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Slip-line field solution for ultimate bearing capacity of a pipeline on
clayey soils
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Abstract A slip-line field solution is presented for the ultimate bearing capacity of the pipeline
on a purely-cohesive clay soil, taking into account the circular configuration of the pipe, the pipe
embedment, and the pipe-soil interfacial cohesion. The derived bearing capacity factors for a smooth
rigid pipe limit to those for the conventional rectangular strip footing while the pipe embedment
approaches zero. Parametric studies indicate that, the pipe-soil interfacial properties have much
influence on the bearing capacity for the pipe foundation on clayedy soils. c⃝ 2012 The Chinese
Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1205104]
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The ultimate bearing capacity of a submarine
pipeline on the seabed is the pressure causing shear
failure of the supporting soil immediately below and
adjacent to the pipe foundation. In the recently-issued
Det Norske Veritas (DNV) Recommended Practice,1

the vertical stability of pipelines on and in soils has been
specially documented, along with the lateral stability.
It is highly desired to efficiently evaluate the bearing
capacity of pipeline foundations. When laid on the
seabed, the submarine pipeline settles into the soil with
certain embedment under the action of its submerged
weight (shown as Fig. 1). During the laying process
or the operating period, additional vertical loads due
to cyclic movements of the catenary riser can also be
created at the touchdown zones. The bearing capacity
of soft clayey sediments is one of the main geotechnical
concerns for the vertical and the lateral on-bottom sta-
bility, in particular in deep water to lateral buckling of
the pipelines.

Unlike the conventional rectangular strip footing, a
pipeline holds a circular cross-section. As such, the ef-
fective bearing width of the pipe-soil interface is a func-
tion of pipeline embedment, and the existing formulas
for the ultimate bearing capacity of conventional foot-
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Fig. 1. Sketch map of pipeline embedment in soil (note:
q = 0 for the case of e0/r 6 1).
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ing could not be efficiently employed for evaluating the
ultimate load for the pipeline foundations. A proper de-
termination of the ultimate bearing capacity is crucial
for evaluation of the on-bottom stability of submarine
pipelines in ocean currents and/or waves.2

The settlement and bearing capacity of the pipeline
have received much attention in the past few decades.
Conventional bearing capacity theories are mainly for
the footings with plane bottom. In the theoretical anal-
yses, the soil is absolutely divided into the plastic yield
zone and the outer elastic deformation zone. Small et
al.3 treated the pipeline with certain submerged weight
as an equivalent uniform distributed pressure upon a
rectangular footing, and proposed empirical formulas
for the bearing capacity factors by modifying the so-
lutions for a conventional strip footing. Their treat-
ment obviously could not take into account the effects
of the circular section of the pipeline. Karal4 applied
the upper bound theorems of classical plasticity theory
to develop a prediction of pipe penetration, idealizing
the pipe as a rigid wedge indenter. The approxima-
tion of pipeline with wedge indenter might be reason-
able at small embedment but error becomes significant
with increasing embedment. Upper and lower bound so-
lutions to penetration of a pipe into cohesive soil were
presented by Murff et al.5 Finite element method was
further adopted by Aubeny et al.6 for the plane-strain
calculation of collapse loads of the pipeline foundation
for the soil profiles with the shear strength varying lin-
early with depth. Hodder and Cassidy7 proposed a plas-
ticity model for predicting the undrained behaviour of
a rigid pipe in clay soils when subjected to combined
vertical and horizontal loading.

In this study, the bearing capacity of the pipeline on
Tresca soils is analyzed theoretically by employing the
slip-line field theory. The bearing capacity for a subma-
rine pipeline laid upon the horizontally flat seabed can
be treated as a plane-strain problem (shown as Fig. 1).
The clayey seabed is regarded as a rigid-perfectly plas-
tic material. The Tresca yielding criterion is adopted
for the saturated soft clay under undrained conditions.
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There exists an embedment (e0) of the pipe with radius
of r. For the case of e0/r 6 1, the uniform overburden
load at the two sides of the pipe q = 0. For the case of
e0/r > 1, the pipe-soil contact condition can be treated
as that for e0/r = 1, the weight of soil above the pipe
center is replaced by an equivalent uniform surcharge
pressure q = (e0 − r) γ′, where γ′ is the effective (buoy-
ant) unit weight of soil. The pipe-soil contact friction is
taken into account. Following the assumption by Ran-
dolph and Houlsby,8 the adhesion at the rough pipe-soil
interface is taken as a constant factor of the soil cohe-
sion a = αc (0 6 α 6 1), where α is the pipe-soil in-
terfacial adhesion coefficient, c is the soil shear strength
(cohesion). Thus, for a certain point E at the pipe-soil
interface (shown as Fig. 2), the direction for the slip-line
is θE = π/4− φ+∆/2, in which ∆ = arcsinα.

According to the well-known slip-line field theory,
the coordinates of the slip-lines can be obtained by solv-
ing the characteristic for slip-lines under certain bound-
ary conditions using finite-differential method, then the
mean stress σ (note: σ = (σ1 +σ3)/2 = (σx +σy)/2) at
a certain point in the slip-line field, and the angle θ be-
tween the tangent line and the x-axis can be calculated
from the Hencky stress equations.

As shown in Fig. 2, the boundaries CG and CEB
are the Riemann conditions for determining the uni-
form field CFG and the extrusion field CBD, respec-
tively, The boundaries CF and CD are the regressive
Riemann conditions for determining the transition re-
gion CDF . Based on the stress analysis, on the line
CG the minimum stress can be determined with the
magnitude of q and its direction is vertical. On the
line CEB, the maximum stress is located, whose di-
rection is perpendicular to the line CEB, and whose
magnitude is to be determined. Lines CF and CD are
the boundary for the field CFD, whose solution can be
determined from the results of the uniform field CFG
and those of the extrusion field CBD. By employing
the finite-differential method, the slip-line fields for the
pipeline foundations can be constructed. Figure 2 gives
the slip-line fields for the smooth pipeline (α = 0) and
the rough pipeline (α = 0.5), respectively. As indicated
in this figure, the whole slip-line field can be divided
into three regions, i.e., the uniform region CFG, the
extrusion region CBD, and the transition region CDF .
The magnitude of the slip-line field for the case of the
rough pipelines is larger than that of the smooth pipes.

Based on the aforementioned basic assumptions and
the constructed slip-line fields, the ultimate load for
pipeline foundations can be further derived as follows.
The ultimate bearing load Pu is expressed in the inte-
gral form as

Pu = 2

∫ φ0

0

rσE,y dφ, (1)

where σE,y is the vertical component of the pipe-soil
contact force, and φ0 is the embedment angle ∠BOC
(shown as Fig. 2), φ0 = arccos (1− e0/r). As shown in
Fig. 2, the points A and E are along the same α line,
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Fig. 2. Slip-line fields of the pipeline foundation on the
clayey soil obeying Tresca yield criterion (solid lines is for
smooth pipe (α = 0); dash lines is for rough pipe (α = 0.5)).

and let ∠BOC = φ. Submitting the values of σ and
θ at points A and E into the Hencky stress equations,
one has

σA − 2cθA = σE − 2cθE . (2)

That is

σE = σA + 2c(θE − θA) =

σA + 2c

(
π

2
+

∆

2
− φ

)
. (3)

As σE = σE,1 − c (σE,1 is the first principal stress at
point E along the pipe-soil contact arc), then

σE,1 = σE + c = σA + 2c

(
π

2
+

∆

2
− φ

)
+ c, (4)

in which σA = q + c. At the point E along the pipe-
soil contact arc, the vertical component of the pipe-soil
contact force σE,y can be expressed as

σE,y = σE,1 cos(φ−∆/2). (5)

Submitting Eqs. (4) and (5) into Eq. (1), the ultimate
bearing load Pu can be derived as

Pu = 2

∫ φ0

0

[ c (π+∆+ 2− 2φ) + q] ·

cos

(
φ− ∆

2

)
r dφ = 2[cr(2 + π+∆) + qr] ·[

sin

(
φ0 −

∆

2

)
+ sin

(
∆

2

)]
−

4cr

[
φ0 sin

(
φ0 −

∆

2

)
+

cos

(
φ0 −

∆

2

)
− cos

(
∆

2

)]
(6)

Referring to the formula of the bearing capacity for
conventional strip footings, the bearing capacity for
pipeline foundations may be expressed in the following
form

Pu

2r sinφ0
= cNc + qNq, (7)

where 2r sinφ0 is the width of the pipe-soil interface.
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Submitting Eq. (6) into Eq. (7), the bearing capac-
ity factor for cohesion (Nc) and the bearing capacity
factor for distributed load (Nq) can thereby be obtained

Nc =
1

sinφ0
(2+π+∆)

[
sin

(
φ0 −

∆

2

)
+

sin

(
∆

2

)]
− 2

sinφ0

[
φ0 sin

(
φ0 −

∆

2

)
+

cos

(
φ0 −

∆

2

)
− cos

(
∆

2

)]
(8a)

Nq=

sin

(
φ0 −

∆

2

)
+ sin

(
∆

2

)
sinφ0

. (8b)

In the analysis on the general shear failure mechanism
of a conventional rectangular-shaped strip footing, e.g.,
Prandtl-Reissner solution,8 the smooth strip footing
carries a uniform pressure on the surface of a mass of
homogeneous, isotropic soil; the shear strength param-
eters for the soil are c and ϕ; a surcharge pressure q
acting on the soil surface has been taken into account.
The following exact solution has been widely used for
the ultimate bearing capacity of a rectangular-shaped
strip footing on the surface of a weightless soil

Pu

b
= cNc + qNq

(for a rectangular strip footing), (9)

where b is the width of the conventional strip footing
(note that, for the pipeline foundation, b = 2r sinφ0

(shown as Fig. 2)), Nc and Nq are the bearing capacity
factors, i.e.

Nc = (q − 1) cotϕ, (10a)

Nq = e π tanϕ tan2
(
π

4
+

ϕ

2

)
, (10b)

in which ϕ is the internal angle of soils. For the rectan-
gular strip footing on a pure cohesive soil (i.e., ϕ = 0),
the bearing capacity factors are Nc = π+ 2, Nq = 1.

For the case of the partially-embedded pipeline on
Tresca soils, if the pipeline surface is fully-smooth (∆ =
0), then the bearing capacity factors Eqs. (8a) and (8b)
are simplified as

Nc = (π+ 2) + 2

(
1− cosφ0

sinφ0
− φ0

)
, (11a)

Nq = 1. (11b)

Now to examine the two extrema of Nc (shown as
Eq. (11a)), one has

lim
φ0→0

Nc = (π+ 2) + 2

(
1− cosφ0

cosφ0
− φ0

)
= π+ 2,

(12a)

lim
φ0→π/2

Nc = 4. (12b)
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Fig. 3. Variation of Nc with e0/r for smooth pipes.
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Fig. 4. Variation of Nc with α and e0/r.

Figure 3 gives the variation of Nc with e0/r for smooth
pipes. When φ0 → 0 (i.e., the pipeline just touches
the soil surface e0/r = 0), the bearing capacity fac-
tor Nc for pipeline foundations (shown as Eq. (12a))
matches that for the conventional strip footings. This
indicates that, while the pipeline embedment is ap-
proaching zero, the formulae for the bearing capacity of
pipeline foundations degenerate into those for th nven-
tional rectangular-shaped strip footings.

With the increase of the pipeline embedment, the
value of Nc decreases gradually and finally reaches 4.0
when the pipeline is half buried (shown as Fig. 3).
Therefore, if pipeline foundations are directly simpli-
fied as conventional strip footings, the bearing capacity
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Fig. 5. Variation of Pu/cr with α and e0/r (q = 0).
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factor Nc would be over evaluated, whose error may be
up to 28.5%. Based on the derived formulae for the
bearing capacity of the partially embedded pipeline on
Tresca soils, i.e., Eqs. (8a) and (8b), the relationship
between the bearing capacity factors (Nc, Nq) and the
non-dimensional pipeline embedment (e0/r), and the
pipe-soil interfacial cohesion coefficient (α) can be es-
tablished.

Figure 4 gives the variation of Nc with the param-
eters e0/r and α. As shown in Fig. 4, when e0/r < 0.6,
the values of Nc initially increases to a maximum value,
then decreases continuously with the increase of α; when
e0/r > 0.6, the values of Nc increases with increasing
α. The effect of α on Nc gets more significant with the
increase of pipeline embedment (e0/r). The maximum
value of Nc emerges (Nc = 7.30) under the condition of
the fully-bonding (α = 1) and half-burial (e0/r = 1).

For better understanding the bearing capacity of
pipeline foundations, the dimensionless ultimate bear-
ing load Pu/cr is introduced. Eq. (7) is thereby rewrit-
ten as

Pu/cr = 2
(
Nc +

q

c
Nq

)
sinφ0, (13)

in which, the bearing capacity factors Nc and Nq are
calculated with Eqs. (8a) and (8b). Figure 5 gives the
variation of Pu/cr with the dimensionless pipeline em-
bedment (e0/r) and the pipe-soil interfacial cohesion co-

efficient (α), under the condition that the embedment
is less than the pipeline radius (q = 0). For the fixed
value of α, Pu/cr increases with increasing e0/r. For
the fixed values of e0/r, Pu/cr increases with increasing
α; the effects of α on Pu/cr are higher for larger values
of e0/r. When α = 1 and e0/r = 1, Pu/cr reaches its
maximum value.
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39, 213 (1989).

6. C. P. Aubeny, H. Shi, and J. D. Murff, Géotechnique 5, 320
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