
J Glob Optim (2012) 52:45–55
DOI 10.1007/s10898-011-9678-1

Low dimensional simplex evolution: a new heuristic
for global optimization

Changtong Luo · Bo Yu

Received: 11 April 2006 / Accepted: 30 January 2011 / Published online: 18 February 2011
© Springer Science+Business Media, LLC. 2011

Abstract This paper presents a new heuristic for global optimization named low dimen-
sional simplex evolution (LDSE). It is a hybrid evolutionary algorithm. It generates new
individuals following the Nelder-Mead algorithm and the individuals survive by the rule of
natural selection. However, the simplices therein are real-time constructed and low dimen-
sional. The simplex operators are applied selectively and conditionally. Every individual is
updated in a framework of try-try-test. The proposed algorithm is very easy to use. Its effi-
ciency has been studied with an extensive testbed of 50 test problems from the reference
(J Glob Optim 31:635–672, 2005). Numerical results show that LDSE outperforms an
improved version of differential evolution (DE) considerably with respect to the conver-
gence speed and reliability.

Keywords Global optimization · Heuristic · Real-coded · Evolutionary algorithm ·
Differential evolution · Low dimensional simplex evolution

1 Introduction

Global optimization (GO) aims to find the best possible solution to an existing problem
under some given feasibility constraints. It has become an important tool in many practical
applications (see, e.g., [14,15,18,19]). However, GO is still a challenging research topic
because practical problems might be highly nonlinear, non-convex, and/or involve many

This research has been supported by the National Natural Science Foundation of China (Grants 10632090
and 90916028).

C. Luo (B)
Key Laboratory of High Temperature Gas Dynamics, Chinese Academy of Sciences,
100190 Beijing, China
e-mail: luo@imech.ac.cn

B. Yu
Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China

123



46 J Glob Optim (2012) 52:45–55

local extreme points. Even worse, the derivative of objective function might be unavailable,
unreliable (numerical unstable, e.g., in the presence of noise), or hard to compute. In this
paper, we consider the continuous global optimization with box-constraints of the form

min
x∈�

f (x) (1)

where the feasible region � = {x ∈ Rn |l j < x j < u j , j = 1, 2, . . . , n}. The objective
function f : Rn −→ R is of the black-box type but it is assumed to be continuous or at least
piecewise continuous in general.

Existing GO algorithms can be roughly divided into two classes: deterministic algorithms
[6] and stochastic heuristics [16,28]. A most widely used deterministic GO algorithm is the
branch-and-bound (BB) method. It is a class of adaptive partition strategies based upon par-
tition, sampling, and subsequent lower and upper bounding procedures [18]. Besides, there
are several other deterministic GO algorithms including the dividing rectangles (DIRECT)
provided by D. R. Jones, C. D. Perttunen and B. E. Stuckman [9,10], the multilevel coordinate
search (MCS, based on DIRECT) provided by W. Huyer and A. Neumaier [7], cutting plane
methods provided by H. Tuy [27], etc. Theoretically, all those deterministic algorithms might
fail to get the global optimum because of their deterministic selection rules and non-ergodic
properties. On the contrary, stochastic heuristics can get the global optimum in probability
1 due to their stochastic selection rules and ergodic properties. Dozens of stochastic GO
algorithms have been provided during the past decades, one can mention adaptive simu-
lated annealing (ASA) [8,17],covariance matrix adaptation evolution strategy (CMA-ES)
[4], differential evolution (DE) [26], and particle swarm optimization (PSO) [12].

Dozens of GO software products have been developed in the last decades. They can be
divided into three types. Some GO products are only a part of some general purpose mathemat-
ical software, e.g., the genetic algorithm and direct search toolbox in Matlab, the NMinimize
package in Mathematica, etc. Some are professional GO solvers, e.g., BARON [24], LGO
[20], LINGO, and many more. Some give a uniform interface to several GO solvers, e.g.,
GAMS, AMPL, etc. Usually, a professional GO solver is an integration of several algorithms
with adaptive strategies and constraints-handling techniques. For more information on GO
algorithms and products, consult [20,21] and the references therein.

Nevertheless, convergence speed and reliability are still the bottleneck of GO algorithms
for their applications. In this paper, we try to get an efficient algorithm by hybridizing evo-
lutionary and traditional optimization algorithms. We find that simple combinations do not
work. It needs essential modifications to get an efficient hybrid evolutionary algorithm.

The rest of the paper is organized as follows. Section 2 presents four possible ways of
hybridizing evolutionary and traditional algorithms. Section 3 describes the proposed hybrid
algorithm, low dimensional simplex evolution (LDSE), in detail. In Sect. 4 we discuss the
constraint handling in LDSE. Section 5 gives the numerical results. Finally, we draw some
concluding remarks in Sect. 6.

2 Ways of hybridization

Evolutionary algorithms have the virtue of global search, while their local search ability is
generally limited. Many population based algorithms (may) converge slowly even if the best
solutions are close to the global optimizer. On the contrary, traditional algorithms are usually
good at local search, but easily trapped into a local minimum or stationary point. As a result,

123



J Glob Optim (2012) 52:45–55 47

hybridization with a traditional algorithm is a good way to speed up evolutionary algorithm.
Existing ways of hybridization could be divided into three classes:

(1) (E+T)-type, in which the EA is used for the global exploration (step 1) and then the
traditional algorithm is used for the local exploitation (step 2). Specifically, in step 1,
the EA is used to find a most promising basin of attraction and an initial point for step
2. In step 2, the traditional algorithm is used to discover the bottom of the basin from
the initial point provided by EA. This type of hybridization is very easy to use, so it
has been embedded in many GO software products (e.g., the optimization toolbox in
Matlab) and is widely used in practical engineering computations.

(2) (E+T+E)-type, in which traditional algorithm is embedded in EA to improve the indi-
viduals in the current population. For example, GPL [22] is a combination of real-coded
GA and Powell’s method.

(3) (E<T>E)-type, in which traditional optimization operator is directly used as an evolu-
tionary operator. For example, simplex-GA [22] and simplex coding genetic algorithm
[5] are hybridizations of real-coded GA and downhill simplex method [13].

The above ways of hybridization do work in some cases. However, we need more efficiency
and more reliability in practical applications. In this paper, we try to hybridize traditional
and evolutionary algorithms in a new way:

(4) (<ET>)-type, in which some selected operators from the traditional optimization algo-
rithm are used as evolutionary operators after essential modifications, and the modified
operators are applied conditionally in conjunction with some other new introduced
operators. Here, by <ET> we mean evolutionary and traditional algorithms are tightly
integrated.

3 Low dimensional simplex evolution

3.1 Lower dimensional simplex operators

There are two kinds of operators in evolutionary algorithms: (1) the reproduction operators
(such as crossover and mutation) to decide how to generate new individuals, and (2) the
selection operator(s) to decide which individuals will survive to the next generation. In this
subsection, we focus our attention on the reproduction operators. For the black-box type
global optimization problem (1), direct search methods are good choices because they are
derivative-free and only use the information of function values. We will derive our reproduc-
tion operators from direct search methods.

Downhill simplex method (also referred to as Nelder-Mead method) is a classic direct
search method. It moves, deforms, and resizes a simplex shape until its volume becomes
sufficiently small. The method was introduced by Spendley, Hext and Himsworth [25]. After-
ward, Nelder and Mead developed a modified version that allows the procedure to adjust its
search step according to the evaluation result of the new point generated [13]. Nelder-Mead
method has a good performance of local search. This makes it possible to get an efficient
hybrid EA by designing evolutionary operators inspired from Nelder-Mead.

Nelder-Mead method must maintain a full dimensional simplex (n-simplex for
n-dimensional problems) during the search process to ensure its convergence. Once the
dimension of the new transformed simplex becomes degenerated, the algorithm will be more
likely to get stuck in a non-optimizer (i.e., neither global minimizer nor local minimizer).
This is not what we expect. We have tried to remedy this defect by maintaining a point-set

123



48 J Glob Optim (2012) 52:45–55

with more (than n+1) points during the search process. In our experiments, we use n-simplex
operators as the reproduction operators for generating new individuals/points. The popula-
tion size N is set to be much lager than n + 1. The results show that maintaining a set with
more points does help the algorithm converge to global minimizer. However, the convergence
speed becomes very slow as the population size N increases, especially for high dimensional
problems.

In linear algebra, subspace iteration is a successful and widely used technique, e.g., Krylov
subspace method for large-scale linear systems [3] is regarded as one of the ten most impor-
tant classes of numerical methods in the 20th century. Subspace iteration can both save the
required memory storage and accelerate the search process. The Nelder-Mead method and
the subspace iteration motivate us to design our reproduction operators with lower dimen-
sional simplex. We use three lower dimensional operators for generating new individuals:
reflection, contraction and local learning. Suppose the dimension of the simplex is m, and
m ≤ n, then the reproduction operators can be described as follows.

(1) Reflection: Reflect the worst vertex Xw across the centroid of the other m points, i.e.,
the reflection point Xr = X̄ +α · (X̄ − Xw), where α is a predetermined scaling factor,
α ∈ [0.5, 2], and the centroid X̄ = 1

m

∑
k �=w Xk .

(2) Contraction: Draw back the reflection point Xr towards the worst vertex Xw , i.e., the
contraction point Xc = X̄ + β · (Xw − X̄), where β is another predetermined scaling
factor, and β ∈ [−0.5,−0.1] ∪ [0.1, 0.5].

(3) Local learning: Move the current point Xi towards the best vertex Xb or backwards
the worst vertex Xw , i.e., the new individual Xl = Xi + 0.618 · (Xb − Xi ) or Xl =
Xi + 0.382 · (Xi − Xw).

Note that the local learning could be regarded as a 1-dimensional simplex operator.

3.2 m-Simplex evolution

In this section, we will first introduce a general form of simplex evolution so called m-simplex
evolution (m-SE), where m = 1, 2, . . . , n. Similar to other population-set-based algorithms,
m-SE maintains a population set X(t) of N individuals/points Xi (t), i = 1, 2, . . . , N , during
the evolutionary progress. The evolutionary progress is to guide the individuals in the current
population in stepping towards (hopefully) better positions. The individuals will hopefully
get improved from generation to generation, and converge to the global minimizer in the long
run.

In m-SE, the so-called better position is determined by the current individual Xi (t) and
the other m + 1 randomly selected individuals from the current population. The m + 1
individuals make up of an m-simplex. In this sense, m-SE can be regarded as a kind of
multi-parent genetic algorithm (with m + 2 parents in total). We construct a new simplex
for each position i in the current population. In other words, the new m-simplex is real-time
constructed and it has almost nothing to do with the old ones. This is quite different from the
original Nelder-Mead method, in which the new simplex is always a transformation of the
old one. As a result, m-SE has no reduction operator.

The new individual (the entity of a hopefully better position) will replace the current indi-
vidual Xi (t) if only it is better (except for the test step). Here the better means it is better than
the current individual, not necessarily/sufficiently better than the worst vertex Xw . Therefore,
whether a simplex operator (reflection or contraction) is successful depends on the value of

123



J Glob Optim (2012) 52:45–55 49

Xi (t), not Xw . This is another difference from the original Nelder-Mead method. As a result,
m-SE has no expansion operator.

In general, the current individual Xi (t) tries to improve himself in a framework of try-
try-test. In the beginning it has two chances. The first chance is provided by the reflection
operator. If the reflection point Xr is better than Xi (t), Xi (t) will be replaced by Xr . As a
result, the individual Xi (t) get improved. Otherwise a second chance, the contraction, will be
carried out. Similarly, Xi (t) will get improved if the contraction point Xc is better. However,
if the i-th individual Xi (t) has lost the previous two chances and cannot make the average
profit (that is, its function value is greater than or equal to the average value of the current
population), it will take a chance on local learning. This step is motivated, in some sense,
by the behavior of a human being. Obviously, the i-th individual tries the local learning to
improve himself at the risk of being degenerated. Although local learning might degenerates
the i-th individual, it could increase the diversity of the population.

From the above discussion, we can see that (1) m-SE employs the simplex operators of
Nelder-Mead method selectively (e.g., the expansion and reduction operators are discarded)
after dimension reduction; (2) m-SE employs a new simplex operator — the local learning;
and (3) the three evolutionary operators are applied conditionally, e.g., the contraction will
not be applied if the reflection is successful, and the local learning will not be applied if
the reflection or contraction is successful. The procedure of the m-SE can be outlined as
follows.

Procedure m-simplex evolution algorithm:

Step 1: Initialize: Input population size N , initial bounds l, u, scaling factors α and β.
Set the current generation t = 0; Initialize population X(0) = {X1(0), X2(0), . . . ,

X N (0)}, where Xi (0) ∈ Rn .
Step 2: Evaluate population: For each individual in the current population X(t), compute

f (Xi (t)) ; Set the current position i = 1.
Step 3: Update population: If the current position i ≤ N , do the following steps.

3.1) Construct simplex: Randomly choose m + 1 mutually different individuals
Xrk , k = 1, 2, . . . , m + 1 from current population, find their best Xb and the
worst Xw , and calculate the centroid X̄ = 1

m

∑
rk �=w Xrk .

3.2) Try reflection: Compute the reflection point Xr = X̄ + α · (X̄ − Xw).
If f (Xr ) < f (Xi (t)), then Xi (t + 1) = Xr ,

set the current position i = i + 1, and return to step 3.
3.3) Try contraction: Compute the contraction point Xc = X̄ + β · (Xw − X̄); If

f (Xc) < f (Xi (t)), then Xi (t + 1) = Xc,

set the current position i = i + 1, and return to step 3.

3.4) Test local learning: If f (Xi (t)) ≥ 1
N

N∑

k=1
f (Xk(t)) then compute the new

point

Xl =
{

Xi (t) + 0.618 · (Xb(t) − Xi (t)), if f (Xb(t)) < f (Xi (t));
Xi (t) + 0.382 · (Xi (t) − Xw(t)), else.

Let Xi (t + 1) = Xl , set the current position i = i + 1, and return to step 3.

Step 4: Check point: If some stopping criterion is satisfied, output the best-so-far individual
X∗ and its function value f (X∗); Otherwise, set the current generation t = t + 1,
set the current position i = 1 and return to step 3.

123



50 J Glob Optim (2012) 52:45–55

The stopping criteria will be described in Sect. 5. Note that the population size N is usually
taken much larger than the dimension of the problem n to ensure the global convergence.
Another noteworthy fact is that the m-SE should be non-generational (that is, the offspring
individuals could be selected as parent individuals as soon as they are generated) to decrease
the required memory (storage) space for programming.

3.3 Full and low dimensional simplex evolution

The m-simplex evolution described in the above subsection is called full dimensional sim-
plex evolution (FDSE) if the dimension of the simplex therein is equal to that of the problem
(that is, m = n). Accordingly, it is called lower dimensional simplex evolution if m < n.
Particularly, the m-simplex evolution is called low dimensional simplex evolution (LDSE)
if the dimension of the simplex is much less than that of the problem (that is, m 	 n). The
LDSE is the one we highly recommend. Usually we take m ≤ 5 for the problems which
dimension n ≤ 50. Numerical study indicates that LDSE is much superior to FDSE for the
problems with a higher dimension such as n ≥ 10 (see subsection 5.1).

In summary, LDSE is a hybrid evolutionary algorithm of (<ET>)-type (see Sect. 2 and
subsection 3.2). It generates new trial points following the Nelder-Mead algorithm, and the
individuals survive by the rule of natural selection. However, the simplices therein are real-
time constructed and low dimensional. The simplex operators are applied selectively and
conditionally. Each individual is updated in a framework of try-try-test.

If we take m = 2 and fix the scaling factors α = 1, β = 1
3 , LDSE will be fully simplified,

and the resulting algorithm will require only one (explicit) control parameter, the population
size N . This renders it very easy to use. The simplest is hopefully the best if the simplification
does not affect too much of its efficiency. The simplified LDSE is called triangle evolution
(TE) because in this case the simplex is indeed a triangle. TE is the simplest form of LDSE.
In order to ensure its efficiency, TE requires that the three randomly selected parents are
mutually different.

4 Constraint handling

Constraint handling is another challenging topic in evolutionary algorithms. Carlos A. Coello
Coello provides a comprehensive list of references on constraint handling techniques used
with evolutionary algorithms and keeps constantly updating [2]. We will not discuss general
constraint-handling techniques in this paper. For the simple box-constraints, they are handled
quite straightforward. Once the component x j of a new trial point goes beyond its bounds
(i.e., x j < l j or x j > u j , the case might happen at the reflection and the local learning steps),
it will be initialized to x j = l j + r · (u j − l j ), where r is a random real number with uniform
distribution on the interval [0, 1]. In our practical application of LDSE, nonlinear constraints
are handled using a technique similar to the direct constraint handling method proposed by
Price, Storn and Lampinen [23].

5 Numerical results

Performances of the proposed algorithms are tested with a set of 50 continuous global opti-
mization problems (P) from [1]. All the problems are box-constrained. The dimensions range

123



J Glob Optim (2012) 52:45–55 51

Table 1 Comparison of FDSE and LDSE using 10 problems. The hyphen “-” means an algorithm has failed
to find the global minimum within the given number of function evaluations E in all the 100 runs

Problems N FDSE LDSE Reduced Increased

P n m n f e ps m n f e ps n f e(%) ps

ACK 10 30 10 7317 48 4 2859 100 60.9 52

ACK 20 30 20 10316 42 4 3516 100 65.9 58

EXP 10 20 10 887 100 4 733 100 17.4 0

EXP 20 30 20 2030 100 4 1328 100 34.6 0

GW 10 20 10 1898 87 4 1413 100 25.6 13

GW 20 30 20 3557 100 4 2215 100 37.7 0

LM2 10 150 10 19167 21 3 9703 92 49.4 71

LM2 20 400 20 − 0 2 66417 96 − 96

RG 10 20 10 4152 35 2 1316 100 68.3 65

RG 20 40 20 5433 26 2 3281 100 39.6 74

Average 44.4 42.9

from 2 to 20. They have a variety of inherent difficulties, and many of them are frequently
used to test the performance of evolutionary algorithms.

We use the same stopping criteria for each algorithm and test case in our numerical exper-
iments. The algorithm will stop if it meets one of the following conditions:

(1) the global minimum is attained in the numerical sense, i.e., fGloBest (t)− f ∗ < ε, where
fGloBest (t) is the function value of best-so-far individual, f ∗ is the best known function
value of the GO problem, and the tolerance ε = 10−6.

(2) the population is matured in the numerical sense, i.e., fPopW orst (t) − fPopBest (t) <

δ, fPopW orst (t), where fPopBest (t) are the function values of the worst and the best
individual in current population respectively, and δ = 10−4.

(3) the maximum number of function evaluations E is reached, where E = 500n3.

In order to reduce the effect of randomness, each test case is executed 100 times with differ-
ent initial populations (by setting different random seeds). The average number of function
evaluations (n f e) and the percentage of success (ps) are reported to show the performance of
each algorithm. An execution is said to be successful if and only if the first stopping criterion
(as above listed) is satisfied.

5.1 Comparison of LDSE and FDSE

The effect of the dimension reduction on the m-simplex evolution algorithm is demonstrated
with a group of 10 dimension-adjustable problems selected from the testbed. Numerical
results show that LDSE is superior to FDSE by 44.44% and 42.9 in terms of average
reduced n f e and average increased ps respectively (see Table 1), where the reduced n f e =
(1 − n f eLDSE

n f eFDSE
) · 100%, and the increased ps = psLDSE − psFDSE.

123



52 J Glob Optim (2012) 52:45–55

5.2 Comparison of LDSE and DE

In this subsection, LDSE is applied to all 50 problems in the testbed to verify its performance
and compare with an improved version of differential evolution (DE). We choose the DE
for comparison because it has proven to be the fastest evolutionary algorithm among the 1st
ICEO conference entries.Differential evolution (DE) was first proposed by R. Storn and K.
Price [26]. It is also a population set based algorithm. For each individual Xi (t) (a point
in Rn) in the current population, DE reproduces a new trial point by mutation and cross-
over. Consider the most popular strategy DE/rand/1/bin. In the mutation phase DE randomly
selects three distinct points Xr1(t), Xr2(t), Xr3(t) from the current population set X(t). The
mutated point Xm(t) is a permutation of one point along the differential variation of the other
two, that is, Xm(t) = Xr1(t) + F · (Xr2(t) − Xr3(t)), where F is a scaling factor. In the
crossover phase, the trial point is generated by the crossover between Xm(t) and Xi (t) of
the form

xtrial, j (t) =
{

xm, j (t), if rand[0, 1) < CR or j = jrand;
xi, j (t), otherwise.

The trial point replaces Xi (t) from the population if and only if it is not worse than it. In 2006,
P. Kaelo and M. M. Ali proposed a modified version of DE, called differential evolution algo-
rithm with random localization (DERL) [11]. Different from the original DE, the modified
DERL requires Xr1(t) to be the best of the three random points and uses a random scaling
factor F uniformly drawn from [−1,−0.4] ∪ [0.4, 1]. DERL has improved the performance
of DE significantly [11].

In order to make a fair comparison between LDSE and DE, we choose TE (an LDSE
algorithm with a fixed dimension and fixed scaling factors, see subsection. 3.3) as the repre-
sentative to compete with DERL (an improved version of DE).

Note that TE and DERL share similar method for parent selection. Both algorithms
reproduce new individuals from the i-th individual and three randomly selected mutually
different parents. In addition, both TE and DERL use the function-value information of
selected parents, that is, TE needs to find the best and the worst parents to carry out the
simplex operations and DERL also needs to find the best parent to carry out the mutation
operation.

The control parameter CR of DERL used in our experiment follows [11], in which CR =
0.5 is reported to be the best choice for the 50 test problems. The population size N for
TE and DERL are all found empirically. We have conducted a series of runs of TE and
DERL by varying N from 1.5n to 20n. Only the best results are presented in this paper. The
population size N used here might not be optimal, but it should be a good choice at least.
The comparison results between DERL and TE are presented in Table 2, where the reduced
n f e = (1 − n f eTE

n f eDERL
) · 100%, and the increased ps = psDERL − psTE. From Table 2, we can

see that TE outperforms DERL considerably. TE is superior to DERL by 27.72% and 3.07
in terms of average reduced n f e and average increased ps.

6 Conclusion

We have presented a new hybrid evolutionary algorithm named low dimensional simplex evo-
lution (LDSE) for continuous global optimization. LDSE is a (<ET>)-type hybrid algorithm
(see Sect. 2 and subsection. 3.2). It generates new trial points by reflection and contraction
operators derived from the Nelder-Mead algorithm after essential modifications, and the

123



J Glob Optim (2012) 52:45–55 53

Table 2 Comparison of DERL and TE using 50 problems

Problems DERL TE Reduced Increased

No. P n n f e ps n f e ps n f e(%) ps

1 ACK 10 31146 100 2772 100 91.10 0

2 AP 2 425 100 281 100 33.88 0

3 BL 2 695 100 438 100 36.98 0

4 B1 2 687 100 346 100 49.64 0

5 B2 2 632 100 397 100 37.18 0

6 BR 2 761 100 354 100 53.48 0

7 CB3 2 473 100 266 100 43.76 0

8 CB6 2 494 100 290 100 41.30 0

9 CM 4 1706 100 894 100 47.60 0

10 DA 2 1037 100 543 100 47.64 0

11 EP 2 642 100 328 100 48.91 0

12 EM 10 15707 62 19713 71 −25.50 9

13 EXP 10 1428 100 661 100 53.71 0

14 GP 2 706 100 376 100 46.74 0

15 GW 10 7037 100 1304 100 81.47 0

16 GRP 3 1562 100 719 100 53.97 0

17 H3 3 867 100 449 100 48.21 0

18 H6 6 4353 91 2276 100 47.71 9

19 HV 3 941 100 686 100 27.10 0

20 HSK 2 326 100 194 100 40.49 0

21 KL 4 1244 100 538 100 56.75 0

22 LM1 3 745 100 422 100 43.36 0

23 LM2 10 9189 100 8741 100 4.88 0

24 MC 2 353 100 195 100 44.76 0

25 MR 3 3301 83 1278 100 61.28 17

26 MCP 4 1863 100 1495 94 19.75 −6

27 ML 10 150403 71 138264 100 8.07 29

28 MRP 2 985 65 523 82 46.90 17

29 MGP 2 1254 67 4204 89 −235.25 22

30 NF2 4 35874 100 17901 100 50.10 0

31 NF3 10 56206 100 18419 100 67.23 0

32 OSP 10 − − − − − −
33 PP 10 10465 100 8229 100 21.37 0

34 PRD 2 1253 100 926 100 26.10 0

35 PQ 4 2592 100 1091 100 57.91 0

36 PTM 9 − − − − − −
37 RG 10 83141 100 1236 100 98.51 0

38 RB 10 96417 100 14831 100 84.62 0

39 SAL 10 − − − − − −

123



54 J Glob Optim (2012) 52:45–55

Table 2 continued

Problems DERL TE Reduced Increased

No. P n n f e ps n f e ps n f e(%) ps

40 SF1 2 2891 53 1429 100 50.57 47

41 SF2 2 1598 100 1631 100 −2.07 0

42 SBT 2 1795 100 1346 100 25.01 0

43 SWF 10 18525 100 16045 97 13.39 −3

44 S5 4 4159 100 3754 100 9.74 0

45 S7 4 3720 100 3603 100 3.15 0

46 S10 4 4556 100 4230 100 7.16 0

47 FX 10 − − − − − −
48 SIN 20 14608 100 60341 100 −313.07 0

49 ST 9 37864 100 12807 100 66.18 0

50 WP 4 6841 100 3176 100 53.57 0

Average 27.72 3.07

new individuals survive by the rule of natural selection in a framework of try-try-test. The
simplices therein are real-time constructed and low dimensional. The simplex operators are
applied selectively and conditionally. The expansion and reduction operators in the Nelder-
Mead algorithm are discarded. A new simplex operator, the local learning, is introduced to
increase the diversity of the population. The contraction will not be applied if the reflection
is successful, and the local learning will not be applied if the reflection or contraction is
successful.

Numerical investigation shows that LDSE is much more superior to full dimensional
simplex evolution (FDSE) for the problems with a higher dimension such as n ≥ 10 (see
subsection 5.1). The performance of LDSE has been demonstrated with an extensive testbed
of 50 test problems from the reference [1]. The comparison results show that LDSE outper-
forms an improved version of differential evolution (DE) considerably with respect to the
convergence speed and reliability (see subsection 5.2).

Although the numerical results of LDSE are very encouraging, its working mechanism
is not clear yet. LDSE needs a large population size N to ensure its global conver-
gence. This might decelerate its convergence speed. Therefore, some more efficient vari-
ants of LDSE with less population size are expected in future work. In addition, some
algorithm-specific constraint handling and multi-objective treatment techniques are also
expected.

Acknowledgments The authors would like to thank the anonymous reviewers for their constructive com-
ments related to earlier manuscript versions of this work.

References

1. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic algorithms
on selected continuous global optimization test problems. J. Glob. Optim. 31, 635–672 (2005)

2. Coello, C.A.C.: List of references on constraint-handling techniques used with evolutionary algorithms.
http://www.cs.cinvestav.mx/~constraint (2010) Accessed 15 April 2010

123

http://www.cs.cinvestav.mx/~constraint


J Glob Optim (2012) 52:45–55 55

3. Gutknecht, M.H.: A brief introduction to Krylov space methods for solving linear systems. In: Proceedings
of Frontiers of Computational Science, pp. 53–62 (2007)

4. Hansenand, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies:
the covariance matrix adaptation. In: Proceedings of IEEE International Conference on Evolutionary
Computation, pp. 312–317 (1996)

5. Hedar, A., Fukushima, M.: Minimizing multimodal functions by simplex coding genetic algorithm.
Optim. Method Softw. 18, 265–282 (2003)

6. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer, Berlin (1996)
7. Huyer, W., Neumaier, A.: Global optimization by multilevel coordinate search. J. Glob. Optim. 14, 331–

355 (1999)
8. Ingber, L.: Simulated annealing: practice versus theory. J. Math. Comput. Modell. 18, 29–57 (1993)
9. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant.

J. Opt. Theor. Appl. 79, 157–181 (1993)
10. Jones, D.R.: Direct global optimization algorithm. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia

of Optimization, 2nd edn. Part 4, pp. 725–735 (2009)
11. Kaelo, P., Ali, M.M.: A numerical study of some modified differential evolution algorithms. Eur. J. Oper.

Res. 169, 1176–1181 (2006)
12. Kennedy, J., Eberhart R.: Particle swarm optimization. In: Proceedings of IEEE International Conference

on Neural Networks, vol. 4, pp. 1942–1948. Piscataway, NJ (1995)
13. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)
14. Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. Acta Num-

erica 13, 271–369 (2004)
15. Pardalos, P.M., Resende, M. (eds.): Handbook of Applied Optimization. Oxford University Press,

New York (2002)
16. Pardalos, P.M., Romeijn, E. (eds.): Handbook of Global Optimization—Volume 2: Heuristic Approaches.

Kluwer, Dordrecht (2002)
17. Pardalos, P.M., Mavridou, T.D.: Simulated annealing. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclo-

pedia of Optimization, 2nd edn., Part 19, pp. 3591–3593 (2009)
18. Pintér, J.D.: Global Optimization in Action. Kluwer, Dordrecht (1996)
19. Pintér, J.D.: Computational Global Optimization in Nonlinear Systems: An Interactive Tutorial. Lionheart

Publishing Inc., Atlanta (2001)
20. Pintér, J.D.: Nonlinear optimization with GAMS/LGO. J. Glob. Optim. 38, 79–101 (2007)
21. Pintér, J.D.: Continuous global optimization: models, algorithms and software. In: Floudas, C.A., Parda-

los, P.M. (eds.), Encyclopedia of Optimization, Part 3, 2nd edn, pp. 486–493 (2009)
22. Renders, J.M., Bersini, H.: Hybridizing genetic algorithms with hill-climbing methods for global optimi-

zation: two possible ways. In: Proceedings of the First IEEE Conference on Evolutionary Computation,
pp. 312–317 (1994)

23. Price, K., Storn, R., Lampinen, J.: Differential Evolution—A Practical Approach to Global Optimiza-
tion. Springer, Berlin (2005)

24. Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8, 201–
205 (1996)

25. Spendley, W., Hext, G.R., Himsworth, F.R.: Sequential application of simplex designs in optimization
and evolutionary operation. Technometrics 4, 441–461 (1962)

26. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over
continuous space. J. Glob. Optim. 11, 341–359 (1997)

27. Tuy, H.: Cutting plane methods for global optimization. In: Floudas, C.A., Pardalos, P.M. (eds.)
Encyclopedia of Optimization, 2nd edn., Part 3, pp. 590–594 (2009)

28. Zhigljavsky, A.A., Zilinskas, A.G.: Stochastic Global Optimization. Springer, Berlin (2008)

123


	Low dimensional simplex evolution: a new heuristic for global optimization
	Abstract
	1 Introduction
	2 Ways of hybridization
	3 Low dimensional simplex evolution
	3.1 Lower dimensional simplex operators
	3.2 m-Simplex evolution
	3.3 Full and low dimensional simplex evolution

	4 Constraint handling
	5 Numerical results
	5.1 Comparison of LDSE and FDSE
	5.2 Comparison of LDSE and DE

	6 Conclusion
	Acknowledgments
	References


