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Abstract The three-dimensional (3D) shock wave reflec-
tions over two perpendicularly intersecting wedges are
numerically studied in this paper, using the finite volume
method which is based on the MUSCL-Hancock interpo-
lation technique and self-adaptive unstructured mesh. Two
kinds of 3D Mach stem structures are demonstrated by the
numerical simulations for different shock Mach numbers and
wedge angles. A four-shock or three-shock wave configura-
tion appears in the vicinity of the corner of the wedges.

Keywords Shock wave reflection · Three-dimensional
Mach stem · Perpendicularly intersecting wedges ·
Numerical simulation

1 Introduction

Shock wave reflection is a fundamental topic in aerodynamic
research and engineering applications. The phenomena of
shock wave reflection were first investigated by Mach [1] in
1870s and the well-known ’Mach reflection (MR)’ was later
named after him. Different types of MR configurations were
further demonstrated by von Neumann [2,3] in 1940s. In
recent decades, shock wave reflections have been studied sys-
tematically, e.g., shock wave reflections over wedges [4–6],
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the hysteresis phenomena in steady shock wave reflections
[7–10], and the application of new experimental facilities
[11]. However, the previous results are mainly on two-dimen-
sional (2D) cases, and 3D shock wave reflection has not yet
been investigated widely. This is mainly because the wave
structures induced by 3D shock wave reflection are usually
very complicated and thus difficult to be visualized clearly
by the traditional visualization techniques.

Shock wave reflection over two perpendicularly intersect-
ing wedges is schematically shown in Fig. 1. This config-
uration of 3D shock reflection was first studied by Meguro
et al. [12] experimentally, numerically and analytically. The
3D Mach stem was observed as well as its existence criterion
according to the reflection types over each wedge, i.e., MR
or regular reflection (RR). It was found that the 3D Mach
stem definitely occurs for the MR–MR interaction, possibly
occurs for the MR–RR interaction, but never occurs for the
RR–RR interaction. The critical condition for whether or not
the 3D Mach stem appears in the MR–RR interaction was
analytically derived by the 2D theory of oblique shock wave
reflection. In the case, as depicted in Fig. 2, the 2D Mach stem
on the vertical wedge was assumed to be two-dimensionally
reflected over the horizontal wedge. Here, Mm′ denotes the
Mach number of the Mach stem and θm is the angle between
the intersecting line of the two wedges and the horizontal
wall of the shock tube. θm corresponds to the inclination
angle for the reflection of the Mach stem Mm′ over the hor-
izontal wedge. Mm′ and θm can be calculated by geometry
relations:

θm = arctan(tan α cos β) (1)

Mm′ = Ms cos χβ/ cos(χβ + β) (2)

where χβ is the triple point trajectory angle of the Mach
reflection over the vertical wedge. If the assumed 2D
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Fig. 1 Shock wave reflection over two perpendicularly intersecting
wedges

Fig. 2 Regular-Mach reflection interaction

reflection forms a Mach stem, namely A, then the Mach stems
A and B would interact with each other and eventually result
in a 3D Mach stem.

The 3D shock wave reflections and the detailed interac-
tion configurations are further investigated in this paper. Two
kinds of 3D Mach stems and several types of shock wave
reflection configurations are figured out. The existence cri-
terion of the 3D Mach stem deduced from the 2D theory
of shock wave reflection is re-examined using the computa-
tional results.

2 Governing equations and numerical methods

Assuming that viscosity effects on shock wave reflection are
negligible, the governing equations are the hyperbolic system
of three-dimensional conservation laws in Cartesian coordi-
nates, which can be written as:

∂U

∂t
+ ∂ F

∂x
+ ∂G

∂y
+ ∂ H

∂z
= 0 (3)

where U, F, G and H denote the unknown variables and fluxes
in the x-, y- and z-directions, respectively:

Fig. 3 The governing unit
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(4)

The primitive variables in the unknown U are density ρ,
velocity components u, v and w, and total energy per unit
volume e. The equation of state for the perfect gas is given
by:

e = p

γ − 1
+ 1

2
ρ(u2 + v2 + w2) (5)

where p is the pressure and the specific heat ratio γ = 1.4.
Using the finite volume method, the equations can be con-

verted to the integral form over the governing volume:
∫

	

∂U

∂t
dxdydz+

∫




(Fdydz+Gdxdz + Hdxdy) = 0 (6)

where 	 and 
 denote the cubage and boundary of the gov-
erning volume, respectively. As shown in Fig. 3, hexahedron
unit is adopted as the governing volume on the unstructured
mesh and governing variables are fixed at the center of the
unit. The HLLC scheme is applied to compute the fluxes on
the governing unit boundaries and the second-order MUSCL
scheme and the first-order time integral are used to recon-
struct the governing variables at the unit center [13].

The unstructured mesh is refined according to the density
gradient of the flowfield and the maximum level of refinement
is three. The refinement is controlled by a threshold function.
If the function value exceeds the refinement threshold value,
the governing unit is split into eight subunits; if the function
value is less than the coarsening threshold value, the eight
subunits are reunited to be one. The threshold function is
given by:
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ε = max

( |∇lρ|c − |∇lρ|i
α f ρc/dl + |∇lρ|i ,

|∇lρ|c − |∇lρ| j

α f ρc/dl + |∇lρ| j

)
(7)

where i and j denote two neighboring governing units, and
c denotes the midpoint of the boundary between these two
units. ∇l and dl are the gradient and spatial interval from the
center of unit i to the center of unit j. α f is a parameter with
a small value to avoid division by zero.

In the present numerical simulations, the boundary con-
ditions on the wedge surfaces, the upstream boundary, the
downstream boundary and the mainstream boundary are set
to be the slipping solid condition, the inflow condition, the
outflow condition and the mirror condition, respectively.
The air ahead of the incident shock wave is motionless and
the air behind is calculated by the Rankine–Hugoniot rela-
tions for a given shock wave Mach number.

3 Validation of numerical algorithms

The numerical algorithms are validated by comparing the
numerical flowfield with the experiment results. The experi-
ment is conducted in the 100 mm × 180 mm diaphragmless
shock tube in the Shock Wave Research Center, Tohoku Uni-
versity, Japan. The shock waves are visualized with double
exposure diffuse holographic interferometry. In order to show
the 3D shock waves clearly, the interval between the first and
second exposure is set to be 1 µs.

Figure 4 shows the experimental and numerical results of
the 3D shock wave reflection over two perpendicularly inter-
secting wedges. The incident shock wave Mach number is
Ms = 2.0 and the inclination angles of the horizontal and
vertical wedges are α = 43.5◦ and β = 30◦, respectively.
In Fig. 4a, it is obvious that the incident shock wave (I) is
reflected over the wedges and a single-Mach reflection (R,
M) appears over the horizontal wedge. Note that the reflected
shock wave (R) over the vertical wedge is not as clear as the
one over the horizontal wedge. It is mainly because the incli-
nation angle of vertical wedge is relatively small and the
reflected shock wave over it is relatively weak. However, it
is still obvious that the reflection over the vertical wedge is a
MR as the Mach stem (M) is visualized clearly. In the corner
of the two intersecting wedges, the two Mach stems inter-
sect each other forming a 3D forward-leaning Mach stem
(M′) followed by a secondary reflected shock wave (R′). Fig-
ure 4b shows the numerical result, which consists of three
translucent isopycnic surfaces and the isopycnic lines in all
the computational boundary planes. The isopycnic surfaces
denote the shock waves in the 3D reflection. All the wave
structures, such as the incident shock wave (I), the Mach
stems (M,M), the reflected shock waves (R,R), the second-
ary reflected shock wave (R′) and the 3D Mach stem (M′),
can be identified clearly and agree well with the experimental
result.

Fig. 4 Shock wave reflection over two intersecting wedges for α =
43.5◦, β = 30◦ and Ms = 2.0: a experiment result; and b numerical
result

As the inclination angle of horizontal wedge increases to
55◦, the pattern of the reflection over the wedge turns to a
RR, as shown in Fig. 5a. It is found that the typical 3D Mach
stem as depicted in Fig. 4a does not occur in the present
case. Instead, the reflection of Mach stem (M) over the hor-
izontal wedge is a RR. The secondary reflected shock wave
(R′) intersects the Mach stem (M) at the reflection point,
which lies on the intersecting line of the two wedges. Figure
5b shows the corresponding numerical result and the same
flowfield structures (I, M, R, R, R′) can be visualized clearly
indicating an agreement with the experiment.

In both numerical cases, the wave structures, such as the
3D Mach stems, the 2D Mach stems, the reflected shock
waves and the secondary reflected shock waves, appear to
be identical with the experimental results. Therefore, it is
believed that the numerical method is well validated and
acceptable for the present study.
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Fig. 5 Shock wave reflection over two intersecting wedges for
α = 55◦, β = 30◦ and Ms = 2.0: a experiment result; and b numerical
result

4 Results and discussion

4.1 MR–MR interaction

The shock wave reflection for the wedge angles α = β = 20◦
and incident shock wave Mach number Ms = 3.0 is shown
in Fig. 6. Both of the patterns of the reflections over the verti-
cal and horizontal wedges are single-Mach reflections. In the
corner of the two intersecting wedges, the Mach stems inter-
sect each other and a 3D Mach stem appears. Figure 7 shows
the local enlargement of the 3D Mach stem. It is obvious that
the 3D Mach stem twists slightly and is approximately pla-
nar. Figure 8 shows the 3D shock reflection from a different
visual angle. In this figure the shock wave configuration in the

Fig. 6 Shock wave reflection over two intersecting wedges for
α = β = 20◦ and Ms = 3.0

Fig. 7 The three-dimensional Mach stem for α = β = 20◦ and
Ms = 3.0

Fig. 8 Shock wave reflection over two intersecting wedges for
α = β = 20◦ and Ms = 3.0

corner of the two intersecting wedges can be observed clearly.
The Mach stem on the vertical wedge is reflected over the
horizontal wedge and a secondary MR appears. Similarly, the
Mach stem on the horizontal wedge is also reflected over the
vertical wedge and the other secondary MR appears. Accord-
ingly, the two secondary MRs interact with each other to form
the 3D Mach stem followed by the secondary reflected shock
wave surface in the wedge corner. Hence, in this condition
a 3D four-shock configuration forms, consisting of the inci-
dent shock wave, the 3D Mach stem, the primary reflected
shock wave and the secondary reflected shock wave. Mean-
while, a 3D slip surface is observed, which is similar to the
slip line structure in a 2D MR. The 3D Mach stem leans
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Fig. 9 The slip surface structures of shock wave reflection over two
intersecting wedges for α = β = 20◦ and Ms = 3.0

forward indicating that it has a greater shock Mach number
or higher shock intensity than both of the incident shock wave
and the 2D Mach stems. Thus, for the flowfield enclosed in
the secondary reflected shock wave surface, density, pressure
and temperature are all higher than the ones in the flowfield
outside, which are identical to the ones in a 2D reflection
case. Therefore, the complex 3D wave configuration appears
inside the secondary reflected shock wave surface while the
shock wave reflection still obeys the 2D theory in the rest
flowfield.

As aforementioned, the formation of the 3D reflection con-
figuration in the corner is the consequence of the interaction
between the two secondary Mach reflections, i.e. the Mach
stem on the vertical (horizontal) wedge being reflected over
the horizontal (vertical) wedge. It is known that in the vicinity
of the triple point of a 2D MR case, the density downstream
the reflected shock wave (above the slip line) is higher than
that downstream the Mach stem (below the slip line). Thus,
due to the superposition of the relative high density, the den-
sity downstream the secondary reflected shock wave is much
higher in the zone where the incident shock wave and the 3D
Mach stem intersect than that elsewhere. As shown in Fig. 9,
near the wedge surfaces the three isopycnic surfaces are apart
at a distance, which means the density gradient is relatively
small or the density discontinuity across the slip surface is
weak. On the other hand, because of the high density in the
zone where the incident shock wave intersects the 3D Mach
stem, the density gradient in the vicinity is also great. There-
fore, the three isopycnic surfaces are close together, which
demonstrates the density discontinuity across the slip surface
is relatively strong.

Figure 10 shows the shock wave reflection over two inter-
secting wedges with the wedge angles α = β = 45◦ and
incident shock wave Mach number Ms = 3.0. Both of the
patterns of the reflections over the wedges are double-Mach
reflections. In the corner of the two intersecting wedges, the
complex 3D reflection configuration along with 3D Mach
stem appears. Figure 11 shows the local enlargement of the

Fig. 10 Shock wave reflection over two intersecting wedges for
α = β = 45◦ and Ms = 3.0

Fig. 11 The three-dimensional Mach stem for α = β = 45◦ and
Ms = 3.0

3D Mach stem. It is obvious that this 3D Mach stem twists
more severely than the one shown in Fig. 7 and is no longer
approximately planar. It is mainly because of the wall jet
induced by the 3D compressibility in the larger inclination
angle case. For a 2D case of shock wave reflection over a
wedge, it has been pointed out that there is a high pressure
region where the slip line approaches the wedge surface. For
the reflection of a high Mach number shock wave and a large
inclination angle, the high pressure drives an intensive wall
jet forward and finally twists the Mach stem [14–16]. In the
3D case, although the shock wave Mach number is not very
high, yet the two perpendicular 2D Mach reflections super-
impose each other and thus the pressure is sufficiently high
to generate a wall jet. Figure 12 shows the pressure profile
along the intersecting line of two wedges. The abscissa is
the x-coordinate normalized by the total length of computa-
tional region and the ordinate is the pressure normalized by
the initial pressure ahead of the incident shock wave. The
solid line denotes the pressure profile for α = β = 45◦
while the dashed line is for α = β = 20◦. One can see
that a pressure peak appears behind the 3D Mach stem in
the former case. Accordingly, an intensive wall jet is driven
by the high pressure and twists the 3D Mach stem severely.
As compared to the solid line, there is no obvious pressure
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Fig. 12 Pressure profile along the intersecting line of two wedges

peak for the latter case, and thus it leads to an approximately
planar Mach stem as depicted in Figs. 6 and 7.

4.2 MR–RR interaction

Figure 13 shows the interaction configuration over two inter-
secting wedges with α = 52◦, β = 45◦ and Ms = 3.0.
A regular reflection appears on the horizontal wedge while
a double-Mach reflection appears on the vertical wedge.
According to the 2D analytical method aforementioned, the
Mach stem on the vertical wedge is assumed to be two-
dimensionally reflected over the horizontal wedge with the
shock Mach number Mm′ = 4.51 and inclination angle
θm = 42.15◦, as shown in Fig. 2. Coinciding with the 2D
theory, such an assumed 2D reflection is a Mach reflection.
The Mach stem A interacts with B resulting in a 3D Mach
stem, as depicted in Fig. 14. However, the Mach stem A is
much shorter as compared to the 2D reflection case under the
same condition. This is because the horizontal wedge has a
transverse inclination with regard to the Mach stem on the
vertical wedge and thus it is not a complete 2D wedge in
the secondary reflection. Actually, the velocity vector in the
flowfield downstream the secondary reflected shock wave
has a transverse component, which indicates this assumed
2D reflection has an obvious 3D feature.

Fig. 13 Shock wave reflection over two intersecting wedges for
α = 52◦, β = 45◦ and Ms = 3.0

As shown in Fig. 15 for α = 55◦, β = 45◦ and Ms = 3.0,
a regular reflection and a double-Mach reflection appear over
the horizontal and vertical wedges, respectively. The second-
ary reflection of the Mach stem over the horizontal wedge,
if assumed two-dimensional, should be a MR of an incident
shock wave with Mm′ = 4.51 and θm = 45.28◦. However,
as a matter of fact, a RR forms near the vertical wedge sur-
face. The Mach stem A as depicted in Fig. 14 for a typical
3D Mach stem does not occur in this case. Instead, a differ-
ent structure of 3D protuberance forms, as shown in Fig. 16.
The new structure can be referred to as the second type of

Fig. 14 The three-dimensional Mach stem for α = 52◦, β = 45◦ and
Ms = 3.0

Fig. 15 Shock wave reflection over two intersecting wedges for
α = 55◦, β = 45◦ and Ms = 3.0

Fig. 16 The three-dimensional Mach stem for α = 55◦, β = 45◦ and
Ms = 3.0
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Fig. 17 Shock wave reflection over two intersecting wedges for
α = 58◦, β = 10◦ and Ms = 3.0

Fig. 18 There is no three-dimensional Mach stem for α = 58◦,
β = 10◦ and Ms = 3.0

3D Mach stem while the typical one corresponds to the first
type.

When α = 58◦, β = 10◦ and Ms = 3.0, a regular reflec-
tion appears on the horizontal wedge and a single-Mach
reflection forms on the vertical wedge, as depicted in Fig. 17.
Figure 18 is the local enlargement of the flowfield in the cor-
ner. It is obvious that there is not any 3D protuberance struc-
ture and thus a 3D RR occurs in this case. Such a three-shock
configuration consists of an incident shock wave, a primary
and secondary reflected shock waves.

4.3 RR–RR interaction

Figure 19 shows the shock wave reflection over two inter-
secting wedges with the wedge angles α = β = 55◦ and
incident shock wave Mach number Ms = 3.0. Two regular
reflections appear respectively over the two wedges. Obvi-
ously, there is not any 3D protuberance structure in the corner
of the two intersecting wedges. Here, the primary and sec-
ondary reflected shock waves and the incident shock wave

Fig. 19 Shock wave reflection over two intersecting wedges for
α = β = 55◦ and Ms = 3.0

originate from the same reflection point which always locates
on the wedge intersecting line. Therefore, a three-shock con-
figuration is formed.

4.4 The region of 3D Mach reflection

In summary, analogous to 2D shock wave reflections, 3D
shock wave reflections can be generally classified into two
categories, i.e., RR and MR. Using 2D shock wave reflection
theory, Meguro et al [12] derived the region where the 3D
Mach stem exists. However, since the secondary reflection
of the Mach stem in the 3D interaction zone is not com-
pletely two-dimensional, there are limitations in their deri-
vation. A different wave structure of 3D protuberance forms
when an MR–RR interaction occurs in the corner, namely
the second type of 3D Mach stem. Figure 20 shows the mod-
ified distribution of the 3D shock wave reflection pattern for
Ms = 1.5 and Ms = 3.0. The ordinate and abscissa are
the inclination angles of the horizontal and vertical wedges,
respectively. The dashed lines, which are derived from the
detachment criterion, divide the diagrams into three regions:
MR-MR interaction, MR–RR interaction and RR–RR inter-
action. The solid lines denote the boundaries between the
solution domains without 3D Mach stem and with the sec-
ond type of 3D Mach stem. Meanwhile, the dashed–dotted
lines separate the solutions of the first and second type of
3D Mach stem. The plots denote the numerical results in
the present study. Note that with the increase of the vertical
wedge angle β, the dashed–dotted lines bend upward. It is
mainly because that for the same α the inclination wedge
angle of the assumed 2D reflection, θm [see (1)] decreases
with the increase of β. Therefore, the reflection of the Mach
stem over the horizontal wedge is more likely a MR so that
the first type of 3D Mach stem appears.
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Fig. 20 The region of three-dimensional Mach stem a Ms = 1.5; and
b Ms = 3.0

5 Conclusions

The numerical results can be summarized as following:

1. It is found that there are two different kinds of 3D Mach
stem structures for the MR–RR interaction, namely the
first and the second types of 3D Mach stem, respectively.

2. The 3D Mach stem is a twist surface. If both wedge
angles are relatively small, the 3D influence is relatively
weak, and the 3D Mach stem twists slightly as a result.
On the other hand, if the wedge angles are relatively
great, the 3D influence is obvious to twist the 3D Mach
stem much severely.

3. In the corner of the two intersecting wedges, the second-
ary 3D reflected shock wave forms. Inside the surface of
the secondary reflected shock wave is the 3D reflection
zone, where complicated 3D wave configuration appears.
Outside the secondary reflected shock wave is the 2D
reflection zone where the 2D theory is still applicable.

4. A 3D three-shock or four-shock configuration may occur
in the intersecting corner. For the MR–MR interaction,
the latter forms consisting of the incident shock wave,
the 3D Mach stem, the primary and secondary reflected
shock waves. In the RR–RR interaction, the incident
shock wave, the primary and secondary reflected shock
waves meet at the same reflection point to combine a
three-shock configuration. For the MR–RR interaction,
either of the configurations mentioned above may appear.

5. Downstream the 3D Mach stem there is a 3D slip sur-
face which is similar to the slip line in a 2D MR and
the density discontinuity across the slip surface is not
surface-wise homogeneous.
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