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A low diffusion E-CUSP (LDE) scheme for preconditioned Navier–Stokes equations is developed. The LDE
scheme with high-order WENO reconstruction and high order difference scheme for viscous terms is used
to simulate several flows at various speed from low speed natural convection to supersonic flows. The
unfactored implicit Gauss–Seidel relaxation scheme, in which the preconditioned Roe’s matrices are
used, is used for time integration. Numerical results are presented to show efficiency, accuracy and
robustness of the new preconditioning scheme.
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1. Introduction

In recent years, the convective upwind and split pressure
(CUSP) family schemes have achieved great success. The CUSP
schemes can be basically categorized to two types, the H-CUSP
and E-CUSP [1–3]. The H-CUSP schemes have the total enthalpy
from the energy equation in their convective vector, while the E-
CUSP schemes use the total energy in the convective vector. The
Liou’s AUSM family schemes [4–9], van Leer-Hänel scheme [10],
and Edwards’s LDFSS schemes [11,12] belong to the H-CUSP group.
The schemes developed by Zha et al. [13–17] belong to the E-CUSP
group.

From the characteristic theory point of view, the H-CUSP
schemes are not fully consistent with the disturbance propagation
directions [18,19], which may affect the stability and robustness of
the schemes. By splitting the eigenvalues of the Jacobians to con-
vection (velocity) and waves (speed of sound), one will find that
the convection terms only contain the total energy [13], which will
lead to the E-CUSP schemes.

With the application of computational fluid dynamics becoming
more and more popular, the demand for developing a unified algo-
rithm for compressible and incompressible flows becomes stronger
to satisfy the needs of broad engineering problems. When direct
applying compressible flow equation to incompressible flows,
there exist two problems: stiffness and large numerical dissipation.
ll rights reserved.

zha@miami.edu (G. Zha).
Both problems are due to a large difference between the speed of
sound and flow speed. The large dissipation may cause low conver-
gence, distort the solution of a wall boundary layer, etc.

Preconditioning is to change the eigenvalues of the compress-
ible flow equations system in order to remove the large disparity
of wave speeds. Usually, the system of compressible flow equations
is preconditioned by multiplying the time derivatives with a prop-
er matrix [20–24]. Thornber et al. [25,26] propose an interesting
method by modifying the variable reconstruction to allow mini-
mum dissipation of low Mach number features whilst maintaining
shock capturing ability, all without changing the formulation of the
governing equations.

For the spatial discretization with preconditioning, the 2nd or-
der central differencing is adopted by Choi and Merkle [23,27]
and De Bortoli [28]. The Roe-type flux-difference splitting (FDS)
is used by Weiss and Smith [24,29–32]. The 3rd-order MUSCL
extrapolation is used by Briley et al. [33]. The flux-vector splitting
(FVS) is applied by Turkle et al. [34]. Patel and Drikakis [35] inves-
tigate the effects of preconditioning on the accuracy and efficiency
of separated flows. Edwards and his colleagues [36–39] have ex-
tended their H-CUSP schemes to all flow speeds. There is no work
to extend E-CUSP schemes to preconditioning.

The purpose of this paper is to develop a preconditioned low
diffusion E-CUSP scheme with high order WENO scheme for
Navier–Stokes equations at all flow speeds. With unfactored
implicit Gauss–Seidel relaxation scheme for time integration, the
LDE scheme is used to simulate various flow fields at all speeds.
The numerical solutions of a lid driven cavity flow, a natural
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convective cavity flow, subsonic flow, transonic and supersonic
flows show that the suggested preconditioning method with
high-order schemes is efficient, robust, and accurate for both low
speed incompressible flows and high speed compressible flows.
2. Numerical method

2.1. Governing equations

The preconditioned system for steady state flows in generalized
coordinate is obtained by multiplying the preconditioning matrix
C to the time derivative terms of Navier–Stokes equations to give

C
@q
@t
þ @E
@n
þ @F
@g
þ @G
@f
¼ 1

Re
@R
@n
þ @S
@g
þ @T
@f

� �
ð1Þ

The preconditioning matrix C has various forms [20,22–24],
and is dependent on the choice of q. This paper adopts the method
of Weiss and Smith described in Ref. [24]. The q and C are taken as
the following,

q ¼ ðp;u;v ;w; TÞT

C ¼

H 0 0 0 qT

Hu q 0 0 qT u

Hv 0 q 0 qTv
Hw 0 0 q qT w

HH � 1 qu qv qw qT H þ qCp

26666664

37777775
where H is given by

H ¼ 1
U2

r

� qT

qCp

 !

Ur is a reference velocity. In this paper, the reference velocity pro-
posed by Edwards and Roy [36] is used:

Ur ¼ min½c;maxðjV j; kjV1jÞ�

where c is the speed of sound, jV j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þw2
p

is the velocity
magnitude, jV1j is a reference velocity. H is the total enthalpy, qT

stands for @q
@T , Cp is the specific heat at constant pressure. k is a con-

stant [31]. For all case calculated in this paper, Ur = 1 and k = 0.5 are
used.

The eigenvalues of Jacobian matrix C�1 @E
@q are

U; U; U; U0 þ C 0; U0 � C 0 ð2Þ

where

U ¼ lxuþ lyv þ lzw

U0 ¼ 1
2

Uð1þM2
r Þ; C 0 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�M2

r ÞU
2 þ 4M2

r C2
q

and

Mr ¼
Ur

c
; C ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2x þ l2y þ l2z

q
l is the normal vector on n surfaces with its magnitude equal to the
elemental surface area and pointing to the direction of increasing n.

l ¼ lxiþ lyjþ lzk ¼
rn

J
dgdf ð3Þ

J is the transformation Jacobian. The eigenvalues given in Eq. (2)
will have the same order of magnitude when the velocity ap-
proaches zero. This is the purpose of preconditioning to improve
the condition number of the Jacobian and remove the stiffness.
2.2. Preconditioning of the low diffusion E-CUSP (LDE) scheme

The preconditioning methodology of this paper is based on
the recent E-CUSP scheme suggested by Zha et al. [17]. In
[13,14,16,17], the characteristic analysis is given as the foundation
to construct the E-CUSP scheme. The basic idea is to split the flux E
to the convective flux Ec and the pressure flux Ep. That is:

E ¼ Ec þ Ep ¼

qU

quU

qvU

qwU
qeU

0BBBBBB@

1CCCCCCAþ
0

lxp

lyp

lzp
pU

0BBBBBB@

1CCCCCCA ð4Þ

The flux at interface 1
2 ; E1=2 is evaluated as,

E1=2 ¼ Ec
1=2 þ Ep

1=2 ð5Þ

where

Ec
1=2 ¼ Uþf c

L þ U�f c
R ð6Þ

and

Ep
1
2
¼ p1=2

0
lx

ly

lz

U1=2

0BBBBBB@

1CCCCCCA; f c ¼

q
qu

qv
qw

qe

0BBBBBB@

1CCCCCCA ð7Þ

p1=2 ¼ PþpL þ P�pR ð8Þ

The different formulations for U+, U�, P+ and P� can be found in
[13,14,16,17] with different behavior.

The preconditioning of the LDE scheme needs to satisfy two
conditions when the flow velocity approaching zero: (1) the eigen-
values of the Jacobian matrices should be at the same order of
magnitude of the velocity and (2) the numerical dissipation should
diminish. The condition 1 is explained in the previous section. The
condition 2 is described as the following.

The interface flux E1/2 can be generally expressed as consisting
of a central differencing plus a numerical dissipation D as [36]

E1=2 ¼
1
2
½EL þ ER þ DðL;RÞ� ð9Þ

Similarly, the interface pressure p1/2 of (8) can be written as [38]

p1=2 ¼ PþpL þ P�pR

¼ 1
2
ðpL þ pRÞ þ ðPþ � P�ÞðpL � pRÞ þ ðPþ þ P� � 1ÞðpL þ pRÞ
� �

ð10Þ

The last two terms can be regarded as the diffusion terms of p1/2. A
low Mach number results in large pressure value, hence the second
diffusion term could be excessively large. A better scaling is found
by replacing (pL + pR) by 2q1=2~c2

1=2 or 2q1=2U2
r;1=2 [37,38]. More com-

prehensive analysis can be found in Ref. [40] for single-phase flows
and in Ref. [41] for two-phase flows. Hence, Eq. (10) is replaced by

p1=2 ¼ PþpL þ P�pR ¼
1
2
½ðpL þ pRÞ þ ðP

þ � P�ÞðpL � pRÞ

þ q1=2U2
r;1=2ðP

þ þ P� � 1Þ� ð11Þ

Similarly, the split velocities U± used in the low-diffusion flux split-
ting scheme can be written as

Uþ ¼ ~c1=2½Mþ �Mþ
1=2�

U� ¼ ~c1=2½M� þM�
1=2�
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where

Mþ
1=2 ¼ M1=2 1� pL � pR þ djpL � pRj

pL þ pR

� �
ð12Þ

M�
1=2 ¼ M1=2 1þ pL � pR � djpL � pRj

pL þ pR

� �
ð13Þ

Using 2qLU2
r;1=2 and 2qRU2

r;1=2 to replace (pL + pR) in Eqs. (12) and
(13), respectively, the new split velocities are obtained as

Uþ ¼ ~c1=2 Mþ �M1=2 1� pL � pR þ djpL � pRj
2qLU2

r;1=2

 !" #
ð14Þ

U� ¼ ~c1=2 M� þM1=2 1þ pL � pR � djpL � pRj
2qRU2

r;1=2

 !" #
ð15Þ

d = 1 is used in [38], d = 0 is used in [39] and also in this paper.
Other quantities used in the preceding definitions are

Mþ ¼ aþL ð1þ bLÞML � bLMþ
L

M� ¼ a�R ð1þ bRÞMR � bRM�
R

M�
L;R ¼ �

1
4
ðML;R � 1Þ2

a�L;R ¼
1
2
½1� signð1:0;ML;RÞ�

bL;R ¼ �max½0;1� intðjML;RjÞ�

M1=2 ¼
1
2
ðMþ � aþL ML �M� þ a�R MRÞ

P� ¼ a�L;Rð1þ bL;RÞ �
bL;R

2
½1�ML;R�

~c1=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�M2

r Þ
2U2 þ 4C2M2

r

q
1þM2

r

������
1=2

and

ML;R ¼
UL;R

~c1=2

Since the H-CUSP scheme uses total enthalpy and the E-CUSP
scheme uses total energy in Eq. (4) for the convective vector, H-
CUSP schemes [36,38,39] hence do not have the term of p1/2U1/2

in Eq. (7). In this paper, the interface velocity U1/2 is evaluated as

U1=2 ¼ Uþ þ U� ð16Þ
2.3. The WENO reconstruction

The high order accuracy of Ei+1/2 is obtained by achieving the
high order accuracy of the left and right primitive variables qL

and qR using the WENO scheme described below. This procedure
is similar to the MUSCL scheme suggested by van Leer [42] and
is adopted in [43].

The finite difference 5th-order accuracy WENO scheme sug-
gested by Jiang and Shu [44] is used to evaluate the primitive vari-
ables qL and qR. The WENO scheme for variable qL can be written
as:

qL
iþ1=2 ¼ x0q0 þx1q1 þx2q2 ð17Þ

where x0, x1 and x2 are the weights, and the q0, q1 and q2 are the
3rd order accuracy reconstruction of the variables in three different
stencils. They are determined as the following

q0 ¼ 1
3 qi�2 � 7

6 qi�1 þ 11
6 qi

q1 ¼ � 1
6 qi�1 þ 5

6 qi þ 1
3 qiþ1

q2 ¼ 1
3 qi þ 5

6 qiþ1 � 1
6 qiþ2

8><>: ð18Þ

and
xk ¼
ak

a0 þ � � � þ ar�1
; ð19Þ

ak ¼
Ck

ðeþ ISkÞp
; k ¼ 0; 1; 2 ð20Þ

where Ck are the optimal weights with the following values:

C0 ¼ 0:1; C1 ¼ 0:6; C2 ¼ 0:3

The ISk are the smooth estimators determined as

IS0 ¼ 13
12 ðqi�2 � 2qi�1 þ qiÞ

2 þ 1
4 ðqi�2 � 4qi�1 þ 3qiÞ

2

IS1 ¼ 13
12 ðqi�1 � 2qi þ qiþ1Þ

2 þ 1
4 ðqi�1 � qiþ1Þ

2

IS2 ¼ 13
12 ðqi � 2qiþ1 þ qiþ2Þ

2 þ 1
4 ð3qi � 4qiþ1 þ qiþ2Þ

2

8>><>>: ð21Þ

The e in Eq. (20) is introduced to avoid the denominator becom-
ing zero. Jiang and Shu’s numerical tests indicate that the results are
not sensitive to the choice of e as long as it is in the range of 10�5–
10�7. In their paper [44], e is taken as 10�6. In Ref. [43], the e value of
10�2 suggested by Shen et al. to suppress the oscillation of ISk and
improve the convergence and accuracy is adopted in this paper.

The qR is constructed symmetrically as qL about i + 1/2.

2.4. The 4th-order schemes for viscous terms [45]

A set of fully conservative 4th-order accurate finite central dif-
ferencing schemes using the same stencil width of the WENO
scheme for the viscous terms is used in this paper [45]. The scheme
for the viscous derivative term @R

@n in Navier–Stokes equations Eq.
(1) can be written as the following,

@R
@n

����
i

¼
eRiþ1=2 � eRi�1=2

Dn
ð22Þ

To obtain 4th order accuracy, eR needs to be reconstructed as

eRi�1=2 ¼
Xiþ1=2

I¼i�3=2

aIRI ð23Þ

where

ai�3=2 ¼ �
1

24
; ai�1=2 ¼

26
24

; aiþ3=2 ¼ �
1

24

Ri�1=2 ¼ ½ðnxsxxÞ þ ðgysxyÞ þ ðfzsxzÞ�i�1=2

ðsxxÞ ¼ l 4
3

nx
@u
@n

� �
þ gx

@u
@g

� �
þ fx

@u
@f

� �� 	
� 2

3
ny
@v
@n

� ��

þ gy

@v
@g

� �
þ fy

@v
@f

� �
nz
@w
@n

� �
þ gz

@w
@g

� �
þ fz

@w
@f

� �	�
ð24Þ

If RI in Eq. (23) can be approximated with the accuracy order not
lower than 4th order, the Taylor expansion analysis of (22) and
(23) will give the following relation [45]

1
Dn
ðeRiþ1=2 � eRi�1=2Þ ¼ R0ðniÞ þ OðDn4Þ ð25Þ

i.e. the 4th order accuracy is achieved.
In order to achieve the highest order accuracy of RI with I = i �

3/2, i � 1/2, i + 1/2, the approximation of each component in Eq.
(23) using all the involved points of the WENO stencil is given
below:

lI ¼
Pn
l¼m

CI
lliþl;

@u
@n

���
I
¼ 1

Dn

Ps
l¼r

DI
luiþl;

@u
@g

���
I
¼
Pn
l¼m

CI
l
@u
@g

���
iþl;j

8>>>>>>><>>>>>>>:
ð26Þ



Table 1
The coefficients of CI

l .

I CI
�2 CI

�1 CI
0 CI

1

i � 3/2 5/16 15/16 �5/16 1/16
i � 1/2 �1/16 9/16 9/16 �1/16
i + 1/2 1/16 �5/16 15/16 5/16
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where

@u
@g

����
i;j

¼ 1
Dg

Xq

l¼p

Cc
l ui;jþl; ð27Þ

By choosing different ranges for (m,n), (r,s), (p,q) and different
coefficients CI

l ;D
I
l ;C

c
l , one can obtain different order accuracy

approximation to the viscous terms. The principle of choosing
(m,n), (r,s), (p,q) is to ensure that the approximation of @R

@n ji in Eq.
(22) is a central differencing. For example, in this paper,
(m,n) = (�2,1), (r,s) = (�3,2), and (p,q) = (�2,2) are used, and they
give [45]

lI ¼
Pn
l¼m

CI
lliþl þ OðDn4Þ;

@u
@n

���
I
¼ 1

Dn

Ps
l¼r

DI
luiþl þ OðDn5Þ;

@u
@g

���
I
¼
Pn
l¼m

CI
l
@u
@g

���
iþl;j
þ OðDn4;Dg4Þ;

8>>>>>>><>>>>>>>:
ð28Þ

where

@u
@g

����
i;j

¼ 1
Dg

Xq

l¼p

Cc
l ui;jþl þ OðDg4Þ ð29Þ

the coefficients CI
l ;D

I
l ;C

c
l can be obtained by Taylor’s series expan-

sion and are given in Tables 1–3.

3. Time marching method

The implicit discretized formula of Eq. (1) can be expressed as
following

C
Dt
þ @RHS

@q

����0� �
dqnþ1 ¼ RHSn ð30Þ

where RHS is the residual calculated by using inviscid numerical
fluxes and viscous fluxes, such as Eqs. (5) and (22), @RHS

@q j
0 is the

approximation of Jacobian matrix @RHS
@q .

For the preconditioned E-CUSP scheme, a first order discretiza-
tion is used for solving the corresponding Jacobian matrices on the
left hand side of Eq. (30). For example, for convective flux Ei+1/2
Table 2
The coefficients of DI

l .

I DI
�3 DI

�2 DI
�1 DI

0 DI
1 DI

2

i � 3/2 71/1920 �141/128 69/64 1/192 �3/128 3/640
i � 1/2 �3/640 25/384 �75/64 75/64 �25/384 3/640
i + 1/2 �3/640 3/128 �1/192 �69/64 141/128 �71/1920

Table 3
The coefficients of Cc

l .

Cc
�2 Cc

�1 Cc
0 Cc

1 Cc
2

1/12 �8/12 0 8/12 �1/12
@Eiþ1=2

@qiþ1=2
dqiþ1=2 ¼

1
2
@E
@q
ji þ CMCjKCjM�1

C

� 
jiþ1=2

� 	
dqi

þ 1
2
@E
@q
jiþ1 � CMCjKCjM�1

C

� 
jiþ1=2

� 	
dqiþ1 ð31Þ

where KC is the diagonal matrix of eigenvalues Eq. (2), MC and M�1
C

are the matrices of right and left eigenvectors,

A ¼ @E
@q
¼

qpU qlx qly qlz qT U

qpuU þ lx qU þ qulx quly qulz qT uU

qpvU þ ly qv lx qU þ qvly qv lz qTvU

qpwU þ lz qwlx qwly qU þ qwlz qT wU

qpHU quU þ qHlx qvU þ qHly qwU þ qHlz qT HU þ qCpU

26666664

37777775

MC ¼

0 0 0 1 1
0 m0x n0x

�l0x
X1

�l0x
X2

0 m0y n0y
�l0y
X1

�l0y
X2

0 m0z n0z
�l0z
X1

�l0z
X2

1 0 0 X3 X4

2666666664

3777777775
;

M�1
C ¼

1
X5

l0xX6
X5

l0xX6
X5

l0xX6
X5

1

0 m0x m0y m0z 0
0 n0x n0y n0z 0

� eUa�eC 0
2eC 0 �l0xX7 �l0yX7 �l0zX7 0eUaþeC 0

2eC 0 lxX7 lyX7 lzX7 0

266666666664

377777777775
where

X1 ¼ ~qðeUa� eC 0Þ; X2 ¼ ~qðeUaþ eC 0Þ
X3 ¼

1� ðqp �HÞeUðeUa� eC 0Þ
ðqT þ ~qCpHÞðeUa� eC 0Þ2 ; X4 ¼

1� ðqp �HÞeUðeUaþ eC 0Þ
ðqT þ ~qCpHÞðeUaþ eC 0Þ2

X5 ¼ ðqT þ ~qCpHÞðeU2a2 � eC 02Þ; X6 ¼ ~qeU ½2a� ðqp �HÞðeU2a2 � eC 02Þ�
X7 ¼

~qðeU2a2 � eC 02Þ
2eC 0

and

eU ¼ l0x~uþ l0y ~v þ l0z ~w; eC 0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 eU2 þ U2

r

q
where

~l0 ¼ ðl0x; l
0
y; l
0
zÞ ¼

~l

j~lj
; ~l0 � ~m0 ¼ 0; ~l0 �~n0 ¼ 0; ~m0 �~n0 ¼ 0; j~m0j ¼ j~n0j ¼ 1

~q; ~u; ~v ; ~w are Roe averaged variables.
The second order central differencing is used for viscous flux

Ri+1/2 on the left hand side of Eq. (30), and the Jacobian matrix is
obtained as:

@Riþ1=2

@qiþ1=2
dqiþ1=2 ¼

@Riþ1=2

@qi
dqi þ

@Riþ1=2

@qiþ1
dqiþ1 ð32Þ

The final linearized equations of Eq. (30) can be written as the
following

BDqnþ1
i;j;k þ AþDqnþ1

iþ1;j;k þ A�Dqnþ1
i�1;j;k þ BþDqnþ1

i;jþ1;k þ B�Dqnþ1
i;j�1;k

þ CþDqnþ1
i;j;kþ1 þ C�Dqnþ1

i;j;k�1 ¼ RHSn ð33Þ

where

B ¼ Cþ Aþ Bþ C



y 0.5

1

Ghia et al
100 X 100
200 X 200
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and

A ¼ Dt
J
½ðbAL

iþ1=2 � LL
iþ1=2Þ � ðbAR

i�1=2 � LR
i�1=2Þ� ð34Þ

Aþ ¼ Dt
J
ðbAR

iþ1=2 � LR
iþ1=2Þ; A� ¼ �Dt

J
ðbAL

i�1=2 � LL
i�1=2Þ ð35Þ

bAR
iþ1=2 ¼

1
2
ðAiþ1 � eAiþ1=2Þ; bAL

iþ1=2 ¼
1
2
ðAi þ eAiþ1=2Þ ð36Þ

Ai ¼
@E
@q
ji; eAiþ1=2 ¼ CMCjKCjM�1

C

� 
jiþ1=2 ð37Þ

LL
iþ1=2 ¼

@Riþ1=2

@qi
; LR

iþ1=2 ¼
@Riþ1=2

@qiþ1
ð38Þ

J is the transformation Jacobian. B±, B and C±, C have the same forms
as A±, A. And

RHSn ¼ Dt
J
½ðRn

iþ1=2 � Rn
i�1=2Þ þ ðS

n
jþ1=2 � Sn

j�1=2Þ þ ðT
n
kþ1=2 � Tn

k�1=2Þ

� ðEn
iþ1=2 � En

i�1=2Þ � ðF
n
jþ1=2 � Fn

j�1=2Þ � ðG
n
kþ1=2 � Gn

k�1=2Þ�
ð39Þ

Previous studies (for example [46–48]) have shown that the
Gauss–Seidel line iteration provide a robust computational frame
for implementing high order schemes. In a certain sweep direction,
for example, in n direction assuming the sweeping from small index
value to large one, the Gauss–Seidel line iteration can be written as

B�Dqnþ1
i;j�1;k þ BDqnþ1

i;j;k þ BþDqnþ1
i;jþ1;k ¼ RHS0 ð40Þ

where

RHS0 ¼ RHSn � AþDqn
iþ1;j;k � A�Dqnþ1

i�1;j;k � CþDqn
i;j;kþ1 � C�Dqnþ1

i;j;k�1

ð41Þ
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0

u

Fig. 2. Velocity u along the vertical centerline for the lid driven cavity flow,
Re = 3200, M = 10�3.
4. Results and discussion

To demonstrate the effectiveness of the preconditioned LDE
scheme, the test cases include a lid driven cavity, a cavity natural
convection flow, a subsonic flat plate turbulent boundary layer,
inviscid transonic converging–diverging nozzle flow, the transonic
flow over RAE2822 airfoil, and the laminar wall boundary layer
with Mach number ranging from 10�3 to 2.0.
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Fig. 1. Convergence rate of the lid-driven cavity flow, Re = 3200, M = 10�3.
In this paper, at boundaries, the conservative variables are first
obtained using various required boundary conditions [43], and
then the primitive variables used in preconditioning system are
calculated from the conservation variables accordingly.

The residual to measure the convergence history is defined as

Residual ¼ MaxfjRHSnjgi;j;k

¼ Max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RHS2ð1Þ þ RHS2ð2Þ þ � � � þ RHS2ð5Þ

q� �
i;j;k

and RHSn is determined by Eq. (39).

4.1. Lid driven cavity flow

The lid driven cavity flow, which is a flow in a cavity with the lid
moving at a constant speed, is a benchmark solution used to vali-
date incompressible flow calculation [31,49,50].
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Fig. 3. Streamlines for the lid driven cavity flow, 100 � 100.
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The flowfield with Reynolds of 3200, no-slip isothermal wall
boundary condition and a Mach number of 10�3 for the moving
lid is calculated. For the purpose of comparison, the uniform mesh
systems of 100 � 100 and 200 � 200 are used.

Fig. 1 gives the convergence histories and shows that the resid-
ual is reduced by 8–9 order of magnitude. Since the primitive pres-
sure p is used in the present preconditioned method, the decreased
Mach number results in increased machine round off errors, which
increase proportionally with M2 [32,23] and make the residual
floating at the level of 10�5. It needs to point out that the method
without preconditioning cannot get the correct solution for this
case due to excessive dissipation.

Fig. 2 is the comparison of the velocity component in x-direc-
tion along the vertical centerline. The present results are in good
agreement with that obtained by solving incompressible Navier–
Stokes equations [49].
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Fig. 3 shows the streamlines calculated by the present method
with the mesh of 100 � 100. It exhibits a large primary vortex with
two secondary vortices in the two bottom corners and a secondary
vortex near the upper-left corner, which is the same as other
researchers predict [31,49,50].
4.2. Cavity natural convection flow

The second test case is a cavity natural convection flow induced
by a temperature difference of four times on the two vertical walls.
This flow has very low velocity and is in the incompressible flow
regime. The configuration consists of two insulated horizontal
walls and two vertical walls at temperature Th and Tc with Th = 4Tc.
In this paper, the natural convective flows at two Rayleigh number,
Ra = 103 and Ra = 105, are calculated. The uniform mesh with size
of 100 � 100 is used.
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Fig. 6. Isoline temperature of the cavity natural convection flow, Ra = 103.
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Fig. 7. Streamline of the cavity natural convection flow, Ra = 103.
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The convergence histories are shown in Fig. 4. Fig. 5 compares
the Nusselt number at the left side wall with the result of Cheno-
weth and Paolucci [51] and Choi and Merkle [23], they are in excel-
lent agreement. Figs. 6–9 show the streamline and temperature
isolines. Figs. 7 and 9 indicate that the flow evolves from one
vortex core to two vortex cores when the Rayleigh number is
increased from 103 to 105. This is due to the instability induced
by high Rayleigh number, and is consistent with the solutions
obtained by other researchers [23]. Same as in the first test
case, without preconditioning, the correct solution cannot be
obtained.
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4.3. Wall boundary layer

The third validation case is a steady state laminar boundary
layer flow on an adiabatic flat plate to test the methodology for
both compressible and incompressible flows. The Reynolds num-
ber based on the length of the flat plate is 4.0 � 104. The Prandtl
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Fig. 8. Isoline temperature of the cavity natural convection flow, Ra = 105.
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Fig. 9. Streamline of the cavity natural convection flow, Ra = 105.
number of 1.0 is used in order to compare with the analytical solu-
tion. The computation domain is taken to be [0,2] � [0,1.6]. The
mesh size is 180 � 80. Three cases with different incoming Mach
number (M1 = 2.0, M1 = 10�2, and M1 = 10�3) are calculated:

Fig. 10 is the convergence histories of the case with Mach num-
ber of 2.0, the supersonic flat plate laminar flow, with and without
preconditioning. It shows that the precondition method has the
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Fig. 10. Convergence rate of the supersonic boundary layer flow, M = 2.0.

Table 4
The comparison of iteration number and CPU time.

Case w/o Precondition Precondition

Iteration
number

CPU time Iteration
number

CPU time

Supersonic
plate

229 0.1012e+3 220 0.1082e+3

Nozzle 17,302 0.3207e+4 6539 0.1286e+4
RAE-2822 17,182 0.4062e+4 10354 0.2753e+4
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Fig. 11. Velocity profile of the supersonic boundary layer flow, M = 2.0.
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same convergence rate as the one without preconditioning. For this
supersonic flow, the thin subsonic boundary layer has created little
stiffness and hence the advantage of preconditioning is not signif-
icant. From the comparison of CPU time in Table 4, it is found that
the preconditioning method used a little bit more than the one
without preconditioning.

The computed velocity and temperature profiles of this super-
sonic laminar boundary layer shown in Figs. 11 and 12 indicate
that the numerical results agree excellently with the Blasius
solution.

Figs. 13 and 14 show the convergence histories of the cases with
M = 10�2 and M = 10�3. It can be seen that the residual without
preconditioning oscillate at a high level with a large amplitude.
For the cases with M1 = 10�2, the residual with preconditioning
is about six orders of magnitude lower than the one without pre-
conditioning. For the case with M1 = 10�3, the residual with pre-
conditioning is reduced to the level of machine zero, which is
higher than the M = 2.0 case due to increased pressure level.
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Fig. 13. Convergence rate of the subsonic boundary layer flow, M = 10�2.
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Fig. 12. Temperature profile of the supersonic boundary layer flow, M = 2.0.
Figs. 15 and 16 are the comparison of numerical results with
Blasius solution for M = 10�2 and 10�3. Fig. 15 shows that, even
though its solution is less accurate than the preconditioned one,
the flow solver without preconditioning can still resolve the
boundary layer at M = 10�2. However, the velocity profile in
Fig. 16 demonstrates that, for the case with M = 10�3, the numeri-
cal solution without preconditioning is significantly diffused due to
the large numerical dissipation, whereas the preconditioned solv-
ers accurately resolve the velocity profile.

4.4. Transonic converging–diverging nozzle

To examine the performance of the preconditioning methodol-
ogy in two-dimensional flow and the capability to capture shock
waves, an inviscid transonic converging–diverging nozzle is calcu-
lated. The nozzle was designed and tested at NASA and was named
as nozzle A1 [52]. Due to the geometric symmetry about the center
line, only the upper half of the nozzle is calculated. The mesh size is
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Fig. 14. Convergence rate of the subsonic boundary layer flow, M = 10�3.
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Fig. 15. Velocity profile of the subsonic boundary layer flow, M = 10�2.
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175 � 50. The grid is clustered near the wall. The inlet Mach num-
ber is 0.28.

Fig. 17 shows the Mach contours obtained by present precondi-
tioning method. Fig. 18 is the comparison of the convergence his-
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Fig. 16. Velocity profile of the subsonic boundary layer flow, M = 10�3.
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Fig. 17. Mach number contours of the transonic converging–diverging nozzle flow.
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Fig. 18. Convergence rate of the transonic converging–diverging nozzle flow.
tories with and without precondition. The preconditioned
convergence rate is about 60% faster than the one without precon-
ditioning, and the CPU time is only 40% of the latter, see Table 4.

Fig. 19 shows the pressure coefficients at the upper wall surface.
It can be seen that both the methods with and without precondi-
tioning obtain identical results.
4.5. Transonic RAE2822 airfoil

To further examine the preconditioning method for transonic
compressible flows, the steady state solution of the transonic
RAE2822 airfoil is calculated using the Reynolds averaged Na-
vier–Stokes equations with the Baldwin-Lomax turbulence model.
The mesh size is 256 � 55, the freestream Mach number M1 is
0.729, the Reynolds number based on chord is 6.5 � 106, and the
angle of attack is 2.31�.

From Fig. 20, we can see that the preconditioning method only
needs about 60% of the iteration numbers of the one without
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Fig. 19. The pressure coefficients at the upper wall of the transonic converging–
diverging nozzle flow.
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Fig. 20. Convergence rate of the transonic flow over RAE2822 airfoil.
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preconditioning to converge to machine zero, and the CPU time is
only 67% of the latter (4).

Fig. 21 is the comparisons of the coefficients of pressure on the
wall. They show that both the results with and without precondi-
tioning are identical and are in excellent agreement with the
experiment. Fig. 22 shows the pressure contours obtained by the
present preconditioning method.

5. Conclusions

A low diffusion E-CUSP (LDE) scheme is developed for precondi-
tioned Navier–Stokes equations. Different from H-CUSP schemes,
the pressure term is separated from the total enthalpy in the en-
ergy equation and is also preconditioned in the E-CUSP scheme.
Combined with the 5th-order WENO scheme for inviscid flux, the
high order difference scheme for viscous terms, and the unfactored
implicit Gauss–Seidel relaxation scheme for time integration, in
which the preconditioned Roe’s matrices are used, the algorithm
is used to calculate flow fields from very low speed incompressible
flows to supersonic compressible flows.

The numerical simulation of lid-driven and natural convective
incompressible cavity flows, low subsonic incompressible flows,
transonic and supersonic compressible flows show that the pre-
conditioning method is efficient, accurate and robust, not only
for the low Mach number incompressible flows, but also for the
subsonic and transonic compressible flows. For high subsonic
and transonic flows, the preconditioning also accelerates conver-
gence due to reduced stiffness in near wall low speed region. For
low speed incompressible flows, the preconditioning is necessary
not only to remove the stiffness, but also to reduce numerical dis-
sipation to ensure accurate results.
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