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Abstract The Hermitian and skew-Hermitian splitting (HSS) iteration method
was presented and studied by Bai, et al. for solving non-Hermitian positive defi-
nite linear systems (Bai Z Z, Golub G H, Ng M K. Hermitian and skew-Hermitian
splitting methods for non-Hermitian positive definite linear systems. SIAM J. Ma-
triz Anal. Appl., 2003, 24: 603-626). In this paper, contraction factors of the HSS
iteration method in terms of the weighted 2-norm and the 2-norm are given, respec-
tively, for the generalized saddle point problems. These contraction factors rather
than the spectral radius of the iteration matrix essentially control the actual conver-
gent speed of the HSS iteration method in practical computations. According to the
analyses, the contraction factor of the HSS iteration method for the generalized sad-
dle point problem is one in the weighted 2-norm. However, it may be greater than
or equal to one in the 2-norm and less than one in other suitable norms. Finally,
numerical examples are used to examine the correctness of the theoretical results.
Key words contraction factor; weighted 2-norm; 2-norm; generalized saddle point
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0 Introduction

We consider the large and spare system of linear equations

B FE T b
(2()0)mer o

where B € C™*™ is Hermitian positive definite, C € C**" is Hermitian positive semidefi-
nite, and null(C) N null(E) = {0} with m > n, b € C™, and q € C". Here, F* is used to
denote the conjugate transpose of the matrix E, and null{C) and null{ E) denote the null
spaces of the matrices C and E, respectively. Usually, linear systems of the form (1) are
called generalized saddle point problems.

The generalized saddle point problem (1) frequently arises in many areas of scien-
tific computing and engineering applications, including mixed finite element approxima-
tions of elliptic partial differential equations!*!, optimal control?, electronic networks!® and
others!*~l; see also [7].

Many researchers have discussed iteration methods and preconditioning techniques for
the generalized saddle point problems[®~13l. When the (2, 2) block C of the matrix A4 is zero,
the linear system (1) reduces to the standard saddle point problem. Recently, various kinds of
iteration methods have been proposed and studied for the generalized saddle point problem
(1), and among them we just mention the Hermitian and skew-Hermitian splitting (HSS)
iteration method!¥, which directly applies the HSS iteration method to the generalized
saddle point problem (1) (see [11, 13, 15-16]).

In this paper, we discuss the contraction factors of the HSS iteration method used to
solve the generalized saddle point problem (1). To this end, we first review the HSS iteration
method for a general non-Hermitian positive definite linear system Az = b with A € C**#,

b € C", and 7 being a positive integer. It is easy to know that the coefficient matrix A has
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the Hermitian and skew-Hermitian splitting
A=H+S,
where
1 . 1 i}
Based on this splitting, the HSS iteration method*4 can be described as follows:

The HSS iteration method Given an initial guess z(® € C® for k = 0,1,2,---

until the iteration sequence {z(*)} converges, compute 2z *+1) ysing the following procedure:
(af + H)z®*+3) = (oI — S)z™® +b,
(ol + 8)z®* ) = (o — H)z:+3) +b,

where « is a given positive constant, and I is the identity matrix.

When the HSS iteration method is specified to the generalized saddle point problem
(1), we can obtain the following iteration method (see [13, 16]):

al + B 0 a(k+z) al —-E z(k) b
(5 e ) G )= () Ga ) ()
ol E zkth) ol — B 0 okt+3) b
(o ) ()= (07 e ) Gn )+ ()

Note that now
B 0
H =

is only Hermitian positive semidefinite. We know that the convergence of the HSS iteration
method is, however, still guaranteed for the generalized saddle point problem (1) (see [11,
13, 15-16]).

In general, an iteration method is convergent when the spectral radius of the corre-
sponding iteration matrix is less than one. In fact, the contraction factor of an iteration
method controls the convergent speed in actual computations. We remark that the contrac-
tion factor of the GSOR iteration method!!”! was discussed in [18]. In this paper, we will
estimate the contraction factors of the HSS iteration method in the weighted 2-norm and

the 2-norm, respectively, for the generalized saddle point problem (1).

1 Formulas of contraction factors

In this section, we discuss the contraction factors of the HSS iteration method in the
weighted 2-norm and the 2-norm, respectively. The iteration matrix T(«) of the HSS itera-
tion method is given by T(a) = (al + )~ (ol — H)(al + H) (ol - 5).
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Define a weighted vector norm |||z||| = [[(af + S)z||2 (for all z € C"). Then, the
correspondingly induced matrix norm is ||| X ||| = ||(a +8) X (aI+8) 7|2 (forall X € C* 1)
(see [14]). Define the contraction factor of the HSS iteration method to be NT(a)|||. Then,
for the generalized saddle point problem (1), it holds that

NT@| = Il — H)(al + H) ™ o ~ S)(eI + )2
— (el - H)(al + H)™ |
= max{||(al — B)(aI + B) ||z, | (al — C)(al +C)~|2}.

Here, we have used the fact that Q(a) = (al — S)(af + 5)~! is a Cayley transform and is,
thus, unitary, and the || - |2 norm is unitarily invariant. Because C is Hermitian positive
semidefinite, we have ||(al — C)(al +C)7}||2 = 1. In addition, that B is Hermitian positive
definite leads to ||(a — B)(al + B)™!|l2 < 1. Therefore, we obtain |||T(a)|{ = 1.

Next, we discuss the contraction factor ||T'(e)||2 of the HSS iteration method. It follows

from straightforward computations that

IT@)2 = (ol +8) ol — H)(al + H) (oI - 9)|3

= p((ed + 8)"al — H)(al + H) Hal - 5)
(ol + 8)(al + HY ' (al — H)(aI - 5)™1)

= p((al — HY(al + H) (ol — S)(al + 5)
(ol + H) Y al — H)(aI — 8) " (al + S)71)

= p(W()V (@)W ()V(x)™)

= p(V(@) W ()V () V() W (a)V () 77)

= V(@) tW(@)V(e)? ]},

where

Wi(a) = (aI—H)(aI—!—H)’l:(

w0
’ 0 Ws

with Wi (a) = (al — B)(ad + B)™! and Wa(e) = (af — C)(al + C)~!, and

(al — B)(al + B)™! 0
0 (ol —C)ad +C)7?

Via) = (aI—S)(aI—i—S):(

(" o)
' 0 Va(a)

o?] + EE* 0
0 o?I + E*E
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with Vi(a) = @*I + EE* and Va(a) = o?I + E*E. Hence, we have
IT()ll2 = max{||Vi(e) "2 Wi(a)Vi(a)? ||z, [|Va(a) TWa(a)Va(a)? |2}

Note that

[[Va(a) 2 Wa(a)Va(a) ||z = ¢p(v2<a>—%W2<a)vz<a)wz<a>vz<a>—%)

Ve(Wa () Va(a)We(a)Va(a) 1)
< 2*Wa(a)Va(a)Wa(a)z
@20 Vo (a)z '

Because C is Hermitian positive semidefinite, there exists a unity matrix @ such that

(A0
C—Q<OO)Q

with A a diagonal matrix of positive diagonal entries. Let
0
i=Q" .
z

,’ZJ*W2(OC)V'2(CY)W2(0‘)5: _ i‘*‘/é(a)ii' -1
i*Va(a) PV ()2

Then, it holds that

Based on this fact, we easily know that |[Va(a)~2Wa(a)Va(a)? |2 = 1. Therefore, | T(a)liz
= 1.

2 Numerical examples
When C = 0, for the saddle point problem defined through (1), we can obtain
IT(@)]l2 = max{||Va (@) Wi (a)Vi(a) "% [l2, 1} > 1.
In particular, when B = I and C = 0, it holds that
,1} :max{|a_1!,1} =1.
2 a+1

This shows that the lower bound 1 of the contraction factor in the 2-norm can be exactly

(@)l = { | S5 1

achieved.
We use two examples to examine the theoretical results in this paper. Our results are
run in MATLAB with machine precision 10716.
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Example 1 Consider the generalized saddle point problem (1) with the blocks in the

coefficient matrix being given by

1.3111 0.4889  0.5333 0.4444
0.4889 2.7111 0.666 7 0.3556

B = ,
0.5333 0.6667  3.4000 —0.2667
0.4444 0.3556 —0.2667 2.5778
1.0667 ~0.5333
e 6.1333  —13.0667 Co 1.0800  —1.4400
—4.0000 8.000 0 ’ ~\ —1.4400 1.9200 '

—5.3333 10.666 7
When « = 1.50, we can obtain
IT()]2 =321, p(T(a)) = 0.45.

Obviously, it holds that p(T'(c)) < 1 < ||T(a)]|2.
Example 2 Consider the generalized saddle point problem (1) with the blocks in the

coeflicient matrix being given by

B IQT+T®I 0 GRzlzlez
0 IRT+TQI ’
= IQF ERzllez
FQI ’
and
12
1 22
C= ,
1 (12-1)?
1 0
where

1 .. 1
T =+ - tridiag (-1,2,-1) € R>X F= 5 - tridiag(—1,1,0) € R

with ® being the Kronecker product symbol and h = HLl the discretization mesh size.

We choose [ = 30, then B € R! 800x1 800 ¢ ¢ R900x900  When o = 40, we can get

IT(e))|l2 = 1.47, p(T{@)) = 0.994.
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Again, it holds that p(T(a)) <1 < ||T(@)]j2.

These examples show that the contraction factors in the 2-norm of the HSS iteration

method are greater than or equal to one. However, the spectral radii of the iteration matrices

are less than one. These results agree with our theoretical conclusion.
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