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The generalized self-consistent method is developed to deal with porous
materials at high temperature, accounting for thermal radiation. An exact
closed form formula of the local effective thermal conductivity is obtained
by solving Laplace’s equation, and a good approximate formula with
uncoupled conductive and radiative effects is given. A comparison with
available experimental data and theoretical predictions demonstrates the
accuracy and efficiency of the present formula. Numerical examples
provide a better understanding of interesting interaction phenomena of
pores in heat transfer. It is found that the local effective thermal
conductivity divides into two parts. One, attributed to conduction, is
independent of pore radius for a fixed porosity and, furthermore, is
independent of temperature (actually, it is approximately independent of
the temperature) if it is non-dimensionalized by the thermal conductivity of
the matrix. The other is due to thermal radiation in pores and
strongly depends on the temperature and pore radius. The radiation
effect can not be neglected at high temperature and in the case of relatively
large pores.

Keywords: porous material; effective thermal conductivity; generalized
self-consistent method; thermal radiation; high temperature

1. Introduction

Porous materials possess superior mechanical and thermal performances, such as
light weight, high specific strength, high specific stiffness, high toughness, high
energy absorption and excellent thermal insulation, and have been widely used in
aeronautics, astronautics, atomic energy, transportation industries, etc. [1,2].

Heat transport in porous materials, which has aroused the concern of many
researchers [3–9], occurs via three ways: (i) heat conduction in solid and gas;
(ii) thermal radiation in pores; (iii) convection of gas in pores. These ways are always
coupled with each other. To simplify the problem, it is necessary to ignore some
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minor factors. In this paper, the following two assumptions are employed:

(1) When the pores are almost, or entirely, disconnected the convection in pores
is negligible.

(2) The gas is assumed to be transparent, and the pore surface to be a
diffuse-gray surface when the thermal radiation effect is considered.

For materials with small pores at low temperature, the radiative effect is
negligible for most practical purposes. However, with the elevation of temperature
and the increase of the pore size, the radiative contribution becomes significant.
Many investigations have been carried out on the thermal properties of porous
materials in the case of pure conduction, whereas studies accounting for the radiative
effect are still limited. Among the small number of studies, Chiew and Glandt [4]
addressed the problem of effective thermal conductivities of porous and composite
materials, accounting for the effect of radiation. They obtained an exact solution of
the temperature and temperature gradient fields of the dilute scheme by solving
Laplace’s equation, and the exact solution was used to calculate effective thermal
conductivities integrated with Maxwell’s result. Liang and Qu [5] dealt with the
effective thermal conductivity of gas–solid composite materials at high temperature,
and they assumed that the pores were arranged periodically, temperature linearly
distributed along the heat flux and that the pore surface was black. Liu and Zhang [7]
presented a homogenization-based multi-scale method for the thermal conductivity
of porous materials with radiation, and they took the temperature distribution in the
case of the pure conduction as the approximation of the real temperature field. Wang
and Pan [8] developed a random generation-growth method to reproduce the
microstructures of open-cell foam materials via computer modeling, and they used
the high-efficiency lattice Boltzmann method to solve the energy transport equations.
Zhao et al. [9] developed an explicit analytical method to describe the thermal
radiation process in open-cell metal foams with idealized cellular morphologies.
Related to the topic of thermal radiation in porous materials, Liu [10] established a
mathematical relationship between the specific surface area and the porosity and
pore diameter, and then proposed a method for calculating the specific surface area
of porous metal foams.

The generalized self-consistent method [11–20] is a sophisticated micromechanics
method, which is of mathematical rigor in its formulation and physical realism [18].
The method can provide compact formulae and reasonable results, and has been
widely used to predict the mechanical [11,12,14–16] and thermal [13,17,19,20]
properties (pure conduction) of composite materials. However, to the best of our
knowledge, the method has not been extended to predict the effective thermal
conductivity of porous materials accounting for the radiative contribution in pores.
The purpose of the present work is to develop such a micromechanics method to
acquire a better understanding of interesting interaction phenomena of pores in heat
transfer at high temperature.

This paper is organized as follows. In Section 2, the basic formulae of the
effective thermal conductivity are derived by using the generalized self-consistent
method, and the thermal fluxes in the representative volume element are divided into
conductive and radiative fluxes. Section 3 calculates the exact temperature fields in
the generalized self-consistent model. Section 4 deals with the average radiative flux
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on the diffuse-gray surface of the pore by using the net-radiation method.

In Section 5, a closed form formula of the local effective thermal conductivity is

obtained, and a concise approximate formula with high accuracy is given, where the

conductive and radiative effects are uncoupled. In Section 6, numerical examples are

presented, and a comparison is made with available results. Many interesting

phenomena, in which the porosity and pore radius influence the conduction and

radiation in different ways, are revealed and discussed.

2. Model and basic formula

A schematic diagram of the generalized self-consistent model is shown in Figure 1.

The representative volume element consists of a spherical matrix shell and a

concentric gas pore, which is embedded in an infinite effective medium with the

as-yet-unknown effective thermal conductivity. The porosity of the representative

volume element is equal to that of the whole porous material, so that

� ¼
R3

g

R3
m

, ð1Þ

where �, Rg and Rm are the porosity, the pore radius and the external radius of the

representative volume element. At steady state, the heat transfer in each phase of the

generalized self-consistent model can be described by

r � ðkirTiÞ ¼ 0 i ¼ g,m, e, ð2Þ

where k is the thermal conductivity, T is the absolute temperature and the subscripts

g, m and e refer to the gas in the pore, the spherical matrix shell and the outside

effective medium, respectively.
According to the generalized self-consistent method, the effective thermal

conductivity of isotropic porous materials, ke, can be determined by the

θ

ϕ

1x

2x

3x

gR

mR

sA

matrix

gas

effective medium

1A 2A

o
h

pdA

Figure 1. A schematic diagram of the generalized self-consistent model.
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representative volume element:

ke ¼ �
hqi

hHi
, ð3Þ

where q and H are the heat flux and temperature gradient, respectively. The sign h.i
denotes averaging over the representative volume element:

hqi ¼ hqig�þ hqimð1� �Þ

hHi ¼ hHig�þ hHimð1� �Þ

(
, ð4Þ

where

h�ig ¼
1

Vg

Z
Vg
� dV

h�im ¼
1

Vm

Z
Vm
� dV

8>><
>>: ð5Þ

and Vg and Vm are the volumes of the pore and matrix shell in the representative
volume element, respectively.

The remaining work is to determine the average heat flux hqi and temperature
gradient hHi in the representative volume element. As pointed out in the
introduction, for materials with almost or entirely disconnected pores, the convec-
tion in pores is negligible and the total average heat flux in the representative volume
element can be divided into two parts: one is attributed to conduction in solid and
gas and the other is due to thermal radiation in pores, so that

hqi ¼ hqic þ hqir, ð6Þ

where

hqic ¼ �hqicg þ ð1þ �Þhqim

hqir ¼ �hqirg,

(
ð7Þ

and the superscript c and r refer to conduction and radiation, respectively. hqic and
hqir will be derived in the following sections.

3. Exact temperature fields in the generalized self-consistent model

The calculation of the average heat flux hqi and the temperature gradient hHi
requires the temperature fields in the pore, matrix shell and effective medium in the
generalized self-consistent model. Let the far-field uniform temperature gradient be
H0 along the x1 direction (Figure 1). The general form of the solutions in spherical
coordinates for an axially symmetric case [4] is

TðxÞ ¼
X1
j¼0

Pjðcos �ÞðAjr
j þ Bjr

�ð jþ1ÞÞ, ð8Þ

where Pj is the Legendre polynomial of degree j and Agj, Bgj, Amj, Bmj, Aej and Bej are
real constants.
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To obtain these real constants, the following boundary conditions are used: (i) Tg

bounded at r¼ 0; (ii) uniform gradient at the far-field, i.e. Te! H0r cos � as r!1;

(iii) continuities of temperatures at the surfaces of the pore and matrix shell, i.e.

Tg¼Tm at r¼Rg, Tm¼Te at r¼Rm; (iv) continuities of the normal fluxes at the

surfaces of the pore and matrix shell, including the radiation contribution at the pore

surface.
The view factor [21] from an arbitrary infinitesimal area dAj to another dAp is

dFdAj�dAp
¼

1

4�R2
g

dAp: ð9Þ

When the pore surface is assumed to be a diffuse-gray surface, the radiative heat

flux qrp at an infinitesimal area dAp can be expressed as

qrp ¼ qoutp � qinp , ð10Þ

where qoutp and qinp denote the emission flux and incidence flux, respectively.

The emissive flux qoutp can be written as

qoutp ¼ "�T
4
ð�p,’pÞ

þ �qinp ¼ "�T
4
ð�p,’pÞ

þ ð1� "Þqinp , ð11Þ

where ", � and � are the emissivity, reflectivity and Stefan–Boltzmann constant,

respectively, and Tð�,’Þ denotes the temperature on the boundary at point ð�, ’Þ.
The relation � ¼ 1� " has been considered in Equation (11) for the diffuse-gray

surface. The incidence flux qinp can be given as

qinp dAp ¼

Z
A1

qoutj dAjdFdAj�dAp
: ð12Þ

According to the reciprocity of the view factor, Equation (12) can be rewritten as

qinp ¼

Z
A1

qoutj dFdAp�dAj
: ð13Þ

Substituting Equation (13) into Equation (11), one obtains

qoutp ¼ "�T
4
ð�p,’pÞ

þ ð1� "Þ

Z
A1

qoutj dFdAp�dAj

¼ "�T 4
ð�p,’pÞ

þ
1� "

4�R2
g

Z
Ag

qoutj dAj: ð14Þ

The solution of Equation (14) can be assumed to be

qoutp ¼ fð�p,’pÞ þ C, ð15Þ

where fð�p,’pÞ is a function of the coordinates ð�p, ’pÞ and C is a real constant.

Substituting Equation (15) into Equation (14), one obtains

fð�p,’pÞ ¼ "�T
4
ð�p,’pÞ

þ
1� "

4�R2
g

Z
Ag

ð fð�j,’j Þ þ CÞdAj � C

¼ "�T 4
ð�p,’pÞ

� C"þ
1� "

4�R2
g

Z
Ag

fð�j,’j ÞdAj: ð16Þ
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Observing Equation (16), one obtains

fð�p,’pÞ ¼ "�T
4
ð�p,’pÞ

C ¼
1� "

4�"R2
g

Z
Ag

fð�j,’j ÞdAj:

8><
>: ð17Þ

Substituting fð�j,’j Þ into C, one obtains

C ¼
ð1� "Þ�

4�R2
g

Z
Ag

T 4
ð�j,’j Þ

dAj: ð18Þ

The emission flux qoutp can be rewritten as

qoutp ¼ "�T
4
ð�p,’pÞ

þ
ð1� "Þ�

4�R2
g

Z
Ag

T 4
ð�j,’j Þ

dAj: ð19Þ

Substituting Equations (19) and (11) into Equation (10), the radiative heat flux,

qrp, on the surface at an arbitrary point is given as

qrp ¼ qoutp �
1

1� "
qoutp � "�T

4
ð�p,’pÞ

� �

¼
"

1� "
�T 4
ð�p,’pÞ

� "�T 4
ð�p,’pÞ

�
ð1� "Þ�

4�R2
g

Z
Ag

T 4
ð�j,’j Þ

dAj

 !

¼
"�

4�R2
1

Z
A1

T 4
ð�p,’pÞ

� T 4
ð�j,’j Þ

� �
dAj

¼
"�

2

Z �

�j¼0

T 4
ð�p,’pÞ

� T 4
ð�j,’j Þ

� �
sin �jd�j ð20Þ

If we linearize T4 about an average temperature for the sphere, T0, Equation (20)

can be rewritten as

qrp ¼ 2"�T3
0

Z �

�j¼0

Tð�p,’pÞ � Tð�j,’j Þ
� �

sin �jd�j: ð21Þ

Hence, the continuity of the flux at the pore surfaces is

kg
@Tg

@r

����
r¼Rg

�km
@Tm

@r

����
r¼Rg

¼ 2"�T3
0

Z �

�j¼0

Tð�p,’pÞ � Tð�j,’j Þ
� �

sin �jd�j: ð22Þ

The resulting temperature fields are

Tg ¼ Agr cos � r � Rg

Tm ¼ Amrþ
Bm

r2

� �
cos � Rg 5 r � Rm

Te ¼ H0rþ
Be

r2

� �
cos � r4Rm

8>>>>><
>>>>>:

ð23Þ
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where

Ag ¼ 9H0kmkeR
3
m=Z

Am ¼ 3H0keR
3
mðkg þ 2km þ 4"�RgT

3
0Þ=Z

Bm ¼ �3H0keR
3
gR

3
m kg � km þ 4"�RgT

3
0

� �
=Z

Be ¼ � H0ðkg � KmÞð2km þ keÞR
3
gR

3
m �H0ðke � kmÞð2km þ kgÞR

6
m

h
þ 4"�H0R

4
g R

3
mT

3
0ð2km þ keÞ þ 4"�H0RgR

6
mT

3
0ðkm � keÞ

i
=Z

ð24Þ

8>>>>>><
>>>>>>:

and

Z ¼ 2ðke � KmÞðkm � kgÞR
3
g þ ð2ke þ kmÞð2km þ kgÞR

3
m

þ 4"�RgT
3
0 2ðkm � keÞR

3
g þ ð2ke þ kmÞR

3
m

h i
ð25Þ

Letting ke¼ km, the solution given by Equation (23) degenerates into the exact
result of the existing dilute scheme [4]. It should be pointed out that the solution
given by Equation (23) can be used to study the temperature and heat flux fields in a
composite with hollow spherical inclusions at high temperature, which will be left for
readers. In the following, the solution given by Equation (23) will be used to estimate
the effective thermal conductivity.

4. Average radiative heat flux

Referring to Figure 1, the interior boundary A1 divides into two parts, upside and
underside by As at x1¼ h. Because there is no internal heat source in a closed region
made by Aup and As, the heat quantity from Aup into the gas phase is equal to the
heat quantity Qr

As
across As. Thus, Q

r
As

can be described as

Qr
As
¼

Z
Aup

qrp dAp ¼

Z �

�p¼0

Z 2�

’p

qrpR
2
g sin �p d’p d�p, ð26Þ

where � ¼ arccosðh=RgÞ. Then the average radiative flux within the pore can be
written as

hqirg ¼
1

Vg

Z
Vg

qrdV ¼
3

4�R3
g

Z �Rg

Rg

Qr
As
dh: ð27Þ

Substituting Equations (20) and (26) into Equation (27), one obtains

hqirg ¼ �4�"AgRgT
3
0: ð28Þ

5. Effective thermal conductivity

5.1. Exact solution by the generalized self-consistent method

From Equations (23) and (5), the average temperature gradients in the pore and
matrix can be written as

hH ix1g ¼ Ag hH ix2g ¼ 0 hH ix3g ¼ 0

hH ix1m ¼ Am hH ix2m ¼ 0 hH ix3m ¼ 0

	
: ð29Þ
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From Fourier’s law, the average temperature gradient and average heat flux in
the pore and matrix have following relations:

hqicg ¼ �kghH ig, hqim ¼ �kmhH im: ð30Þ

Thus, the average temperature gradients and average heat fluxes along the
x1-direction induced by pure conduction are obtained as

hH ig ¼ Ag; hH im ¼ Am

hqicg ¼ �kgAg; hqim ¼ �kmAm

	
ð31Þ

Substituting Equations (28), (31) and (6) into Equation (3), one obtains the
effective thermal conductivity of the porous materials

ke ¼ �
�hqicg þ ð1� �Þhqim

h i
þ �hqirg

�hH ig þ ð1� �ÞhH im

¼
�kg þ ð1� �Þkm

Am

Ag
þ 4�"�RgT

3
0

�þ ð1� �ÞAm

Ag

ð32Þ

From Equation (24), one obtains

Am

Ag
¼

1

3km
ðkg þ 2km þ 4"�RgT

3
0Þ: ð33Þ

It is very interesting to observe that the effective thermal conductivity,
Equation (32), can be proved consistent with Chiew and Glandt’s formula [4],
which is derived by the dilute scheme integrated with Maxwell’s result. The present
work and their work verify and complement each other. However, the emphasis of
the present work is not on the novel model and method, but a better scientific
understanding of interesting interaction phenomena of pores on heat transfer
(especially, a very different dependence of the conductive and radiative effects on
microstructural parameters). To do this, an approximate solution with uncoupled
conductive and radiative effects is highly desirable.

5.2. Approximate solution with uncoupled conductive and radiative effects

The far-field condition of the generalized self-consistent model is the uniform
temperature gradient H0. The calculation of the effective thermal conductivity
required the average temperature gradient hH i. The fact implies that one may obtain
a good approximate solution by leaving out the disturbance of the local temperature
gradient field induced by radiation. Letting the temperature gradient field with
radiative effect be approximately equal to that by pure conduction, then the
continuity of the flux at the pore surfaces (Equation (22)) is reduced to

kg
@Tg

@r

����
r¼Rg

¼ km
@Tm

@r

����
r¼Rg

, ð34Þ
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and Am

Ag
in Equation (32) becomes

Am

Ag
¼

1

3
2þ

ke
km

� �
: ð35Þ

The effective thermal conductivity (Equation (32)) is decoupled:

ke ¼ kce þ kre, ð36Þ

where kce is the effective thermal conductivity by pure conduction and kre represents
the radiative contribution:

kce ¼
kg þ 2km þ 2�ðkg � kmÞ

kg þ 2km � �ðkg � kmÞ
km, ð37Þ

kre ¼
12��"kmRgT

3
0

3�km þ ð1� �Þð2km þ kgÞ
: ð38Þ

Equation (37) is in agreement with classical formula for pure conduction [13].
When the radiative effect is absent, i.e. emissivity "¼ 0, Equation (32) also
degenerates into Equation (37).

5.3. Accuracy of the approximate solution

Now examine the accuracy of the approximate solution, Equation (36). In the
following numerical example of porous alumina, the data for the thermal
conductivities (km and kg) of the alumina and the gas in pores at different
temperatures are taken from [22] and are listed in Table 1.

A comparison between the exact solution (Equation (32)) and approximate
solution (Equation (36)) of the effective thermal conductivity is listed in Table 2,
where the emissivity "¼ 0.5, Rg¼ 3mm, ke and � are the effective thermal
conductivity and the porosity, respectively, and error¼ ðkEqð36Þe � kEqð32Þe Þ=
kEqð32Þe � 100%. Table 2 shows that Equation (36) with uncoupled conductive and
radiative effects is a good approximate formula and will be used to study the
interesting interaction phenomena of pores in heat transfer in the next section.

6. Results and discussion

A black pore surface, i.e. the emissivity "¼ 1, was assumed by some researchers [5,7].
For convenience of comparison and discussion, such an assumption is also adopted
in the following numerical computations.

Table 1. Thermal conductivities (km and kg) of the alumina and the gas in pores at different
temperatures.

Temperature (K) 473 673 873 1073

km (Wm�1K�1) 21.16 12.54 8.36 6.79
kg (Wm�1K�1) 0.03873 0.05091 0.06153 0.07178

2040 C.P. Jiang et al.
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6.1. Comparison with experimental data and other theoretical results

First of all, a comparison with available experimental data and theoretical
predictions is made to demonstrate the accuracy and efficiency of the present
formula.

Francl and Kingery [22] investigated the effective thermal conductivity of porous
alumina materials by an experimental approach. Their specimens are one-inch cubes
with uniformly distributed pores of the diameter 0.31mm but different porosities,
and their data of the thermal conductivities of the alumina and the gas in pores in
different temperatures are listed in Table 1. By using the present exact and
approximate formulae, Chiew and Glandt’s formula [4], Francl and Kingery’s
experimental data [22] and Liang and Qu’s theoretical predictions [5], the variations
of the thermal conductivity with the porosity are shown in Figure 2a at a
temperature of 673K and in Figure 2b at a temperature of 1073K. Liang and Qu [5]
adopted an assumption that pores were periodically distributed and the temperature
linearly distributed in a unit cell.

From Figure 2, it can be seen that the present exact and approximate formulae,
Chiew and Glandt’s formulae [4] provide almost the same results. They are not
distinguishable in the figure because the maximum relative error is less than 0.18%.

From Figure 2b, it can be seen that the present predictions are in good agreement
with the experimental data at the higher temperature of 1073K. From Figure 2a,
a deviation of about 10% between the present predictions and the experimental data
is observed at the moderate temperature of 673K. In the following, the reason for
this deviation will be discussed further.

Agapiou and DeVries [23] reported that the temperature has little influence on
the dimensionless or relative thermal conductivity, ke/km, where ke and km are the
thermal conductivities of a porous material and its corresponding fully dense
material, respectively. The radiative effect is proportional to the fourth power of

Table 2. A comparison between the exact solution (Equation (32)) and approximate solution
(Equation (36)) of the effective thermal conductivity, where the emissivity "¼ 0.5, Rg¼ 3mm.

T0 (K) �

ke (Wm�1K�1)

Error (%)Equation (32) Equation (36)

473 0.3 12.9181 12.9138 �0.0330
0.5 8.5178 8.5135 �0.0505
0.8 3.0915 3.0893 �0.0710

673 0.3 7.7117 7.6995 �0.1574
0.5 5.1270 5.1148 �0.2389
0.8 1.9333 1.9270 �0.3239

873 0.3 5.2341 5.2084 �0.4910
0.5 3.5499 3.5238 �0.7326
0.8 1.4580 1.4447 �0.9150

1073 0.3 4.3788 4.3335 �1.0340
0.5 3.0652 3.0192 �1.5011
0.8 1.4195 1.3958 �1.6713
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absolute temperature. At low and moderate temperatures, the radiative effect can be

neglected and the effective thermal conductivity is given by Equation (37).

Furthermore, if the thermal conductivity of the gas phase is very small compared

with that of the solid phase, i.e. k1
k2
� 0, Equation (37) is reduced to

kce
km
¼ 1�

3�

2þ �
: ð39Þ

By using Equation (39), the variations of the dimensionless thermal conductivity

kce=km with the porosity were calculated and are plotted in Figure 3. For comparison,

three sets of experimental data for an Al2O3 material with isometric pores [22] a 304L

stainless steel material with irregular pores [23] and an Al2O3 material with irregular

pores [24] are also plotted in Figure 3. It can be seen that the present predictions fall

in the neighborhood of experimental statistical average values. It is worth noting that

for the porous alumina materials in last example, the radiative effect at T0¼ 673K is

5
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k e
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 Francl and Kingery [22]

Figure 2. Variations of the effective thermal conductivity with the porosity: (a) at 673K; (b) at
1073K.
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negligible, so Equation (39) can replace Equation (37) The deviation between the
present predictions and the experimental data in Figure 2a is within experimental
error. It can be seen that the deviation between experimental data is still large, and
further experimental investigations are needed.

6.2. Influence of the porosity on the effective thermal conductivity

From Sections 5.3 and 6.1, it is concluded that the present approximate formula
(Equations (36)–(38)) not only has good engineering accuracy, but also has the
advantage that conductive and radiative effects are decoupled, i.e. the total effective
thermal conductivity ke can be divided to two parts: kce corresponding to pure
conduction and kre corresponding to the radiation in pores. In order to more clearly
observe their respective contribution, consider the corresponding dimensionless
quantities, kce=ke and kre=ke. The variations of kce=ke and kre=ke with porosity for a
fixed pore radius Rg¼ 10mm and at several temperatures are plotted in Figure 4a
and b, respectively. From Figure 4, contrary laws are observed: kce=ke decreases with
an increase of the porosity, whereas kre=ke increases with an increase of the porosity.
At the same time, it is also observed that the temperature has an important influence
on the total effective thermal conductivity. The higher the temperature, the greater
the radiative contribution. The present formula can help engineers to determine
whether the radiative effect must be considered.

6.3. Influence of the pore radius on the effective thermal conductivity

It is well known that, in the case of the pure conduction, the effective thermal
conductivity predicted by micromechanical methods is independent of the pore
radius for a fixed porosity. However, when the radiative effect becomes significant,
the total effective thermal conductivity strongly depends on it. The variations of

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

k e
/k

m
c

λ

 Francl and Kingery [22]

 Agapiou and DeVries [23]

 McClelland [24]

 Present

Figure 3. Comparisons of dimensionless thermal conductivity, kce=km, with experimental data.
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kce=ke and kre=ke with the pore radius at several temperatures and for a fixed porosity
�¼ 0.5 are plotted in Figure 5a and b, respectively.

It can be seen that, at low temperature, the radiative contribution is small even
though the pore radius goes up to 10mm. However, at high temperature, the
effective radiative thermal conductivity increases dramatically with the pore radius.
It should be noted that the effective thermal conductivity by the pure conduction kce
is independent of the pore radius for a fixed porosity, but kce=ke depends on it.

7. Conclusions

(1) The exact solution of the temperature and temperature gradient fields in the
generalized self-consistent model of porous materials accounting for coupling
of conductive and radiative effects, derived by solving Laplace’s equation

(a) 

(b)
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Figure 4. Variations of kce=ke and kre=ke with the porosity, �, for the pore radius Rg¼ 10mm at
several temperatures.
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with the boundary conditions at infinity and at the interfaces between the
pores and matrix phase and between the matrix and effective medium phases,
can degenerate into the existing exact solution of the corresponding dilute
scheme [4].

(2) The above exact solution can be used to study the temperature and heat flux
fields in a composite with hollow spherical inclusions at high temperature.
In this work, it has been used to develop the generalized self-consistent
method to predict the effective thermal conductivity of porous materials
accounting for the radiative effect, and a compact closed form formula is
obtained. The present formula and that in [4] (by using the dilute scheme and
Maxwell’s result) verify and complement each other.

(3) A good approximate formula of the effective thermal conductivity with
uncoupled conductive and radiative effects has been obtained. The uncoupled
formula shows that the effective thermal conductivity of porous materials

 

(a)

(b) 

0.4

0.6

0.8

1.0

k e
/k

e
c

k e
/k

e
r

Rg/mm

 T0=473 K

 T0=673 K

 T0=873 K

 T0=1073 K

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

Rg/mm

 T0 =473 K

 T0 =673 K

 T0 =873 K

 T0 =1073 K

Figure 5. Variations of kce=ke and kre=ke with the pore radius for a fixed porosity �¼ 0.5 and at
several temperatures.
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consists of two parts, i.e. kce corresponding to the pure conduction and kre
corresponding to the radiation in pores. kce is independent of the pore radius
for a fixed porosity and kce=km is (actually approximately) independent of
temperature, where km is the thermal conductivities of the matrix. However,
kre strongly depends on the pore radius and temperature. kre can not be
neglected at high temperature and in the case of relative large pores.

The present work leads to a much better understanding of the interesting
interacting phenomena of the conduction and radiation with the microstructure in
porous materials and can help engineers to estimate the effective thermal conduc-
tivity of porous materials at high temperature and determine whether the radiative
effect must be considered.

Nomenclature

A1,A2 gas–matrix interface area and matrix–effective medium
interface area

As arbitrary section of the pore

Agj,Bgj,Amj,Bmj,Aej,Bej,C real constants
dA1, dA

�
1, dAp arbitrary infinitesimal areas

dF view factor
H,H0 temperature gradient and far-field temperature gradient

k thermal conductivity
n a normal unit vector
q heat flux

Qp,Q
r
As

heat quantity
R radius
T temperature
V volume
�h i averaging over the representative volume element

Greek

� porosity
� Stefan-Boltzmann constant
" emissivity
� reflectivity

Subscripts

1, g gas in the pore
2, m matrix

e effective medium

Superscripts

c the contribution of the conduction
r the contribution of the radiation

out emission
in incidence
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