (18) and (19). The detailed expressions can be referred to the appendix of [26].
The governing equation of conservative form for two-dimensional advection is

��

�t
+�·(v�)=0, (21)

where � is the transported field and v is the velocity vector.
To update the PV moment, the equation of advection form is adopted as

D�

Dt
=−��·v. (22)
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Let P�i ′ j ′ denote any of the eight PV moments defined in (18), and i ′ j ′ be the corresponding
subscript index. Considering a divergence-free flow field, provided �n(x),the spatial reconstruction
of the physical field � at time step tn , we advance any PV moment P�i ′ j ′ defined on the edges of
the control volume by using the Lagrangian invariant solution, as

P�
n+1
i ′ j ′ =�n

IJ(xP
i ′ j ′), (23)

where �n
IJ is the interpolation function for (I, J ) cell at time tn , xP

i ′ j ′ is the departure point for

point xi ′ j ′ and (I, J ) is the cell index in which the departure point xP
i ′ j ′ falls in.

For variable velocity field, the location of the departure point xP
i ′ j ′ should be solved from the

following IVP at t = tn+1:

dx
dt

=−v,

x(t = tn)=xi ′ j ′ .

(24)

A third-order Runge-Kutta scheme is applied to solve (24) as

xP
i ′ j ′ =xi ′ j ′ − 1

4 (k1 +3k3), (25)

where

k1 =v(xi ′ j ′)�t,

k2 =v(xi ′ j ′ − 1
3 k1)�t,

k3 =v(xi ′ j ′ − 2
3 k2)�t.

(26)

To control the non-physical oscillations, we again limit the PV moment by the local extremes.
For two-dimensional control volume Cij, we set the local extremes as

�+
ij = max(�n

i± 1
2 j± 1

2
,�n

i± 1
2 j

,�n
i j±1/2),

�−
ij = min(�n

i± 1
2 j± 1

2
,�n

i± 1
2 j

,�n
i j±1/2).

(27)

Then the PV moments at tn+1 is finally computed as

P�
n+1
i ′ j ′ =max{�−

IJ,min[�+
IJ,�

n
IJ(xP

i ′ j ′)]}. (28)

Similar to one-dimensional case, by integrating (22), with the application of the Gauss theorem,
a flux-form formulation for advancing the VIA is given as

�V �ij

�t
=− 1

|Vij|
4∑

p=1
h p =− 1

|Vij|
4∑

p=1

∫
l p

f ·nl p dl p, (29)

where h is the line-integration of the numerical flux, f= ( f x , f y)=v� is the flux vector, l denotes
the edges encompassing the control volume and n is the outward unit normal vector of the boundary
edges. For control volume Cij, we denote the boundary edges by l1 ≡ P3 P4, l2 ≡ P4 P2, l3 ≡ P2 P1

and l4 ≡ P1 P3 as shown in Figure 3.
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Figure 4. Updating procedure on two-dimensional plane.

The line-integration of the numerical flux is calculated by 3-point Simpson’s rule (12) as

h1 =
∫

l1
f ·nl1 dl = �y

6
( f x

i+ 1
2 j− 1

2
+4 f x

i+ 1
2 j

+ f x
i+ 1

2 j+ 1
2
),

h2 =
∫

l2
f ·nl2 dl = �x

6
( f y

i− 1
2 j+ 1

2
+4 f y

i j+ 1
2
+ f y

i+ 1
2 j+ 1

2
),

h3 =
∫

l3
f ·nl3 dl =−�y

6
( f x

i− 1
2 j− 1

2
+4 f x

i− 1
2 j

+ f x
i− 1

2 j+ 1
2
),

h4 =
∫

l4
f ·nl4 dl =−�x

6
( f y

i− 1
2 j− 1

2
+4 f y

i j− 1
2
+ f y

i+ 1
2 j− 1

2
).

(30)

Concerning the solution of evolution equation (29), the time integration of h is calculated in a
way similar to (13) as

gp =
∫ tn+1

tn
h p dt =�t

M∑
q=1

�qh p(tn +�q�t) (p=1 to 4). (31)

The numerical fluxes needed in (30) are evaluated at the points where the PV moments are
defined. To accomplish the computation, P�i ′ j ′(t

n +�q�t), the PV at tn +�p�t , is needed, which
is calculated by the same semi-Lagrangian scheme as mentioned above to advance the PV moment
with different time increments. As a more economical alternative, one can also simply specify
the departure point at time of tn +�q�t as (1−�q )xi ′ j ′ +�qxP

i ′ j ′ instead of using the Runge-Kutta
formulation (25) under the assumption that the trajectory is a straight line.

The VIA moment at time tn+1 is then computed by

V �
n+1
ij = V �

n
ij −

1

�x�y

4∑
p=1

gp. (32)

Figure 4 describes the numerical procedure to update PV moments and calculate the numerical
flux at the left edge of control volume Cij. The moment configuration is same as Figure 3. This
procedure can be summarized as follows.

• Step 1. Departure points at t = tn are found for PV moments P�i−(1/2) j and P�i−(1/2) j±1/2
using the third-order Runge-Kutta scheme (25), which are shown by small solid makers in
Figure 4. The departure points at t = tn + 1

2�t (denoted by small hollow markers) are simply
specified as the midpoints of straight lines connecting the arrival points and the departure
points (dashed lines in Figure 4) for saving the computational costs.

• Step 2. Single-cell-based spatial reconstruction (20) is obtained based on known PVs and
VIAs (at t = tn) for each cell.
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• Step 3. Values at departure positions are computed through local spatial reconstruction poly-
nomials. Each PV moment is updated by the Lagrangian invariant solution.

• Step 4. Numerical flux across the left edge of control volume Cij (shadow area shown in
Fig.4) is evaluated through nine points quadrature, including six departure points denoted by
small markers and three arrival points along the left edge of control volume.

• Step 5. VIA moment is predicted by using flux-form formulation (32).

It should be noted that the present multi-moment scheme needs more computer storage for the
extra moments. However, the computation can be carried out in a very efficient way. The two-
dimensional reconstruction is needed only for the semi-Lagrangian updating for the PV moment
defined on the boundary of the control volume. The VIA moment is updated with the fluxes
efficiently computed from quadratures based on the PVs. Furthermore, increasing the local DOFs
allows a larger time step for stability compared with refining the grid and using a single-moment
method with the same number of DOFs.

We have so far described a multi-moment finite volume transport scheme on the two-dimensional
plane. Based on the multi-moment concept, we adopt two kinds of moments, i.e. PV and VIA,
locally defined on each mesh cell, which then increases the local DOFs, and a quadratic spatial
reconstruction can be built within a single mesh cell. With a compact stencil, the multi-moment
scheme is well suited for the cubed-sphere grid, where the data transfer across the patch boundary
can be carried out more accurately and efficiently.

4. GLOBAL TRANSPORT MODEL ON CUBED SPHERE

To extend the present scheme to the spherical geometry, we adopt the cubed-sphere grid proposed
in [15]. This grid eliminates polar singularity in spherical LON/LAT grid and introduces a quasi-
uniform grid resolution for the whole globe. On a cubed sphere, the six identical patches covering
the whole globe are separated by 12 patch boundaries which are created by projecting the edges
of the inscribed cube as shown in Figure 5. The equiangular gnomonic projection is used in the
present study to construct the local curvilinear coordinates on every patch; it results in a quasi-
uniform grid spacing and the analytic transformation laws for curvilinear coordinate systems. The
procedure to construct the local coordinates on sphere by gnomonic projection is described in [21].
The coordinate system generated by gnomonic projection, however, is non-orthogonal, and the
coordinates break along the patch boundaries. Thus, special treatment is needed to transfer data
across the boundaries between different patches, which sometimes degrades the accuracy of the
numerical models [20]. Numerical schemes that use compact grid stencil are more efficient and
attractive because less halo zone for the data communication over the patch boundary is required.
Based on the multi-moment concept, the spatial reconstruction of our method is accomplished
within each single cell. This feature minimizes the data transfer across the patch boundary. In

Figure 5. The cubed-sphere grid.
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our computation, the Lagrangian invariant solution can be directly evaluated from the single-cell
interpolation where even the upstream point falls in another patch.

The flux-form governing equation for transport problem is now written in local curvilinear
coordinates as [15]

��

�t
+ �(ũ�)

��
+ �(ṽ�)

��
=0, (33)

where (�,�) is the local curvilinear coordinate system, �= R� and �= R�, R is the radius of the
sphere, � and � are central angles. �=√

G� and � is the transported field. (ũ, ṽ) is the contravariant
velocity vector, and

√
G the Jacobian of the transformation,
√

G = (1+ tan2 �+ tan2 �)−3/2 cos−2 �cos−2 �. (34)

On local curvilinear coordinates, the scheme developed for two-dimensional Cartesian grid in
section 3 can be extended to spherical geometry straightforwardly.

The definition of PV and VIA moments is similar to (18) and (19). Considering control volume
Ci jk where the third subscript denotes the index of the patch (k =1 to 6), the location of the
moments can be represented using Figure 3 through replacing coordinate system (x, y) by (�,�).
Then, the PV moments of variable �(�,�, t) are

P�i± 1
2 j± 1

2 k(t)=�(�i± 1
2
,� j± 1

2
,k, t) at vertices,

P�i j±1/2k(t)=�(�i ,� j± 1
2
,k, t) at midpoints of �-direction edges,

P�i± 1
2 jk(t)=�(�i± 1

2
,� j ,k, t) at midpoints of �-direction edges,

(35)

and the VIA moment is

V �i jk(t)= 1

|Vi jk |
∫ �

i+ 1
2

�
i− 1

2

∫ �
i+ 1

2

�
i− 1

2

�(�,�,k, t)d�d�, (36)

where |Vi jk |=��×�� is the area in computational space. Since the mass mi jk of transported field
� within element Ci jk is computed as

mi jk =
∫ �

i+ 1
2

�
i− 1

2

∫ �
i+ 1

2

�
i− 1

2

√
G�(�,�,k)d�d�, (37)

the VIA moment of model variable �(�,�, t) is a quantity that should be conserved as the mass
of the transported field �(�,�, t).

The single-cell-based piecewise quadratic interpolation function �n
i jk(�,�,k) can be constructed

using (20) for variable �. As mentioned at the beginning of this section, a single-cell-based
reconstruction profile does not require the ghost cells from the neighboring patches for boundary
elements; it simplifies the numerical treatment of patch boundaries.

Considering a divergence-free flow field, the advection-form governing equation for updating
the PV moment is

D�

Dt
=0. (38)

With the known interpolatants �n(v) at time step tn , the PV moment at the next time step can
be updated by the Lagrangian invariant solution. If the departure point of grid point �i ′ j ′k is �P

i ′ j ′k ,
the PV moment at the next time step is obtained as

P�
n+1
i ′ j ′k =

√
Gi ′ j ′k√
G

P
i ′ j ′k

�n
I J K (�P

i ′ j ′k), (39)
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where subscripts I , J , K denote the element which the departure point falls in,
√

Gi ′ j ′k is the

Jacobian of the transformation at arrival point and
√

G
P
i ′ j ′k is Jacobian at the departure point.

In present study, the trajectory calculation is carried out in three-dimensional Cartesian coor-
dinates (x, y, z) [31]. The Runge-Kutta scheme is also adopted as in Section 3 but in three
dimensions. Before calculation, we project the location of the arrival point to Cartesian grid using
x = R cos	cos
, y = R cos	sin
 and z = R sin	. Constrained on the sphere surface, the trajectory
must satisfy the |xP |= R [32]. Hence, the trajectory after the Runge-Kutta computation should be
further corrected as xP = RxP/|xP |. Then the location of the departure point xP = (x P , y P , z P )
are re-projected back to the local grid. The departure point is represented by (�,�, I, J, K ) in our
implementation, which means that the departure point is located within (I, J ) element of K th patch,
and the local coordinates are (�,�). It should be pointed out that the task to pass the information
between the different patches is embedded in this procedure for the present scheme.

After advancing the PV moment, the VIA moment V �i jk is updated by integrating the governing
Equation (33),

�V �i jk

�t
=− 1

|Vi jk |
4∑

p=1

∫
l p

f ·nl p dl p, (40)

where f= (ũ�, ṽ�) is the flux vector; the other symbols are the same as in (29) but in a mapped
Cartesian mesh element in the computational space.

Owing to the similarity between (29) and (40), the remaining work is implemented using similar
formulations developed in Section 3 for transport problem on the two-dimensional plane. The
numerical fluxes across the patch boundaries are computed by the same PVs on the different
patches; the numerical conservation of the VIA moment guarantees the mass conservation over
the whole globe.

5. NUMERICAL TESTS

To validate our numerical model, several numerical tests have been carried out in this section.
To quantify the performance of the scheme, we check the normalized errors, which are defined
following [29]. The numerical errors are evaluated in terms of the VIA moment, which is the
conserved primary variable in the numerical model.

5.1. Convergence test

We use numerical tests to verify the third-order accuracy of the present scheme on the cubed grid.
The numerical experiments are carried out on a series of refined grids without using limiter.

The initial distribution is given in rotated LON/LAT coordinates (
′,	′) as

�(
′,	′,0)=cosp 	′ sink
′, (41)

where the origin of the rotated grid is located at (0,�) of the original grid, the transformation is
computed by


′ =arctan

(
cos	sin


cos	cos
cos�+sin	sin�

)
,

	′ =arcsin(sin	cos�−cos	cos
sin�).

(42)

A divergence-free velocity field is specified as [29]

u
 =u0(cos	cos�+sin	cos
sin�),

u	 =−u0 sin
sin�,
(43)

where u0 =2�R/(12 days).
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Table II. Convergence test on cubed-sphere grid.

l1 l2 l∞
Grid Error Order Error Order Error Order

16×16×6 9.9375e−3 — 9.7149e−3 — 1.0380e−2 —
32×32×6 1.2944e−3 2.94 1.2522e−3 2.96 1.3757e−3 2.92
64×64×6 1.7052e−4 2.92 1.6203e−4 2.95 1.8397e−4 2.90

Table III. The normalized errors of cosine bell advection after one revolution (256 steps) on the grid of
32×32×6 with limiting projection for suppressing numerical oscillation.

l1 error l2 error l∞ error MAX error MIN error

�=0 3.7247e−2 2.4904e−2 2.4832e−2 −1.4019e−2 −1.7652e−3
�= �

4 3.2355e−2 2.2508e−2 2.7915e−2 −1.4168e−2 −1.1310e−3
�= �

2 3.7368e−2 2.5211e−2 2.4837e−2 −1.4001e−2 −1.7709e−3

Table IV. Same as Table III, but without limiting projection.

l1 error l2 error l∞ error MAX error MIN error

�=0 4.6122e−2 2.9640e−2 2.4012e−2 −1.3984e−2 −1.2796e−2
�= �

4 4.3362e−2 2.6227e−2 1.6324e−2 −1.5872e−2 −7.3005e−3
�= �

2 4.6337e−2 2.9786e−2 2.4031e−2 −1.3965e−2 −1.2796e−2

The flow field specified by (43) represents a solid rotation; the parameter � is the angle between
the rotation axis and the polar axis of the Earth.

In this test, we specify �=�/4, p=4 and k =4. The CFL number is 0.25. On the cubed-sphere
grid, the case of �=�/4 is of much interest. In this case, the flow trajectory passes two complete
boundaries and four vertices of the inscribed cube. The results of the tests on the grids with
different resolutions are shown in Table II. The third-order accuracy is verified.

5.2. Cosine bell advection

This benchmark test is proposed in [29] to examine the global advection transport on sphere. The
initial distribution is given as

�(
,	,0)=

⎧⎪⎨
⎪⎩

(
h0

2

)[
1+cos

(
�r

r0

)]
if r<r0,

0 otherwise,

(44)

where r is the great circle distance between the point (
,	) and the initial center (3�/2,0), other
constants are specified as h0 =1000 m and r0 = (7�/64)R.

The divergence-free flow field is given by (43).
The numerical experiment is carried out on a 32×32×6 grid with three rotation directions of

�=0, �=�/4 and �=�/2. The CFL number is specified as 0.5 here for comparing the results
with other existing schemes. The normalized errors of the numerical results with and without
the limiter are given in Tables III and IV, respectively. The numerical results for this test by
several existing schemes on spherical geometry are listed in Table III of [33]. It is revealed that
our scheme is competitive to those methods. In particular, completely getting around the polar
problem in the direction of �=�/2, our scheme is apparently superior to those methods. The
cosine bell advection is also tested in [12, 16, 17, 22] by other existing schemes on the cubic grid.
We found that the present scheme gives better result compared with the semi-Lagrangian schemes
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Figure 6. The results and normalized errors of cosine bell advection test. The
contour plots are the results after 12 days in the directions of �=�/4 (top-left)
and �=�/2 (top-right), contour lines vary from 50 to 950 m by 150 m, solid
lines denote numerical result and dashed lines denote the initial distribution.
The evolution of the normalized errors within one revolution is displayed on the

bottom-left panel for �=�/4 and bottom-right panel for �=�/2.

developed on both the gnomonic [17] and the conformal [16] cubic grids with the same CFL
number and similar grid resolution. According to the normalized errors, it is also observed that
our scheme performs better than the TVD scheme reported in [22] and the conservative semi-
Lagrangian scheme CSLAM proposed in [12]. As mentioned above, special attention should be
paid to the flow in the direction of �=�/4, a case where most cubed-sphere grid-based models
produce significant numerical errors. From our results, the flow in this direction does not generate
larger errors compared with other directions. Figure 6 displays the contour plots of numerical
results and the evolution of the normalized errors in the directions of �=�/4 and �=�/2. There
is no obvious oscillations in the error plots when cosine bell moves across or along the patch
boundaries.

We also ran this test with CFL number of 0.8. The normalized errors for flow in the direction of
�=�/4 is given in Table V. The numerical result shows that the present scheme performs better
with a larger CFL number. To check the performance of trajectory calculation method adopted
in the present scheme, this test case is also carried out with exact trajectory and the normalized
errors are given in Table VI. Errors shown in Tables V and VI are very close, which reveals that
the method adopted here can compute the trajectory with adequate accuracy.
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Table V. Same as Table III, but with larger CFL number (160 steps for one
revolution) and in the direction of �=�/4.

l1 error l2 error l∞ error MAX error MIN error

�= �
4 1.9707e−2 1.4433e−2 1.8441e−2 −8.2610e−3 −1.3980e−3

Table VI. Same as Table V, but with exact trajectory.

l1 error l2 error l∞ error MAX error MIN error

�= �
4 1.9426e−2 1.3539e−2 1.8525e−2 −8.2467e−3 −1.3065e−3

Figure 7. The result of the advection of the discontinuities, exact solution (left), numerical result (right)
after integrating for 60 days on 32×32×6 grid with 800 steps, contour lines vary from 0.1 to 0.9 by 0.1.

5.3. Advection of the discontinuities

A test where the transported profile is discontinuous was used in [22]; the initial distribution is
given as

�(
,	)=

⎧⎪⎨
⎪⎩

1 if r<0.4R,

1 if 0.72R<r<1.12R,

0 otherwise,

(45)

where r is the great circle distance from the center located at (3�/2,0). The flow field is a rotation
field specified by (43) with �=�/4 here.

After integrating the model for five revolutions (60 days) on 32×32×6 grid with 800 time steps
(CFL=0.8), the contour plots of the exact solution and the numerical result with limiting projection
are given in Figure 7. The shape of the discontinuities are preserved very well. The bird’s eye views
of the results on patch four from the computations with and without the numerical limiter are shown
in Figure 8. The normalized errors are l1 =1.9586×10−1, l2 =2.3814×10−1, l∞ =5.6762×10−1,
MAX=1.7933×10−3, MIN=−3.4993×10−3 for result with the limiter and l1 =2.2596×10−1,
l2 =2.1756×10−1, l∞ =3.9004×10−1, MAX=9.8542×10−2, MIN=−1.2548×10−1 for that
without the limiter. With the application of the PV limiter, the spurious oscillations are completely
eliminated for the PV moment and effectively suppressed for the VIA moment.

5.4. Deformational flow on the sphere

We evaluated the present scheme with a more challenging deformational flow test introduced
in [11, 34]. By adjusting the parameters in the initial distribution, both smooth and non-smooth
profiles can be obtained. We tested both cases, and used the limiting projection in the non-smooth
case.
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Figure 8. Bird’s eye views of the solution on Patch IV. Displayed are the numerical results with (left) and
without (right) the limiting projection.

The smooth case. In a rotated LON/LAT coordinate (
′,	′) on a unit sphere, the tangential velocity
is specified as

u′

 = 3

√
3

2
sech2(�) tanh(�), (46)

where �=�cos	′ and the angular velocity is 
′ =u′

/�.

The initial transported field is specified as

�(
′,	′,0)=1− tanh
(�

�
sin
′

)
, (47)

and the analytic solution is given as

�(
′,	′, t)=1− tanh
[�

�
sin(
′−
′t)

]
. (48)

We set �=3 and �=5 in the smooth test [11]. The initial height field is displayed in the top-left
panel of Figure 9. We put the origin of the rotated LON/LAT grid at (−�/4,−3�/10). The centers
of two vortexes defined by flow field are located at the two vertices of the inscribed cube. It is quite
challenging for the cubed-sphere grid. We ran the computation on a 32×32×6 grid for 64 steps to
t =3 without limiting. The numerical results are given in the bottom-left panel in Figure 9 with the
exact solution in the top-right panel for comparison. The normalized errors are l1 =6.5158×10−5,
l2 =2.3880×10−4, l∞ =1.4684×10−3. There is nearly no visible difference between our result
and the analytic one; the absolute error of the transported field is shown in the bottom-right panel
in Figure 9.

5.4.1. The non-smooth test. The flow field is defined by (46), but with the parameters specified as

�= 2�cos	′

1+sin	′ and 
′ = u′



cos	′ . (49)

The advected field is given at initial time as

�(
′,	′,0)=− tanh

(
�

��
sin
′

)
, (50)

and the analytic solution is

�(
′,	′, t)=− tanh

[
�

��
sin(
′−
′t)

]
. (51)

The parameters of �=1.5 and �=0.02 are set to obtain a non-smooth initial profile. The test
is carried out on a 32×32×6 grid with the PV limiter. The numerical results after 2.5 time units
with 64 steps is shown in the left panel of Figure 10. Compared with the analytic solution shown
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Figure 9. The numerical results of the smooth deformational flow. Shown are initial distribution (top-left),
exact solution (top-right), numerical result (bottom-left) and absolute error (bottom-right). Contour lines
vary in [0.5,1.5] by 0.05 for height field with dashed lines for transport field lower than 1 and solid lines
for transport field higher than 1. In error plot, the dashed lines vary from −2.5×10−3 to −5×10−4 and

solid lines vary from 5×10−4 to 2.5×10−3 by 1×10−3.

Figure 10. The result of the deformational flow with a non-smooth initial profile. Displayed
are the numerical results after 2.5 time units (left) and the analytic solution (middle).
Contour lines vary from −0.9 to 0.9 by 0.1. Absolute error is shown in right panel with

contour lines varying from −0.65 to 0.65 by 0.13.

in the middle panel of Figure 10, we find that the steepness of the initial profile is adequately
preserved, and the phase of the moving front is accurately reproduced. The normalized errors for
this test are l1 =1.9287×10−2, l2 =6.7869×10−2, l∞ =6.5156×10−1 and MAX=3.0547×10−2,
MIN=−2.3186×10−2.

5.5. Moving vortices on the sphere

A new test with moving vortices was recently proposed in [35]. Different from the previous test
case where the centers of vortices are stationary, the vortex centers travel at the velocity of the
solid rotation. To specify the flow field, the location of vortex center is determined at first, then
the flow field is specified as the summation of the deformational and solid-rotational motions. The
details of this test can be found in [35]. In this test, we define the initial condition with the vortex
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Figure 11. Advected field for moving vortices case with �=�/4. Shown are numerical
result (top-left) and exact solution(top-middle) at day 3, numerical result (bottom-left)
and exact solution (bottom-middle) at day 9. Contour lines are distributed same as
in Figure 9. Absolute errors are illustrated in top-right panel for result at day 3 with
contour lines varying from −0.02 to 0.02 by 0.002 and bottom-right panel for result
at day 9 with contour lines varying from −0.05 to 0.05 by 0.002. Negative lines are

dashed and positive lines are solid.

center initially located at (3�/2,0). On the cubed-sphere grid, two rotation directions are selected
for vortex center, i.e. the parameter � in (43) is chosen as �=0 and �=�/4, respectively.

Numerical experiments were carried out on three gradually refined grids of 18×18×6, 36×
36×6 and 72×72×6 with steps of 144, 288, and 576, respectively. The numerical results on
36×36×6 grid together with exact solutions and absolute errors are shown in Figure 11 for
test with �=�/4. Proposed scheme accurately reproduces the evolution of the transported fields.
The normalized errors at day 12 are given in Table VII and time history of normalized errors is
illustrated in Figure 12. Compared with the results in [35], the multi-moment model on 36×36×6
grid is competitive to the finite volume method with the same DOFs, i.e. 1.25◦×1.25◦ uniform
grid, and better than the semi-Lagrangian model with the same resolution. On 72×72×6 grid, our
result is competitive to that by the CSLAM scheme [12] with the similar resolution (80×80×6).
Compared with the DG solution, smaller oscillation is found in time history of normalized errors
of �=�/4 case as shown in Figure 12. Furthermore, different from the semi-Lagrangian model in
[35], we did not use the analytical upstream point in our calculations. The results again verify the
accuracy of the trajectory calculation in present scheme.

6. CONCLUSION

A semi-Lagrangian multi-moment transport scheme is developed and extended to the spherical
geometry through the cubed-sphere grid in this paper. The cubed-sphere grid results in a quasi-
uniform grid over the whole globe and is free of the polar problems. Based on the multi-moment
concept, a single-cell reconstruction profile is adopted in this study, which essentially benefits the
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Table VII. Normalized errors of moving vortices case at day 12.

�=0 �= �
4

Grid l1 l2 l∞ l1 l2 l∞
18×18×6 8.7769e−3 1.9338e−2 7.0897e−2 7.3638e−3 1.8342e−2 7.4970e−2
36×36×6 3.9833e−3 9.5294e−3 4.6916e−2 3.4513e−3 9.5012e−3 5.2330e−2
72×72×6 1.3764e−3 2.7992e−3 1.5773e−2 1.2535e−3 3.1687e−3 1.8959e−2
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Figure 12. Time history of normalized errors for moving vortices case with �=0 (left) and �=�/4 (right).

numerical treatment over the patch boundaries of the cubed-sphere grid. The resulting model is
more robust in advection computation in different flow directions compared with other existing
schemes. In terms of the VIA moment, the proposed transport model exactly guarantees the
conservation over the whole globe. For practical use, we introduced a simple monotonic limiting
projection to the PV moment in the presence of discontinuities, which completely removes the
spurious oscillations from the PV moment and effectively suppresses those in the VIA moment.
The benchmark tests verified the features of the present method, which can be a practical numerical
tool for advection transport in spherical geometry.

APPENDIX A: ANALYSIS ON CFL STABILITY CONDITION

Consider the advection equation (6) on the computational domain x ∈ [−�,�] with constant speed
u =1. Provided P�

n
i−1/2 and V �

n
i is known, using the one-dimensional algorithm described in
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Table A1. The weighting coefficients of the updating formulation.

3-point formula 5-point formula
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Figure A1. The amplitude gain of different sampling schemes at different CFL numbers.

where P�
n
i and P�

n+1
i are auxiliary PVs which are calculated using reconstruction polynomial

(3) based on known PV and VIA moments with x̃ =�x/2 and CFL<2 is considered here. Hence,
the control volume Ci−2, Ci−1 and Ci are involved in updating formulations (A1).

Then we use the Von Neumann method to check the CFL stability condition of this linear
problem. Updating formulations (A1) are transformed into spectral space. According to the discrete
Fourier transformation, we have

�E (k)=
N∑

i=1
[e−jk(i−1)�x P�i− 1

2
] and �C (k)=

N∑
i=1

[e−jk(i−1/2)�x P�i ], (A2)

where �E and �C are representations in spectral space of the PV moments P�i−1/2 defined at

the endpoints and P�i defined at the midpoints of the control volumes. N is the number of the
control volumes and j=√−1.
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Multiplying the first equation of (A1) with e−jk(i−1)�x and the second equation of (A1) with
e−jk(i−1/2)�x , and summing (A1) from i =1 to N , we obtain[

�n+1
E (k)
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C (k)

]
=A

[
�n

E (k)

�n
C (k)

]
, (A3)

where matrix A is the amplification factor and written as
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Equation (A3) is the representation of the updating formulation (A1) in spectral space; the
spectral radius of matrix A dominates the stability of the numerical schemes.

We consider two algorithms for numerical integration of the flux. Besides the 3-point Simpson’s
rule (12), 5-point Simpson’s rule,

�1 = 0, �2 = 1
4 , �2 = 1

2 , �4 = 3
4 , �5 =1,

�1 = �5 = 7
90 , �2 =�4 = 16

45 , �3 = 2
15

(A5)

can be adopted for simulations with larger CFL numbers.
The coefficients of updating formulations with different integration algorithms and CFL numbers

are given in Table A1. The spectral radius of different cases are plotted in Figure A1. According
to the results of the Von Neumann analysis, using 3-point formulation for integration of the flux
restricts the CFL<1 to assure the stability of the numerical model. Sampling more points along
the trajectory allows larger stable CFL number, but more computational cost are involved at each
time step. The proper integration algorithm can be selected on a trade-off base between the overall
cost and the accuracy of numerical solution.

ACKNOWLEDGEMENTS

This work is supported by National Natural Science Foundation of China under grant numbers 10902116,
10852001 and 40805045, and Chinese Academy of Sciences under grant number KJCX2-YW-L04.

REFERENCES

1. Staniforth A, Côté J. Semi-Lagrangian integration schemes for atmospheric models—a review. Monthly Weather
Review 1991; 119:2206–2223.

2. Yabe T, Aoki T. A universal solver for hyperbolic equations by cubic polynomial interpolation.1. One-dimensional
solver. Computer Physics Communications 1991; 66:219–232.

3. Yabe T, Xiao F, Utsumi T. The constrained interpolation profile method for multiphase analysis. Journal of
Computational Physics 2001; 169:556–593.

4. Yabe T, Tanaka R, Nakamura T, Xiao F. An exactly conservative semi-Lagrangian scheme (CIP-CSL) in one
dimension. Monthly Weather Review 2001; 129(2):332–344.

5. Xiao F, Yabe T. Completely conservative and oscillationless semi-Lagrangian schemes for advection transportation.
Journal of Computational Physics 2001; 170(2):498–522.

6. Nakamura T, Tanaka R, Yabe T, Takizawa K. Exactly conservative semi-Lagrangian scheme for multi-dimensional
hyperbolic equations with directional splitting technique. Journal of Computational Physics 2001; 174:171–207.

7. Xiao F, Yabe T, Peng XD, Kobayashi H. Conser and oscillation-less atmospheric transport schemes based on
rational functions. Journal of Geophysical Research 2002; 107:4609.

8. Takizawa K, Yabe T, Nakamura T. Multi-dimensional semi-Lagrangian scheme that guarantees exact conservation.
Computer Physics Communications 2002; 148:137–159.

9. Xiao F. Unified formulation for compressible and incompressible flows by using multi-integrated moments I:
one-dimensional inviscid compressible flow. Journal of Computational Physics 2004; 195(2):629–654.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1993–2014
DOI: 10.1002/fld



2014 C. G. CHEN ET AL.

10. Xiao F, Akoh R, Ii S. Unified formulation for compressible and incompressible flows by using multi-integrated
moments II: Multi-dimensional version for compressible and incompressible flows. Journal of Computational
Physics 2006; 213(1):31–56.

11. Nair RD, Machenhauer B. The mass-conservative cell-integration semi-Lagrangian advection scheme on the
sphere. Monthly Weather Review 2002; 130:649–667.

12. Lauritzen PH, Nair RD, Ullrich PA. A conservative semi-lagrangian multi-tracer transport scheme (CSLAM) on
cubed-sphere grid. Journal of Computational Physics 2010; 229:1401–1424.

13. Sadourny R, Arakawa A, Mintz Y. Integration of the nondivergent barotropic vorticity equation with an icosahedral-
hexagonal grid for the sphere. Monthly Weather Review 1968; 96(6):351–356.

14. Williamson DL. Integration of the barotropic vorticity equation on a spherical geodesic grid. Tellus 1968;
20(4):642–653.

15. Sadourny R. Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical
grids. Monthly Weather Review 1972; 100(2):136–144.

16. McGregor JL. Semi-Lagrangian advection on conformal-cubic grids. Monthly Weather Review 1996; 124(6):
1311–1322.

17. McGregor JL. Semi-Lagrangian advection on a cubic gnomonic projection of the sphere. Atmosphere-Ocean
1997; Memorial Volume:153–169.

18. Nair RD, Thomas SJ, Loft RD. A discontinuous Galerkin global shallow water model. Monthly Weather Review
2005; 133(4):876–887.

19. Nair RD, Thomas SJ, Loft RD. A discontinuous Galerkin transport scheme on the cubed sphere. Monthly Weather
Review 2005; 133(4):827–841.

20. Rancic M, Purser RJ, Mesinger F. A global shallow-water model using an expanded spherical cube: gnomonic
versus conformal coordinates. Quarterly Journal of the Royal Meteorological Society 1996; 122(532):959–982.

21. Ronchi C, Iacono R, Paolucci PS. The ‘Cubed Sphere’: a new method for the solution of partial differential
equations in spherical geometry. Journal of Computational Physics 1996; 124(1):93–114.

22. Rossmanith JA. A wave propagation method for hyperbolic systems on the sphere. Journal of Computational
Physics 2006; 213(2):629–658.

23. Thomas SJ, Loft RD. Semi-implicit spectral element atmospheric model. Journal of Scientific Computing 2002;
17(1–4):339–350.

24. Adcroft A, Campin JM, Hill C, Marshall J. Implementation of an atmosphere-ocean general circulation model
on expended spherical cube. Monthly Weather Review 2004; 132(12):2845–2863.

25. Putman WP, Lin SJ. Finite-volume transport on various cubed-sphere grids. Journal of Computational Physics
2007; 227:55–78.

26. Chen CG, Xiao F. Shallow water model on cubed sphere by muti-moment finite volume method. Journal of
Computational Physics 2008; 227:5019–5044.

27. Ii S, Xiao F. CIP/multi-moment finite volume method for Euler equations: a semi-Lagrangian characteristic
formulation. Journal of Computational Physics 2007; 222(2):849–871.

28. Bermejo R, Staniforth A. The conversion of the semi-Lagrangian advection schemes to quasi-monotone schemes.
Monthly Weather Review 1992; 120:2622–2632.

29. Williamson DL, Drake JB, Hack JJ, Jakob R, Swarztrauber PN. A standard test set for numerical approximations
to the shallow water equations in spherical geometry. Journal of Computational Physics 1992; 102(1):211–224.

30. Jiang GS, Shu CW. The efficient implementation of weighted ENO schemes. Journal of Computational Physics
1996; 126:202–228.

31. Nair RD, Scroggs JS, Semazzi FH. A forward-trajectory global semi-lagrangian transport scheme. Journal of
Computational Physics 2003; 190:275–294.

32. Giraldo FX. Trajectory calculations for spherical geodestic grids in cartesian space. Monthly Weather Review
1999; 127:1651–1662.

33. Zerroukat M, Wood N, Staniforth A. A monotonic and positive-definite filter for a semi-Lagrangian Inherently
conserving and efficient (SLICE) scheme. Quarterly Journal of the Royal Meteorological Society 2005; 131:
2923–2936.

34. Nair RD, Côté J, Staniforth A. Cascade interpolation for semi-Lagrangian advection over the sphere. Quarterly
Journal of the Royal Meteorological Society 1999; 125(556):1445–1468.

35. Nair RD, Jablonowski C. Moving vortices on the sphere: a test case for horizontal advection problems. Monthly
Weather Review 2008; 136:699–711.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1993–2014
DOI: 10.1002/fld


