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We extend the stability analysis of incompressible Kolmogorov flow, induced by a
spatially periodic external force in an unbounded domain, to a compressible hard-
sphere gas confined between two parallel isothermal walls. The two-dimensional
problem is studied by means of temporal stability analysis of a ‘slip flow’ continuum-
limit model and the direct simulation Monte Carlo (DSMC) method. The neutral
curve is obtained in terms of the Reynolds (Re) and Knudsen (Kn) numbers, for a
given non-dimensional wavenumber (2πn) of the external force. In the incompressible
limit (Kn,KnRe→ 0), the problem is governed only by the Reynolds number, and
our neutral curve coincides with the critical Reynolds number (Recr) calculated in
previous incompressible analyses. Fluid compressibility (Kn,KnRe 6= 0) affects the
flow field through the generation of viscous dissipation, coupling flow shear rates with
irreversible heat production, and resulting in elevated bulk-fluid temperatures. This
mechanism has a stabilizing effect on the system, thus increasing Recr (compared to
its incompressible value) with increasing Kn. When compressibility effects become
strong enough, transition to instability changes type from ‘exchange of stabilities’ to
‘overstability’, and perturbations are dominated by fluctuations in the thermodynamic
fields. Most remarkably, compressibility confines the instability to small (O(10−3))
Knudsen numbers, above which the Kolmogorov flow is stable for all Re. Good
agreement is found between ‘slip flow’ and DSMC analyses, suggesting the former
as a useful alternative in studying the effects of various parameters on the onset of
instability, particularly in the context of small Knudsen numbers considered.
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1. Introduction
The Kolmogorov flow, a unidirectional shear flow induced by a spatially periodic

external force, has been suggested by Kolmogorov as a model problem for studying
hydrodynamic stability and transition phenomena (Arnol’d & Meshalkin 1960). Ever
since, the Kolmogorov flow has been investigated in a large number of works,
both theoretically and experimentally. Meshalkin & Sinai (1961) were the first to
analyse the linear stability problem in an unbounded domain, and obtained the critical
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Reynolds number for instability. It was found that instability sets in at a critical
Reynolds number of

√
2 in the form of infinitely long stationary waves. Green

(1974), Sivashinsky (1985), She (1987) and Platt, Sirovich & Fitzmaurice (1991),
among others, studied the problem at higher Reynolds numbers, and examined
the onset of secondary instability and transition to turbulence. To inspect the
theoretical results in experiments, several works have studied the stability problem
in magnetohydrodynamic fluids (Sommeria 1986; Tabeling, Perrin & Fauve 1987) and
soap-film flow systems (Burgess et al. 1999).

Realization of the Kolmogorov flow in experiments made it necessary to consider
a finite domain and introduce boundaries, which were not included in early idealized
theories. According to experimental observations, the presence of solid boundaries
stabilizes the reference flow (i.e. increases the critical Reynolds number) and results
in a finite critical wavelength of perturbations. Thess (1992) studied the effect of
confining boundaries in numerical simulations by imposing no-penetration and perfect-
slip (no tangent vorticity) conditions at the walls. The latter condition was preferred
over the no-slip condition to ensure a non-singular behaviour of the numerical scheme.
Later on, Fukuta & Murakami (1998) analysed the problem with no-slip boundary
conditions and investigated the finite-wave onset of instability. It was found that, in the
limit where the external force wavelength is much smaller than the distance between
the walls, the effect of boundaries vanishes and the critical conditions converge to the
unbounded-domain result.

All the above works have considered the case of an incompressible fluid only. In
particular, no systematic analysis has been carried out to study the combined effect of
fluid compressibility and domain-boundedness on the stability of the Kolmogorov flow.
To the best of our knowledge, the effect of fluid compressibility on the stability
problem was only considered by Bena, Malek Mansour & Baras (1999). While
their analysis allows for non-zero density and pressure perturbations, it assumes an
incompressible reference state and isothermal conditions throughout the fluid domain.
The main objective of the present work is therefore to systematically account for
the impact of compressibility on the stability of bounded Kolmogorov flow, with
no a priori restrictions on the coupling between the dynamic and thermodynamic
descriptions of the fluid. We consider the case of an ideal gas, and allow for non-zero
rarefaction rates to take place through the combined influences of gas viscosity and
compressibility.

Stability analyses of rarefied gas flows have appeared in the literature since the
1990s, motivated by the interest in relating mechanisms of instability and self-
organization at the molecular level with macroscopic phenomena. Existing works
have focused on the canonical Rayleigh–Bénard (Golshtein & Elperin 1996; Stefanov,
Roussinov & Cercignani 2002; Zhang & Fan 2009) and Taylor–Couette (Stefanov &
Cercignani 1993) problems, and were initially based on the direct simulation Monte
Carlo (DSMC) method (Bird 1994). Typically, instability phenomena were confined in
all cases to the ‘continuum limit’ of small Knudsen numbers. However, in this limit
the DSMC method becomes prohibitively time-consuming. Several contributions have
therefore applied an alternative approach, the ‘slip flow’ continuum-limit model, based
on the Navier–Stokes equations with velocity slip and temperature jump boundary
conditions, to solve the problems in hand. The flow problems were analysed either
using finite-difference schemes of the full nonlinear model (Stefanov et al. 2002;
Stefanov, Roussinov & Cercignani 2007), or by means of linear temporal stability
schemes (Manela & Frankel 2005, 2007; Yoshida & Aoki 2006), and supplied results
that were in good agreement with DSMC predictions. In addition to the considerably
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less demanding calculation, the linear stability analysis yielded unequivocal results
for the critical conditions for instability, contrary to DSMC predictions, which
become particularly noisy close to marginal stability conditions (see § 3). The main
deficiency of linear stability analysis is in not yielding the ‘final state’ of perturbations.
(Even at slightly supercritical conditions, a complex system behaviour was found
in previous analyses, which could not be predicted using linear investigation – see
e.g. Stefanov et al. (2007), who found a cascade of instabilities close to the critical
system conditions in the three-dimensional Rayleigh–Bénard problem.) To capture the
terminal state of the system, a nonlinear investigation must be carried out. Bearing in
mind this restriction, we follow here the linear stability scheme of solution for the
purpose of delineating the domain of instability and characterizing the onset of critical
perturbations in the compressible Kolmogorov problem.

The stability of the Kolmogorov flow in rarefied gases has been considered by
Zhang & Fan (2011) using the DSMC method. However, the thermodynamic state
of the system was artificially decoupled from the dynamical problem by imposing
isothermal conditions in the simulation and periodic boundaries in all directions.
In the present contribution, we relax this assumption by studying the stability of
the fully coupled viscous–compressible Kolmogorov flow. Most importantly, the full
reference compressible flow problem is governed by a balance between fluid heat
conduction and viscous dissipation, which yields a solution much different from
the counterpart incompressible result. As will be demonstrated, the effect of fluid
dissipation, neglected in previous works, has a strong stabilizing impact on the system.

The paper outline is as follows. In §§ 2 and 3 the general ‘slip flow’ problem and
numerical DSMC scheme are described, respectively. The reference Kolmogorov flow
is calculated in § 4, and its linear stability is studied in § 5. In § 6 the perturbation
flow field in the unstable domain is discussed, and in § 7 the case of large forcing
wavenumbers is considered. Concluding comments are given in § 8.

2. Formulation of the ‘slip flow’ problem

Consider a two-dimensional set-up of a perfect monatomic hard-sphere gas confined
between two infinitely long parallel walls. The walls are separated by a distance L and
maintained at a fixed and uniform temperature T0. The gas is subject to a spatially
periodic body force per unit mass of amplitude F0 in a direction x̂1 parallel to the
walls. In a non-dimensional form,

F= sin(2πnx2) x̂1, (2.1)

where the force is scaled by F0, 2πn is the non-dimensional force wavenumber, and x2,
scaled by L, is measured normal to the walls located at x2 = 0 and x2 = 1. Following
previous incompressible analyses, we take n to be a positive integer so that the force
vanishes at the walls.

The ‘slip flow’ problem is governed by the Navier–Stokes–Fourier equations
together with the equation of state for a compressible hard-sphere gas. To render
the problem dimensionless, we normalize the position vector by L, the gas density
by its mean value ρ0, the temperature by T0, and the pressure by ρ0RT0 (wherein R
denotes the gas constant). The shear viscosity and heat conductivity are normalized by
µ0 and κ0, their respective values at T0, and the velocity is scaled by U0 = ρ0F0L2/µ0,
associated with the magnitude of the external force. The resulting dimensionless
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problem consists of the continuity

∂ρ

∂t
+∇ · (ρu)= 0, (2.2)

momentum

ρ
Du
Dt
=− 1

γMa2∇p+ 1
ReL
∇ · p + 1

ReL
ρF (2.3)

and energy

ρ
DT

Dt
= γ

PrReL
∇ · q− (γ − 1)p∇ ·u+ γ (γ − 1)

Ma2

ReL
Φ (2.4)

equations, as well as the perfect gas equation of state

p= ρT. (2.5)

In the above,

p = µ[∇u+ (∇u)†− 2
3∇ ·uI] (2.6)

is the Newtonian deviatoric stress,

q=−κ∇T (2.7)

is the heat flux density satisfying the Fourier law, and Φ = p :∇u is the rate of
viscous dissipation. Also appearing in (2.3) and (2.4) are the Reynolds and Mach
numbers,

ReL = ρ0U0L/µ0, Ma= U0/
√
γRT0, (2.8)

with γ = cp/cv denoting the ratio of specific heats at constant pressure and constant
volume, respectively, and the Prandtl number, Pr = µ0cp/κ0. For a hard-sphere gas,
γ = 5/3, Pr = 2/3 and

µ, κ =√T (2.9)

(Sone 2002). The above equations are supplemented by a normalization condition∫
ρ dx= 1, (2.10)

specifying the total amount of gas between the walls, and by the boundary conditions

u2 = 0, u1 =±ζ ∂u1

∂x2
, T = 1± τ ∂T

∂x2
at x2 =

[
0
1

]
, (2.11)

imposing the vanishing of the normal velocity component and designating the
magnitudes of velocity slip and temperature jump at the walls, respectively. In
(2.11), ζ = 1.1466Kn, τ = 2.1269Kn and Kn = l/L is the Knudsen number, where
l = 16µ0/(5ρ0

√
2πRT0 ) is the mean free path of a gas molecule at the reference

conditions (Sone 2002). For a hard-sphere gas, the Knudsen, Mach and Reynolds
numbers are correlated through the von Kármán relation (Tsien 1946; von Kármán
1963),

Kn= 16√
30π

Ma

ReL
. (2.12)
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For later convenience, subsequent results will be presented in terms of a modified
Reynolds number,

Re= ReL

8π3n3
, (2.13)

identical with the definition used in incompressible analyses (Green 1974).

3. Monte Carlo simulations
The prevalent numerical scheme for simulating the motion of a rarefied gas is

the direct simulation Monte Carlo (DSMC) method (Bird 1994). The fundamental
idea of DSMC is to track a large number of representative molecules, with their
motions and intermolecular collisions assumed uncoupled during small time intervals.
Molecular motions are modelled deterministically, while molecular collisions are
treated statistically. With the gradual increase in computational power, DSMC has
been applied to simulate flows in the near-continuum limit of small Knudsen numbers.

We apply a standard DSMC algorithm to simulate Kolmogorov flow of a hard-
sphere gas confined in a two-dimensional rectangle of width L and length D, with
aspect ratio D/L = 2. The hard-sphere model is chosen for simplicity of calculation.
In accordance with the problem set-up, the bounding walls at x2 = 0 and x2 = 1 are
fixed at a constant temperature and assumed to be fully accommodating. Periodicity
conditions are prescribed on the walls at x1 = 0 and x1 = D/L = 2. The latter
conditions restrict the spectrum of perturbation wavenumbers to a discrete spectrum.
For the chosen aspect ratio D/L = 2, only perturbations with wavenumbers k = πn
(n = 1, 2, . . .) are allowed. As will be shown in § 5, the impact of this restriction
on the results (compared to the ‘slip flow’ scheme, where a continuous spectrum is
considered) is minor.

To carry out a simulation, the gas is set at quiescent initial conditions and in
thermodynamic equilibrium with the boundaries. The computation domain is divided
into 128× 128 sampling cells. At t = 0 the external force is applied and the flow field
is followed through its terminal state. Each cell is divided into square subcells, within
which collision pairs are selected. In cases where there are not enough molecules to
perform collisions in a particular subcell, a layered search algorithm in neighbouring
subcells is adopted to make neighbouring molecules be picked preferentially for
collisions (Bird 1994). The side length of subcells is l/3 (where l is the mean free
path of a gas molecule), which is found to be sufficient for convergence of the results.
Depending on the Knudsen number, the total number of simulation molecules is varied
between 5.0 × 106 for Kn = 0.004 to 2.0 × 107 for Kn = 0.002. The calculation time
step is dt = 0.1τ , where τ denotes the mean collision time of a molecule. In each time
step, a velocity increment of F0 sin(2πnx2) dt (see (2.1)) is added to the velocity in
the x1 direction, to account for external forcing. Time averaging is used to examine the
evolution of the macroscopic fields, where each time average contains 103 computation
time steps. Each simulation proceeded until a stationary or time-periodic state was
achieved. In all cases examined, the terminal state did not exhibit any quasi- or
non-periodic time variations.

To examine whether instability occurs at a specific set of parameters, the time and
space deviations of the macroscopic fields from their mean values were examined.
Cases where obvious convective patterns were formed were categorized ‘unstable’,
while parameter combinations where the macroscopic velocity in the x2 direction was
found to be small and ‘random’ were classified ‘stable’. In addition, the final ‘stable’
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states were compared with the reference ‘slip flow’ solution (see § 4) to confirm that
the numerical results indeed converged to the steady reference state.

Exact delineation of the instability domain based on DSMC results is a formidable
task, particularly since, for parameter combinations in the vicinity of the onset
of instability, the statistical noise inherent in the results is of the same order of
magnitude as the physical signal. Furthermore, DSMC calculations become extremely
time-consuming in the continuum limit, where a large number of simulation particles
are required for the computation. Our DSMC results are therefore considered as a
complementary tool to validate the ‘slip flow’ analysis. Unlike DSMC, the ‘slip flow’
model supplies unequivocal predictions for the onset of instability, as mentioned in the
Introduction.

4. The reference Kolmogorov flow
The reference state is a steady bounded Kolmogorov flow wherein u(0) = (u(0), 0),

the velocity vector, as well as T (0), ρ(0) and p(0) are assumed to be functions
of the normal coordinate x2 only. In this case the equation of continuity (2.2) is
satisfied identically and the x2 component of the momentum equation (2.3) yields a
constant reference pressure p(0) = C. Applying the equation of state (2.5) to express
ρ(0) = C/T (0), the remaining x1 momentum and energy equations yield a system of
nonlinear coupled equations for u(0) and T (0),

d
dx2

(√
T (0)

du(0)1

dx2

)
+ C

T (0)
sin(2πnx2)= 0, (4.1)

representing a balance between viscous shear stress and external force, and

d
dx2

(√
T (0)

dT (0)

dx2

)
+ 4Ma2

9

√
T (0)

(
du(0)1

dx2

)2

= 0, (4.2)

expressing a balance between heat conduction and rate of viscous dissipation. The
formulation of the reference-state problem is completed by imposing the normalization
condition (2.10),

C =
(∫ 1

0

1
T (0)

dx2

)−1

, (4.3)

together with the velocity slip and temperature jump conditions obtained from (2.11),

u(0)1 =±ζ
du(0)1

dx2
, T (0) = 1± τ dT (0)

dx2
at x2 =

[
0
1

]
. (4.4)

For given n,Ma and Kn, integration of the ordinary system of (4.1) and (4.2) together
with conditions (4.3) and (4.4) yield u(0)1 ,T (0) and C = p(0). The reference density field
is then given by ρ(0) = C/T (0).

In the incompressible limit (Ma,Kn→ 0), the system (4.1)–(4.4) resolves into a
momentum balance together with no-slip boundary conditions. The reference state then
recovers its incompressible form (Meshalkin & Sinai 1961),

u(0)1,incom =
sin(2πnx2)

4π2n2
, T (0)incom = p(0)incom = ρ(0)incom = 1. (4.5)
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FIGURE 1. The reference (a) x1 velocity and (b) temperature at the indicated (ε,Kn)
combinations for n = 4. The solid lines correspond to ‘slip flow’ solution and the crosses
mark DSMC data. The dashed lines depict the reference state in the incompressible
case, and the dash-dotted lines (nearly coinciding with the exact ‘slip flow’ solution for
(ε,Kn)= (0.0113, 0.0025)) show the asymptotic approximation for ε,Kn� 1.

Considering the case Ma,Kn > 0, compressibility affects the reference state primarily
through the viscous dissipation term O(Ma2) in (4.2). The effect of weak
compressibility can be examined analytically by considering small Kn and Ma
fluctuations of the incompressible solution (4.5). Introducing

ε ≡Ma2/(16π4n4), (4.6)

expanding

F(0)(x2)≈ F(0)
incom(x2)+ εF(0)

ε (x2)+ KnF(0)
Kn (x2)+ O(ε2,Kn2, εKn) (4.7)

(where F(0) represents any of the reference fields) and substituting (4.7) into (4.1)–(4.4)
yields a system of linear equations for the O(ε,Kn) terms. The first-order corrections
for the reference velocity and temperature can then be found as

u(0)1ε = a1x2 + f (x2), u(0)1Kn
= b1x2 + b0 (4.8)

and

T (0)ε =−
4π2n2

9

[
x2

2 − x2 + 1− cos(4πnx2)

8π2n2

]
, T (0)Kn = 0. (4.9)

The constants a1, b1, b0 and the function f (x2) in (4.8) are tabulated in appendix A.
The effect of gas compressibility is mainly reflected through the parabolic non-
uniformity of T (0)ε in (4.9). This non-uniformity couples the O(ε) correction u(0)1ε

in (4.8), while u(0)1Kn
originates from the slip boundary condition (4.4). The general

solution of (4.1)–(4.4) for arbitrary n, ε and small Kn is computed numerically by
means of MATLAB routines.

Figure 1 describes the effect of compressibility on the reference u(0)1 (figure 1a) and
T (0) (figure 1b) fields for n = 4. The two (ε,Kn) = (0.0113, 0.0025), (0.719, 0.004)
cases presented correspond to Re ≈ 2.79 and Re ≈ 13.9, respectively (see (2.12) and
(2.13)). The solid lines are obtained via numerical integration of the full ‘slip flow’
model and the crosses mark the corresponding distributions obtained via DSMC
calculations. The dashed lines present the incompressible solution (4.5), which depends
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on n only. The dashed-dotted lines mark the ε,Kn � 1 approximations (4.7) at
(ε,Kn)= (0.0113, 0.0025).

With increasing ε, the velocity profile deviates from its incompressible sinusoidal
shape to form a descending wave, asymmetric about x2 = 0.5, and with maximum
amplitudes in the vicinity of the walls. However, the main effect of gas compressibility
on the reference state, as seen from figure 1(b), is to increase the bulk gas
temperature through the mechanism of viscous dissipation. For the chosen (ε,Kn) =
(0.0113, 0.0025), (4.7) predicts well the velocity profile and the parabolic non-
uniformity of the temperature distribution, which are nearly indiscernible from the
exact solution. With the minor exception of T (0) in the middle portion of the gap, the
‘slip flow’ and Monte Carlo solutions nearly coincide, which supports the present use
of the simplified near-continuum model.

While the Knudsen numbers considered are very small (Kn . 0.004), the effect
of gas rarefaction becomes non-negligible with increasing ε, as reflected by the
considerable temperature jump (of about 20 % in figure 1b) and velocity slip for
ε = 0.719. This is because the local Knudsen number, based on the gradients of the
hydrodynamic fields, becomes large with increasing ε, owing to the large dissipation
rates in the vicinity of the walls. The local increase in Kn is taken into account in
the velocity slip and temperature jump boundary conditions (4.4) through the product
of the global Knudsen number with the local gradient of the respective hydrodynamic
field at the boundary. With increasing ε at a given Kn, the temperature increase in the
middle of the gap together with growing temperature jump at the walls become more
and more pronounced. This is equivalent to increasing Re (the relative magnitude of
external force) at a given Kn (see (2.12) and (2.13)), which amplifies the irreversible
production of heat dissipation (see also the discussion pertaining to figure 2).

It is instructive to note the variation of the (constant) reference pressure with ε.
In the incompressible limit, the uniform pressure is equal to unity (see (4.5)). With
growing ε, the increase in mean gas temperature together with the preservation of
mean gas density (see (2.10)) result in an increase in the reference pressure, in
accordance with the equation of state (2.5). The approximate solution (4.7) in the limit
ε,Kn� 1 yields

p(0) ≈ 1+ 2ε
9

(
π2n2

3
− 1

4

)
+ O(ε2,Kn2, εKn), (4.10)

in agreement with the exact solution for (ε,Kn) = (0.0113, 0.0025), predicting
p(0) ≈ 1.13. At (ε,Kn) = (0.719, 0.004), the exact solution yields p(0) ≈ 3.22. This
increase in p(0), a manifestation of conversion of gas kinetic energy into heat, has a
stabilizing effect on the system, as will be demonstrated in § 5.

The above results could be described in terms of Ma instead of ε, as both represent
the effect of gas compressibility. However, here we prefer the use of ε over Ma
(being ≈ 67 for ε = 0.0113 and ≈ 536 for ε = 0.719), as the latter is misleadingly
large, and does not reflect the actual value of gas velocity. As can be seen from the
small O(10−3) non-dimensional values of u(0)1 in figure 1(a), the gas velocity is always
subsonic. In what follows, we therefore present our results in terms of the physically
significant parameters Re, Kn and n; the respective values of Ma and ε can be found
by simple manipulation of (2.12) and (2.13) and the definition of ε.
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FIGURE 2. Division of the (Re,Kn) plane into domains of stable (unshaded) and unstable
(shaded) response for n = 4 according to ‘slip flow’ stability analysis. The circles, crosses
and squares mark parameter combinations where the reference state is stable, unstable and
marginally stable, respectively, according to DSMC results. The cross-hatched line shows the
critical Reynolds number in the incompressible unbounded problem (Recr ≈

√
2; Meshalkin &

Sinai 1961), and the triangle indicates the critical value in the incompressible wall-bounded
problem (Recr ≈ 2.65; Fukuta & Murakami 1998).

5. Stability analysis
The linear temporal stability analysis of the reference Kolmogorov flow is studied

by assuming that it is perturbed by small two-dimensional spatially harmonic
perturbations. The above-mentioned fields are generically represented by the sum

F(x1, x2, t)= F(0)(x2)+ φ(1)(x2) exp[i(kx1 + ωt)], (5.1)

wherein the real k and complex ω represent the perturbation wavenumber and its
growth rate, respectively. Substituting (5.1) into (2.2)–(2.11) and neglecting nonlinear
terms in the perturbations, we obtain the linear homogeneous perturbation problem
(appendix B). The dispersion relation ω = ω(k;Re,Kn, n) is calculated by means
of the Chebyshev collocation method (Peyret 2002). This method transforms the
perturbation problem into an algebraic eigenvalue problem consisting of a system
of 5N linear equations satisfied by the perturbations ρ(1), u(1)1 , u(1)2 , T (1) and p(1) at N
discrete points across the gap. Throughout the domain of parameters corresponding to
subsequent results, convergence of the calculation is established for N ≈ 15n, ensuring
that a sufficient number of collocation points are distributed along each wavelength
of the external force. Unlike DSMC computations (see § 3), there is no difficulty in
obtaining results for arbitrarily small Kn> 0.

Figure 2 presents the neutral curve (solid line) separating the (Re,Kn) plane
into respective domains of stable (unshaded, Im{ω} > 0) and unstable (shaded,
Im{ω} < 0) response for n = 4, as obtained from the ‘slip flow’ stability analysis. The
corresponding DSMC results, denoted by circles, crosses and squares, mark parameter
combinations where the reference state is found to be stable, unstable and marginally
stable, respectively. The triangle depicts the critical Reynolds number Recr ≈ 2.65 for
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the onset of instability according to incompressible analysis in a bounded domain for
n = 4 (Fukuta & Murakami 1998), and the cross-hatched line marks the critical value
Recr =

√
2 in the counterpart unbounded set-up (Meshalkin & Sinai 1961).

In the incompressible limit (Kn,Ma→ 0), the lower left end of the neutral curve
coincides with the incompressible bounded-domain solution. For each Re, there exists
a maximal value of Knudsen, Knmax , above which the reference state becomes stable.
With increasing Knmax between the incompressible limit and Knmax ≈ 0.003 11, Recr

increases monotonically from Recr ≈ 2.65 to Recr ≈ 9.4, respectively. At larger values
of Recr, the maximal Kn for instability decays slowly, reducing to Knmax ≈ 0.003 at
Recr = 83 and Knmax ≈ 0.002 95 at Recr = 700. Most remarkably, the neutral curve
exhibits a maximum at Knmax = Kn∗ ≈ 0.003 11, indicating that no instability occurs
at Kn > Kn∗ for any Re. At this parameter combination, (Re∗,Kn∗) ≈ (9.4, 0.00311),
the reference pressure is p(0) ≈ 1.97 (almost twice the pressure in the incompressible
problem) and the maximum reference temperature in the middle of the gap T (0) ≈ 2.5.

The two above phenomena – namely, the occurrence, at a given Kn, of a maximal
Re above which the reference state regains its stability, and the existence of a
cutoff combination (Re∗,Kn∗) above which instability does not occur – can both
be rationalized in terms of the effect of viscous dissipation. According to the scaled
form of energy equation (2.4), the viscous dissipation term is proportional to Ma2/ReL.
Making use of the von Kármán relation (2.12), this is equivalent to proportionality
to Kn2ReL. Consequently, at a constant Knudsen number, an increase in ReL (or in
Re; see (2.13)) results in an increase in the magnitude of viscous dissipation: kinetic
energy is irreversibly transformed into heat, thus cancelling the non-stabilizing impact
of increasing the amplitude of the external force. A similar conclusion is drawn when
considering the effect of increasing Kn on the system viscous dissipation at a given Re.
Evidently, such a mechanism cannot take place in the incompressible problem, where
the thermal and dynamical descriptions of the system are decoupled.

Considering the vastly different methods of calculation (linearized eigenvalue
problem as opposed to nonlinear initial value statistical simulation), the close
agreement between the ‘slip flow’ and DSMC results is gratifying. The largest
differences between the results appear along the upper right portion of the neutral
curve, where approximately 10 % discrepancies are obtained. At these (Re,Kn)
combinations, elevated gradients in the reference hydrodynamic fields, particularly
in the vicinity of the boundaries, are obtained (cf. figure 1b). These gradients result in
a significant increase in the local Knudsen number, which violates the continuum-limit
assumption on which the ‘slip flow’ model is based. We therefore find the present
agreement between the two solutions satisfactory. In particular, the increase in the
value of Recr along the left branch of the neutral curve and the occurrence of a ‘cutoff’
value for Kn = Kn∗ above which the Kolmogorov flow is always stable are confirmed.
It is worthwhile to note that the comparison with DSMC calculations is limited
to Kn & 0.002, since numerical simulations become prohibitively time-consuming
at lower Kn. Our solution for Kn < 0.002 is supported by its convergence to the
incompressible limit.

The description of the neutral surface is complemented in figure 3, presenting
the variation of the critical wavenumber kcr (normalized by π) with Recr. The
triangle depicts the value of kcr in the incompressible limit (Fukuta & Murakami
1998) and the dashed lines mark two of the wavenumbers (k/π = 4, 5) included
in the discrete spectrum of DSMC calculation (see § 3). Again we note that our
solution coincides with the incompressible solution for Kn→ 0. For Kn > 0, the
critical wavenumber varies non-monotonically, first increasing between kcr/π ≈ 4.08
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FIGURE 3. Projection of the neutral surface on the (Re, k/π) plane for n = 4. The solid line
depicts the variation with Recr of the scaled critical wavenumber kcr/π, calculated using ‘slip
flow’ theory. The dashed lines mark two of the wavenumbers (k/π = 4, 5) that are included
in the discrete spectrum of DSMC calculation (k/π= 1, 2, . . .). The triangle marks the critical
value kcr/π≈ 4.08 in the incompressible problem (Fukuta & Murakami 1998).

and kcr/π ≈ 4.37 for 2.65 . Recr . 4.8 (corresponding to 0 < Knmax . 0.0021), and
then decreasing to kcr/π ≈ 4.04 at Kn = 0.0031. An abrupt change in kcr is observed
near Recr ≈ 5.65, accompanied by a ‘bump-like’ variation in the neutral curve of
figure 2 near Knmax ≈ 0.002 15. Note that the entire variation of kcr remains close
to k/π = 4 for all Recr, and we therefore predict the onset of instability in DSMC
calculations to be dominated by a wavenumber k = 4π. This prediction will be
confirmed in § 6. (In addition, we have verified that the small deviations of the
actual kcr from k = 4π have only a minor effect on the calculated neutral curve of
figure 2, by calculating the critical curve, according to ‘slip flow’ analysis, in response
to a single perturbation with wavenumber k = 4π. The differences between the curve
obtained and the critical curve in figure 2 were almost indiscernible.)

To further examine the sharp changes in kcr and Knmax near Recr ≈ 5.65, figure 4
shows the variation of Re{ωcr}, the frequency of critical perturbations, along the
neutral curve. For Recr . 5.65, our calculations invariably yield imaginary-valued
ω. Accordingly, the onset of instability takes place via ‘exchange of stabilities’
(Chandrasekhar 1961) and is characterized by the appearance of stationary waves.
However, at Recr ≈ 5.65 the onset of instability changes type to ‘overstability’,
signalized by time-periodic oscillations at a critical frequency Re{ωcr} 6= 0. More
specifically, the single mode characterizing the onset of instability in the case of
‘exchange of stabilities’ is interchanged in the ‘overstability’ regime by simultaneous
excitation of two eigenmodes, having the same critical frequency with opposite signs.
For illustration, this interchange of modes is denoted in the figure by the thin dotted
lines. The perturbation field in the case of ‘overstability’ is obtained by composition of
the two excited modes, as demonstrated below (see figures 5g–i and 6). The absolute
value of the critical frequency is slowly increasing with Recr & 5.65.

The onset of instability via ‘exchange of stabilities’ along the lower left portion of
the neutral curve is in accordance with the incompressible-limit result (Meshalkin
& Sinai 1961). To validate the bifurcation to ‘overstability’ at Knmax & 0.0021,
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FIGURE 4. Variation of the critical frequency of perturbations Re{ωcr} at the onset of
instability for n = 4. At Recr ≈ 5.65 (corresponding to Knmax ≈ 0.0021), the instability
changes type from ‘exchange of stabilities’ (for Recr . 5.65) to ‘overstability’ (for Recr &
5.65), and the onset of instability is characterized by the excitation of two eigenmodes with
opposite-sign eigenfrequencies. The crosses indicate the frequencies of flow field variations
observed in DSMC results. The circles denote parameter combinations considered in figure 5.
The thin dotted lines mark the interchange between ‘exchange of stabilities’ (Recr . 5.65) and
‘overstability’ (Recr & 5.65) modes of instability.

we have examined the time evolution of u2, the x2 velocity component, obtained
near the onset of instability via DSMC calculations. Indeed, at critical conditions
above Knmax ≈ 0.0021 it was found that u2 exhibits periodic oscillations. In a
quantitative comparison, we examined the flow field at supercritical conditions
slightly above the critical conditions (Recr,Knmax) ≈ (0.0025, 6.08), (0.00265, 6.4) and
(0.0028, 6.8) found in figure 2. According to DSMC calculations, it was found that
Re{ωcr} ≈ 0.0115, 0.0125 and 0.0132 (marked by the crosses in figure 4), respectively,
which is in good agreement with the results predicted by ‘slip flow’ theory. In
practice, a more detailed comparison with the critical frequencies observed in DSMC
computations is hard to obtain, owing to the noisiness of DSMC results near the onset
of instability (see § 3). Nevertheless, harmonic time dependence of the solution was
observed in all simulations carried out at supercritical conditions with Kn & 0.0021.

Figure 5 describes the variation of the critical eigenmodes u(1)1 , u(1)2 and T (1), as
obtained using ‘slip flow’ theory, along the neutral curve. The figure shows the
absolute values of the critical eigenmodes at two parameter combinations where
instability sets in via ‘exchange of stabilities’ (at Recr = 2.66 and 3.63, corresponding
to Knmax = 10−5 and 0.0017, respectively), and one parameter combination where
‘overstability’ occurs (at Recr = 6.08, corresponding to Knmax = 0.0025). The absolute
values of the modes are normalized in each parameter combination by the maximum
magnitude of the largest mode.

At the parameter combination closest to the incompressible limit ((Recr,Knmax) =
(2.66, 10−5), figure 5a–c), the perturbation field is dominated by the velocity
perturbations and the temperature fluctuation is vanishingly small. This is in
accordance with the decoupling between the momentum and energy equations in this
limit, also reflected by the uniformity of the reference temperature and density (see
(4.5)). With increasing compressibility effects along the neutral curve, the dynamic and
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FIGURE 5. Absolute values of the critical eigenmodes u(1)1 , u(1)2 and T (1) for n = 4 along
the neutral curve at (a–c) Recr = 2.66, (d–f ) Recr = 3.63 and (g–i) Recr = 6.08. The
eigenmodes in each parameter combination are normalized by the maximum value of the
largest perturbation.

thermodynamic descriptions of the system become coupled and significant temperature
non-uniformities appear in the reference state (see figure 1b). As a result, the
temperature perturbation at the onset of instability becomes larger, while velocity
perturbations decay, as can be seen in figure 5(d–f ). Once compressibility effects
are sufficiently strong, the bifurcation from ‘exchange of stabilities’ to ‘overstability’
discussed in figure 4 takes place and instability sets in, in the form of time-harmonic
waves. Typical absolute values of the critical eigenfunctions at this stage are shown
in figure 5(g–i). As described in figure 4, the onset of instability in the ‘overstability’
regime is characterized by the excitation of two eigenmodes, which are denoted by
the solid and dashed lines in figure 5(g–i). The absolute values of the two modes are
symmetric about x2 = 0.5 and the consequent perturbation field is obtained by their
composition. Note that, for clarity of presentation, the scale of velocity perturbations
in figure 5(g,h) has been reduced. In comparison with the temperature perturbation, the
magnitude of flow field perturbations keeps decreasing with increasing Recr. At larger
values of Recr, as well as at supercritical conditions (see § 6), the ratio between
temperature and velocity perturbations grows larger, causing the instability to be
governed mainly by thermodynamic perturbations. This is in marked contrast with
the incompressible limit, where instability is characterized solely by the emergence
of convective patterns, which, at large supercritical Reynolds numbers, evolve into
two-dimensional turbulence (Green 1974).

6. The instability domain
We now turn to discuss the pattern of instability at supercritical conditions, marked

by the shaded zone in figure 2. To analyse the fluctuating part of the hydrodynamic
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FIGURE 6. Comparison between (a–c) the absolute values of the deviations of the velocity
and temperature fields from their reference state according to DSMC calculations, and
(d–f ) the absolute values of unstable eigenmodes corresponding to a wavenumber k = 4π,
for n= 4 and (Re,Kn)= (8.37, 0.0025).

fields, we subtract the mean fields from the simulation results at each time step of the
computation. This can be done either by subtracting the reference fields calculated
via the ‘slip flow’ model, or by deducting the time and space averages of the
hydrodynamic fields as calculated from the simulation. In practice, the two procedures
give nearly identical results, reconfirming that our continuum-limit model describes
well the reference state at the chosen range of parameters.

Figure 6 compares the excess of DSMC solution over the reference state, calculated
as described above (figure 6a–c), and the eigenmodes excited in response to a
perturbation of k = 4π (figure 6d–f ) according to the ‘slip flow’ theory. The
comparison is made at the supercritical conditions n= 4 and (Re,Kn)= (8.37, 0.0025)
(see figure 2). Each curve in figure 6(a–c) denotes an x2 distribution of the respective
perturbation according to DSMC solution, at a specific value of 0 6 x1 6 2 along the
computation domain. The results are scaled as in figure 5, by dividing all the fields by
the respective maximum magnitude of the largest perturbation.

The combination of parameters considered in figure 6 is only slightly above
the critical conditions, to enable a qualitative comparison between the simulated
perturbation fields and linear-analysis predictions. Following the description in
figure 5(g–i) of the ‘overstability’ mechanism of instability, the calculation based
on the ‘slip flow’ scheme yields two unstable eigenfunctions with equal growth rates
(|Im{ω}| ≈ 7 × 10−4) and opposite-sign frequencies (Re{ω} ≈ ±0.0125). Comparing
figure 6(a–c) and figure 6(d–f ), the general forms of eigenmodes and DSMC
perturbation fields are very similar, particularly for the temperature. This similarity
is satisfactory, recalling that the linear stability analysis is not expected to yield
the final form of perturbations (see Introduction). The simulation also confirms that
the deviation of the temperature field over its mean value is typically the largest,
dominating the velocity-field perturbations, as predicted by figure 5 at the onset of
instability.

Figure 7 presents the variation with Re of the perturbation flow field according to
DSMC results, for n = 4 and Kn = 0.0025. Figure 7(a–c) shows time snapshots of
the time-periodic perturbation flow field. To quantify the relative strength of velocity
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FIGURE 7. Time snapshots of the velocity perturbation vector fields, calculated using the
DSMC method, for n = 4, Kn = 0.0025 and (a) Re = 7, (b) Re = 13.9 and (c) Re = 139.
(d) Variation with Re of the velocity ratio RU (see (6.1)) calculated using the DSMC method
(solid line), and the growth rate of perturbations at a wavenumber k = 4π (dashed line), for
n= 4 and Kn= 0.0025.

perturbations, we introduce

RU ≡ max{|u2|}
max{|u1|} , (6.1)

describing the ratio between the maximum velocity in the x2 direction (which is
non-zero only when the reference state is unstable) and the maximum velocity in the
x1 direction. The solid line in figure 7(d) shows the variation with Re of RU at n= 4
and Kn = 0.0025, and the dashed line presents the respective growth rate (in negative
sign) of perturbations corresponding to a wavenumber k = 4π, as calculated by the
‘slip flow’ scheme.

Starting with figure 7(a), we observe that, slightly above the instability threshold
(Re = 7 > Recr ≈ 6.08), the perturbation flow field contains weak vortical patterns
occupying most of the gas layer. The respective values of RU and perturbation
growth rate are small. With increasing 6.08 . Re . 10, coherent convective rolls are
formed and their relative strength grows, reaching a maximum at Re ≈ 10 according
to both DSMC and linear-theory results (cf. the solid and dashed lines in figure 7d).
A typical picture of the flow field at this stage is shown in figure 7(c). With Re
increasing further, the relative strength of convective rolls decays, and the vortices
become somewhat confined to a narrower layer in the middle of the gap.

According to figure 7(a–c), and throughout the range of parameters simulated,
it was found that instability is always characterized by a wavenumber of k = 4π.
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FIGURE 8. Time snapshots of the velocity perturbation vector fields, calculated using
the DSMC method, for n = 4, Re = 139 and (a) Kn = 0.0025, (b) Kn = 0.003125 and
(c) Kn= 0.0033. The respective values of RU are indicated at the top of each panel.

This is supported by the linear analysis results (see figure 3), showing that all
other wavenumbers included in the discrete DSMC spectrum (k = πn, n = 1, 2, . . .)
correspond to either decaying (stable) modes or modes with lower growth rates. In
general, we also note that the decrease in perturbation growth rate at large Re (e.g. at
Re & 10 for the case Kn= 0.0025 presented in figure 7d) is very slow, resulting in the
extension of the instability domain to very large Reynolds numbers (outside the range
presented in figure 2 for Kn= 0.0025). Typically, however, the vortical motion at large
Re becomes nearly invisible and confined to the middle of the gap, while most of the
gas domain remains ‘dynamically stable’.

Figure 8 describes the variation with Kn of the perturbation flow field, calculated
using the DSMC method, for n = 4 and Re = 139. As in figure 7, the figure shows
time snapshots of the time-periodic perturbation flow fields. The respective values of
RU are indicated at the top of each figure. Figure 8(a) (for Kn = 0.0025) is identical
to figure 7(c) for easy reference. With increasing Kn at constant Re, compressibility
effects become stronger (see (2.12)). Consequently, the system is stabilized and the
value of RU diminishes. At Kn > Knmax , the reference state recovers its stability.
According to ‘slip flow’ theory, Knmax ≈ 0.003 for the present Re = 139, while
DSMC calculations predict Knmax ≈ 0.0033. The DSMC perturbation flow field in
the latter case is presented in figure 8(c). For this parameter combination, denoted by a
square in figure 2, the system exhibits ‘marginal stability’ behaviour, characterized by
irregular velocity perturbations. These perturbations are an order of magnitude lower
than the coherent patterns observed in figure 8(a). At Kn > Knmax , these perturbations
vanish and the reference state is stable.

7. The case n� 1
In the incompressible analysis of Meshalkin & Sinai (1961), it was shown that

the critical Reynolds number for instability in an unbounded domain is Recr =
√

2,
regardless of the forcing signal wavenumber. Later on, Fukuta & Murakami (1998)
found that the effect of bounding surfaces at finite n is to stabilize the system by
increasing the value of Recr. However, in the limit n→∞ it was shown that the
impact of the walls vanishes and the critical Reynolds number obtains its unbounded
limit. In this section we examine the effect of fluid compressibility on this result.

Figure 9 presents a comparison between the neutral curves in the (Re,Kn) domain,
obtained using ‘slip flow’ theory, for n = 4 (dashed line, identical to the solid line
in figure 2) and n = 10 (solid line). As in figure 2, the triangles and cross-hatched
line mark the critical Reynolds numbers in the bounded and unbounded incompressible
problems, respectively.
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FIGURE 9. Comparison between the neutral curve in the (Re,Kn) plane for n = 4 (dashed
line) and n= 10 (solid line) obtained using ‘slip flow’ theory. The triangles and cross-hatched
line mark the critical Reynolds numbers calculated in the incompressible bounded (Fukuta &
Murakami 1998) and unbounded (Meshalkin & Sinai 1961) problems, respectively.

At first we observe that the lower left part of the neutral curve approaches the
incompressible limit in an unbounded domain with increasing n, in accordance with
the result of Fukuta & Murakami (1998). This is accompanied by a decrease in the
critical wavenumber (not presented here), which, in the unbounded problem, obtains
the limit kcr = 0 (infinitely long waves). The general form of the neutral curve for
both n is similar, with Knmax increasing with Recr along the left branch, and then
decaying slowly. Both curves exhibit a maximum at some Kn = Kn∗ above which the
reference state is stable for all Re. A ‘bifurcation point’ at the ‘bump’ of the left
branch, where the onset of instability changes type from ‘exchange of stabilities’ to
‘overstability’ (see § 5), is found in both cases.

The most significant difference between the two curves is the confinement of
instability domain to lower Kn at larger n. This suggests that, unlike in the
incompressible bounded problem, the effect of isothermal boundaries at n→∞
remains finite, and the neutral curve does not converge to the unbounded-limit criterion
of Meshalkin & Sinai (1961) for Kn > 0. Interestingly, when rescaling the Knudsen
number by n (which is equivalent to basing Kn on the external force wavelength
instead of the layer width L), the two curves possess a maximum at a similar value of
nKn∗. The respective value of Re∗, though, still shifts at larger n to lower Re (closer
to Recr =

√
2), owing to the vanishing effect of the boundaries in the incompressible

limit.
In practice, even the ‘slip flow’ scheme (and, by far, the DSMC calculation at

the extremely low Knudsen numbers considered) becomes numerically expensive at
large n, owing to the large number of collocation points required along each of the
n� 1 wavelengths of the periodic force (see § 5). To overcome this difficulty and
gain further insight into the limit n→∞, the above-mentioned ‘rescaling’ mechanism
of replacing Kn with nKn∗ may empower application of the method of asymptotic
homogenization, where the various fields are expanded in a long scale (the layer
width L; see e.g. the reference temperature in figure 1b) and a short scale (L/n;
e.g. the reference velocity in figure 1a). As n increases, the forcing wavelength L/n
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decreases, causing the Knudsen number nKn based on this length scale (at a fixed L)
to become larger. While this may invalidate the application of the slip flow scheme at
n� 1, we note again that, according to figure 9, increasing n results in confinement of
the neutral curve to lower Kn∗; consequently, the respective wavelength-based Knudsen
number nKn∗ remains similar to its value at lower n. The continuum-limit assumption
is therefore not violated, and the proposed analysis may be carried out to shed light on
the differences between the incompressible and compressible problems at large forcing
wavenumbers. This is a topic of a work in progress.

8. Concluding comments

We studied the effect of flow compressibility on the two-dimensional temporal
stability of a layer of hard-sphere gas confined between two isothermal walls and
subject to a spatially periodic external force. Compressibility was found to affect the
flow pattern mainly through the irreversible transfer of gas kinetic energy into heat,
leading to elevated temperature levels in the bulk of the gas. This, in turn, has a
significant stabilizing impact on the system, resulting in an increase in the critical
Reynolds number for instability, and a change in the type of instability observed, from
‘exchange of stabilities’ (close to the incompressible limit) to ‘overstability’ (when
compressibility is strong enough). Most remarkably, gas compressibility, combined
with the viscous (incompressible) mechanism for instability, confines the instability
domain to small (O(10−3)) Knudsen numbers.

It is commonly accepted that flows at Kn . O(10−3) are well described by means of
the continuum description. It could therefore be speculated that the stability problem
studied here may be analysed by means of continuum Navier–Stokes equations with
no-slip conditions. However, as observed in figures 1, 5 and 6, while the global
Knudsen numbers considered are indeed small, significant temperature jump and
velocity slip amplitudes are found at the boundaries. This is due to the large local
gradients obtained in the vicinity of the walls, which result in decrease in the local
length scale and increase in the local Knudsen number. Consistent modelling of
the compressible flow problem must therefore take into account the effect of gas
rarefaction.

The present work presents a two-dimensional analysis of the compressible
Kolmogorov flow, and is based on a comparison between linear ‘slip flow’ theory
and DSMC computations. In a three-dimensional set-up, both slip flow scheme and
particularly DSMC calculations become considerably more involved. According to
Squire’s theorem (Squire 1933), the critical conditions for the onset of instability in
incompressible parallel flows are governed by two-dimensional disturbances. However,
this result has not been extended to consider compressible flows. It is therefore
possible that the onset of instability in the compressible Kolmogorov problem is
governed, at some point, by three-dimensional disturbances. In accordance with
Squire’s theorem, the critical conditions in the incompressible limit (i.e. close to
the lower left part of the neutral curve of figure 2) are determined by two-dimensional
analysis, and it therefore seems likely that two-dimensional disturbances should also
govern the critical behaviour at weakly compressible conditions. Yet, this statement
requires further investigation. Since three-dimensional DSMC calculations are beyond
the current computational ability of our system, a study of the full three-dimensional
compressible problem is deferred to a later contribution, where a comparison between
the two methods of solution would be feasible.
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The main contribution of the present work is in analysing the stabilizing effect
of gas compressibility on bounded Kolmogorov flow. A similar effect was found in
other analyses of rarefied gas flows, including the Rayleigh–Bénard (Stefanov et al.
2002; Manela & Frankel 2005) and Taylor–Couette (Yoshida & Aoki 2006; Manela
& Frankel 2007) problems. Interestingly, it was shown that suppression of instability
in the Taylor–Couette problem is brought about by increased rates of dissipation
associated with aerodynamic heating of the fluid, similarly to what has been observed
in the present study. The common conclusion of these works may therefore be that
non-zero gas rarefaction rates (which combine gas viscosity and compressibility, in
accordance with the von Kármán relation (2.12)) result in stabilization of gas flow
systems, and confine hydrodynamic instability phenomena to the continuum limit of
small Knudsen numbers.
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Appendix A. Solutions for u(0)1ε and u(0)1Kn
in (4.8)

The solutions for u(0)1ε and u(0)1Kn
are obtained from a double x2 integration of the O(ε)

and O(Kn) momentum equation (4.1), respectively, and satisfaction of the respective
orders of slip boundary condition (4.4). This procedure yields (4.8), where

a1 =−f (1), b0 = 1.1466
2πn

, b1 =−1.1466
πn

(A 1)

and

f (x2)=
∫ x2

0

∫ s

0

[
2π2n2

9
sin(2πnp)

(
−3p2 + 3p− 1

3
− 1− 3 cos(4πnp)

8π2n2

)
+ πn

9
cos(2πnp)

(
2p− 1+ sin (4πnp)

2πn

)]
dp ds. (A 2)

A closed-form expression for the double integral (A 2) can be easily calculated, but is
skipped here for brevity.

Appendix B. The linearized perturbation problem
To simplify notation we omit in the following the superscripts (1) in the expressions

of the perturbations. The resulting perturbation problem, in terms of the parameters
ReL, Ma and Kn, consists of the continuity,

iωρ + ρ(0)
(

iku1 + du2

dx2

)
+ iku(0)1 ρ +

dρ(0)

dx2
u2 = 0, (B 1)

x1 momentum,

ρ(0)

(
iωu1 + iku(0)1 u1 + du(0)1

dx2
u2

)
=− 3ik

5Ma2 p+ 1
ReL

σx1 +
sin(2πnx2)

ReL
ρ, (B 2)
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x2 momentum,

ρ(0)
(

iωu2 + iku(0)1 u2

)
=− 3

5Ma2

dp

dx2
+ 1

ReL
σx2 (B 3)

and energy

ρ(0)
(

iωT + iku(0)1 T + dT (0)

dx2
u2

)
=− 5

2ReL
h− 2C

3

(
iku1 + du2

dx2

)
+ 10Ma2

9ReL
D, (B 4)

equations, together with the equation of state

p= ρ(0)T + T (0)ρ. (B 5)

The perturbation problem is supplemented by the boundary conditions (see (2.11))

u2 = 0, u1 =±ζ ∂u1

∂x2
, T =±τ ∂T

∂x2
at x2 =

[
0
1

]
. (B 6)

Here, the normalization condition (the homogeneous counterpart of (2.10)) is trivially
satisfied by the periodic x1 dependence of the density perturbation. In the viscous-
stress terms of (B 2) and (B 3),

σx1 =
d

dx2

(
du(0)1

dx2

T

2
√

T (0)

)
− 2
√

T (0)

3

(
2k2u1 + ik

du2

dx2

)

+ d
dx2

[√
T (0)

(
du1

dx2
+ iku2

)]
(B 7)

and

σx2 =
ik

2
√

T (0)
du(0)1

dx2
T +
√

T (0)
(

ik
du1

dx2
− k2u2

)
+ 2

3
d

dx2

[√
T (0)

(
−iku1 + 2

du2

dx2

)]
. (B 8)

In the heat flux and dissipation terms in (B 4),

h= k2
√

T (0)T − d
dx2

(√
T (0)

dT

dx2
+ 1

2
√

T (0)
dT (0)

dx2
T

)
(B 9)

and

D= 2
√

T (0)
du(0)1

dx2

(
du1

dx2
+ iku2

)
+ 1

2
√

T (0)

(
du(0)1

dx2

)2

T, (B 10)

respectively.
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