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This paper presents a gas-kinetic scheme to solve the multiple temperature kinetic model (MTKM), which
was proposed in J. Comput. Math. 29(6) (2011) 639–660, for the study of non-equilibrium flows. The
MTKM is a two-stage particle collision model possessing an intermediate quasi-equilibrium state with
a symmetric second-order temperature tensor. A gas-kinetic finite volume scheme is developed for the
numerical solution of the MTKM in the continuum and transition flow regimes. The gas-kinetic scheme
is designed for the updating of macroscopic variables, which include the conservative flow variables and
the multiple temperature field. In order to validate the kinetic model, the gas-kinetic scheme is used in
the study of lid-driven cavity flows in both continuum and transition flow regimes. The numerical results
predicted by the MTKM are compared with those from the direct simulation Monte Carlo (DSMC)
method, the Navier–Stokes equations (NSE), and the early three-temperature kinetic model (TTKM) pro-
posed in Phys. Fluids 19, 016101(2007). It is demonstrated that the MTKM has obvious advantages in
comparison with the NSE and the TTKM in capturing the non-equilibrium flow behavior in the transition
flow regime. One distinguishable phenomenon captured by the MTKM is that in the transition flow
regime the heat flux direction can be from a low temperature to a high temperature region, which vio-
lates the Fourier’s law of continuum flows. The MTKM provides a more accurate physical model than
the NSE for the non-equilibrium flows.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Gas flows can be categorized into different flow regimes based on
the Knudsen number Kn. In the continuum regime (Kn < 0:001), the
Navier–Stokes equations (NSE) are adequate to model the fluid
behavior. In the near continuum regime (0:001 < Kn < 1), the
NSE are known to lose accuracy or be inadequate. In fact this re-
gime is encountered in many practical engineering problems, for
example those in aerospace engineering and Micro-Electro-
Mechanical Systems (MEMS). Therefore, how to realize reliable
numerical simulations of gas flows in this regime at low computa-
tional costs are of great interest from both scientific and practical
views.

Currently the direct simulation Monte Carlo (DSMC) method is
one of the most successful techniques for the non-equilibrium gas
flows. However, the DSMC becomes very inefficient for near con-
tinuum and low speed flows because of the cell size restriction
and the statistical noise. Various modifications have been proposed
in order to improve the efficiency of the standard DSMC, for exam-
ple the information preservation (IP) method [3–6], the variance
ll rights reserved.

: +86 10 62561284.
reduction approach [7], the low Mach number DSMC algorithm
[8] and the hybrid methods [9,10], just to name a few. Alternative
methods, which directly solve the Boltzmann or model equations
[11–15], have also attracted increasing attentions recently.

One of the continuum-based approaches in modeling the
non-equilibrium flows is to use the high order governing equations
derived from the Bhatnagar–Gross–Krook (BGK) model by the
Chapman-Enskog expansion, for instance the Burnett and super-
Burnett equations. However, it has been well recognized that these
equations have the stability problems and cannot be directly used
in numerical simulations [16]. In recent years, some improvements
have been proposed in order to cure these problems [17–19]. An-
other strategy for non-equilibrium flow simulations is deriving var-
ious governing equations by the moment closure technique, such as
Grad’s 13 moment equations [20], the regularized 13 (R13) and 26
(R26) moment equations [21,22], Levermore’s 10 moment system
[23], and many others.

Recently, a multiple temperature kinetic model (MTKM) was
proposed [1] for continuum and near continuum flow simulations,
which is a nature extension of an early kinetic model [2,24]. The
main difference between the two kinetic models is that the former
defines the translational temperature as a second-order symmetric
tensor while the latter only uses three translational temperatures
in the x-, y- and z-directions. This is the reason that the latter is
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renamed the three-temperature kinetic model (TTKM) here. In fact,
prior to these two models, the gas-kinetic schemes describing the
non-equilibrium flows related to the molecular rotational and
vibrational degrees of freedom have been introduced for the shock
structure calculations [25,26], where three different temperatures,
i.e. the translational, rotational and vibrational temperatures, are
used for modeling the non-equilibrium effects.

In [1], the generalized macroscopic gas dynamic equations
based on the MTKM have been derived and analyzed, some qua-
si-one-dimensional numerical tests have been shown to demon-
strate the performance of the MTKM in the micro-scale flow
simulations. In the present work, instead of solving the corre-
sponding macroscopic equations, a gas-kinetic scheme will be
developed for the MTKM directly, and some truly two-dimensional
(2D) test cases for the micro-scale gas flows will be presented in
order to evaluate the capability of the MTKM in modeling the
non-equilibrium flows.

2. Multiple temperature kinetic model and the gas-kinetic
scheme

In this section, we briefly review the essentials of the MTKM
and propose a finite volume gas-kinetic scheme as well as the wall
boundary condition to get the numerical solutions of the MTKM.

2.1. A brief review of the MTKM

The three-temperature kinetic model for continuum and near
continuum flows was proposed in [2], where only three transla-
tional temperatures for monotonic gases are used in the construc-
tion of the model. Numerical tests [2,24] have demonstrated some
success of the TTKM in describing the non-equilibrium gas flows.
However, the defects of the early model are also obvious: the appli-
cations of the model in numerical simulations will depend on the
choice of the coordinate system, since only three translational tem-
peratures in the x-, y- and z-directions are considered. Theoreti-
cally from the extended definition of temperature it should be a
second-order symmetric tensor, in that case the model’s utility will
be independent of the coordinate system used.

These problems were cured in [1], where the temperature is de-
fined as a second-order symmetric tensor and used to construct an
improved gas-kinetic model, i.e. MTKM, for non-equilibrium flow
simulations. The two-stage MTKM can be written as [1]

@f
@t
þ u � rf ¼ g � f

s
þ Q ; ð1Þ

where t is the time, u ¼ ðu; v;wÞ is the velocity of the gas particle, s
is the collision time representing the relaxation rate of the distribu-
tion function f due to the collisions, Q ¼ ðf eq � gÞ=s, which is treated
as a special source term different from the term ðg � f Þ=s in the
model [1], therefore, although this model is identical to the BGK
model mathematically, the physical significance of two models is
different. In the MTKM, the whole relaxation process of the non-
equilibrium distribution function f to the Maxwellian equilibrium
state f eq is separated into two sub-processes: (i) f relaxes to an
intermediate state g between f and f eq; (ii) the intermediate distri-
bution g relaxes to the Maxwellian equilibrium state f eq. Although
other choices may be possible, in our study the intermediate state
g is assumed to be a Gaussian distribution

g ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2pRTÞ

p exp �1
2
ðu� UÞðRTÞ�1ðu� UÞT

� �
; ð2Þ

where q is the density, R is the gas constant, U ¼ ðU;V ;WÞ is the
macroscopic velocity of the gas, T is the symmetric second-order
temperature tensor, and for monatomic gas it reads
T ¼
Txx Txy Txz

Txy Tyy Tyz

Txz Tyz Tzz

0
B@

1
CA:

By taking moments W ¼ ð1;ui; uiuj=2ÞT of Eq. (1) and using the
Chapman-Enskog or iterative expansion, the following generalized
gas dynamic (GGD) equations based on the MTKM can be derived
[1],

@tqþ @kðqUkÞ ¼ 0; ð3Þ

@tðqUiÞ þ @k½qðUiUk þ RTikÞ� ¼ @k½qRðTdki � TkiÞ�; ð4Þ

@t½qðUiUj þ RTijÞ� þ @k½qðUiUjUk þ RUkTij þ RUiTjk þ RUjTkiÞ�

¼ 2
s qRðTdij � TijÞ þ @kfqR½UkðTdij � TijÞ þ UiðTdjk � TjkÞ

þ UjðTdki � TkiÞ�g � @kQ ijk; ð5Þ

where dij is the Kronecker delta function, the averaged temperature
T is obtained by

T ¼ 1
3

X3

l¼1

Tll; ð6Þ

and Q is the generalized heat flux given by

Qijk ¼ �
sqR2

Pr
ðTkl@lTij þ Til@lTjk þ Tjl@ lTkiÞ; ð7Þ

where Pr is the Prandtl number.
Moreover, it has been shown by theoretical analysis in [1] that

the standard NSE can be recovered from the first-order GGD equa-
tions in the continuum limit (Kn! 0), which will also be clearly
demonstrated by our numerical examples in this paper. Interested
readers may refer to [1] for the construction of the MTKM, the de-
tailed derivation and analysis of the GGD equations based on the
MTKM for non-equilibrium gas flow simulations. One point that
needs to be emphasized is that the numerical method presented
in the next subsection is for the MTKM directly and the GGD equa-
tions are not explicitly used in the construction of the gas-kinetic
scheme.

2.2. A numerical approach to solve the MTKM

Now we present the numerical approach to solve the MTKM. The
numerical method for the MTKM is a finite volume scheme, which
is similar to the numerical algorithm employed in [2] for the early
TTKM. Both of the two methods are extensions from the gas-kinetic
BGK solver for the NSE [31]. For simplicity, the 2D cases will be con-
sidered hereafter in this paper, but the scheme presented here can
be also extended to three-dimensional problems.

For 2D gas flows, we have Txz; Tyz ¼ 0 for the temperature tensor
T. By taking moments, the macroscopic variables are defined as

W ¼
Z

gW2Ddudvdw ¼ ðq;qU;qV ; Exx; Eyy; Ezz; ExyÞT; ð8Þ

where

W2D ¼ ð1;u;v ;u2=2; v2=2;w2=2;uv=2ÞT; ð9Þ

and

Eij ¼ qðUiUj þ RTijÞ=2; ð10Þ

with i; j ¼ 1;2;3 representing x; y; z, respectively. Under the finite vol-
ume framework, for a uniform grid the updating of the cell-averaged va-
lue Wp;q over the cell (p; q) from the time tn to tnþ1 can be obtained by

Wnþ1
p;q ¼Wn

p;q þ
1
Dx

Fx;Dt
p�1

2;q
� Fx;Dt

pþ1
2;q

� �
þ 1

Dy
Fy;Dt

p;q�1
2
� Fy;Dt

p;qþ1
2

� �
þ SDt

p;q; ð11Þ
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Fig. 1. Velocity profiles for the case with upper wall temperature 273 K and all
other wall temperature 546 K; Uw ¼ 15:39 m=s (Ma ¼ 0:05) and Kn ¼ 0:1. (a): The
U-velocity along a vertical line crossing the cavity center; (b): The V-velocity along a
horizontal line crossing the cavity center.
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where Fx;Dt and Fy;Dt are numerical fluxes during the time interval Dt
(¼ tnþ1 � tn) in x and y directions, respectively. The source term S is
written as

S ¼ 0;0;0;aðT � TxxÞ;aðT � TyyÞ;aðT � TzzÞ;�aTxy
� �T

; ð12Þ

where a ¼ qR=ð2sÞ. The relation among the dynamic viscosity coef-
ficient l, the averaged temperature T , and the relaxation time s is
given by l ¼ sqRT.

From Eq. (11), the finite volume method for solving the MTKM can
be divided into two parts: (i) the source term discretization; (ii) the
calculation of numerical fluxes across cell interfaces. For the source
term, we simply use the following first-order approximation

SDt
p;q ¼ DtSn

p;q: ð13Þ

In calculating the numerical flux, instead of using the macroscopic
GGD equations, we evaluate it from the distribution function f at
the cell interface based on the MTKM. More specifically, we use
the Chapman-Enskog expansion

f ¼ g � s @g
@t
þ u

@g
@x
þ v @g

@y

	 

þ t

@g
@t

ð14Þ

to construct the distribution function at the cell interface, therefore
we need to evaluate @g

@x ;
@g
@y and @g

@t first before using Eq. (14).

We can determine @g
@x and @g

@y from the spacial derivatives of the
macroscopic variables @W

@x and @W
@y at the cell interface, respectively.

Next we will show how to get @g
@x from @W

@x . First, we assume

@g
@x
¼ gðW2DÞTa; ð15Þ

where ðW2DÞT is the transpose of W2D and the unknown vector a is
defined as

a ¼ ða1; a2; a3; a4; a5; a6; a7ÞT: ð16Þ

Then, the unknown vector a can be acquired using the numerical
techniques, such as the Gauss elimination method, to solve the fol-
lowing system of 7 equations with 7 unknowns a1 � a7,Z

@g
@x

W2Ddudvdw ¼
Z

gW2DðW2DÞTdudvdw
	 


a ¼Ma ¼ @W
@x

; ð17Þ

where M is the matrix defined as

M ¼
Z

gW2DðW2DÞTdudvdw: ð18Þ

We want to point out that unlike the gas-kinetic schemes for the
NSE and TTKM shown in [2,31], where the determinations of a from
@W
@x can be done in an analytic way, see the Appendix B in [31] for the
NSE and the explicit formulations to get a1 to a6 shown in [2] for the
TTKM, however, here it is almost impossible or at least very difficult
to get the similar explicit formulations of a from @W

@x based on Eq.
(17), therefore we have to use the numerical methods like the Gauss
elimination algorithm to solve Eq. (17) numerically in order to get a.

Once a is provided, we can get @g
@x from Eq. (15). By a similar pro-

cedure, @g
@y can be also obtained from @W

@y numerically. After deter-
mining @g

@x and @g
@y, we may further assume

@g
@t
¼ gðW2DÞTA; ð19Þ

with the unknown vector A defined as

A ¼ ðA1;A2;A3;A4;A5;A6;A7ÞT: ð20Þ

Then, we can use the following relation to determine the unknown
vector AZ

@g
@t
þ u

@g
@x
þ v @g

@y

	 

dudvdw ¼ 0: ð21Þ
From Eqs. (19) and (21), we can get

Z
@g
@t

W2Ddudvdw ¼MA ¼ �
Z

u
@g
@x
þ v @g

@y

	 

W2Ddudvdw; ð22Þ

where M is defined by Eq. (18). Substituting @g
@x and @g

@y obtained ear-
lier into Eq. (22), we reach a system of 7 equations with 7 unknowns
A1 � A7, which is very similar to Eq. (17). Solving this system
numerically, we can get A, therefore @g

@t is gained from Eq. (19).
Up to now we have obtained @g

@x,
@g
@y and @g

@t , so the time-dependent
distribution function f at the cell interface can be totally deter-
mined from Eq. (14), which can be used to get the numerical flux
in Eq. (11) by taking moments and integrating it over the time
interval Dt. A modification of the heat flux in energy transport sim-
ilar to those in [2,31] is implemented in order to model the flow
with any realistic Prandtl number. The mathematical formulae
for various moments of the Gaussian distribution g can be obtained
by the software Mathematica.
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Fig. 2. The contours of Txy predicted by DSMC (solid line) and MTKM (dash dot line)
for the case with upper wall temperature 273 K and all other wall temperature
546 K; Uw ¼ 15:39 m=s (Ma ¼ 0:05) and Kn ¼ 0:1.
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Fig. 3. Heat flux stream traces overlaid on the temperature T (T ¼ ðTxx þ Tyy þ TzzÞ=3) c
temperature 273 K; Uw ¼ 10 m=s and Kn ¼ 0:2.
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2.3. Wall boundary condition

It is well known that the wall boundary condition is very impor-
tant for the numerical simulations of the flows in the transition re-
gime. In this paper, we use the strategy proposed in [32] to deal
with the wall boundary condition for the MTKM. More specifically,
with the one-sided interpolation of the macroscopic variables up to
the wall, we can use the flow field information from the inner do-
main to evaluate the gas distribution function f in at the inner side
of the wall, for example Eq. (14) for the MTKM. Therefore, we can
evaluate the number of particles hitting the wall from the inner
side. In the following we will illustrate the boundary treatment
by considering a stationary left vertical wall. For such a wall, the
particle number hitting it during the time interval Dt from the in-
ner side is �

R Dt
0

R
u<0 uf indudvdwdt. For the diffuse reflection part,

we can construct an equilibrium state gout at the outer side of the
wall, i.e.

gout ¼ q�
k�
p

	 
3
2

e�k�ðu2þv2þw2Þ; ð23Þ

where k� can be obtained from the given wall temperature Tw by the
relation k� ¼ m=2kTw, m is the molecular mass and k is the Boltz-
mann constant. The density q� in Eq. (23) can be determined from
the requirement that no particles penetrate the wall, i.e.Z Dt

0

Z
u>0

ugoutdudvdwdt ¼ �
Z Dt

0

Z
u<0

uf indudvdwdt; ð24Þ
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from which the density q� in the equilibrium state gout can be obtained
q� ¼ �
2
ffiffiffiffiffiffiffiffi
pk�
p

Dt

Z Dt

0

Z
u<0

uf indudvdwdt: ð25Þ
Therefore, given the accommodation coefficient r, the total gas dis-
tribution function at the wall can be written as
f total ¼ f in
u<0 þ rgout

u>0 þ ð1� rÞf in
u<0ð�u;v ;wÞ; ð26Þ
where the term ð1� rÞf in
u<0ð�u;v ;wÞ accounts for the specular

reflection part from the wall. Once the distribution function f total

at the wall is obtained, taking moments and integrating over time,
we can evaluate the numerical flux there required by the finite vol-
ume scheme for the MTKM.

We want to point out that this strategy of slip boundary treat-
ment, i.e. Eqs. (23)–(26), can be also used for the NSE [33], the
TTKM [2] and even the Burnett equations [32], where only the
gas distribution function f in at the inner side of the wall needs to
be constructed based on different models. For example, for the
NSE calculation the distribution function f in in Eqs. (24)–(26)
should be constructed using the NSE numerical solutions of the
neighboring cells inside the computational domain [33], we may
denote it by f in

NSE here. Similarly, for the TTKM simulation [33], we
need to construct f in

TTKM in using Eqs. (24)–(26). Interested readers
may refer to the above-mentioned papers for more details.
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Fig. 4. Heat flux stream traces overlaid on the temperature T (T ¼ ðTxx þ Tyy þ TzzÞ=3) c
temperature 273 K; Uw ¼ 100 m=s and Kn ¼ 0:2.
3. Numerical tests for micro-scale gas flows

In order to evaluate the performance of the MTKM, in this sec-
tion we numerically study the 2D lid-driven cavity flows, which
have been investigated extensively [27–30]. The numerical results
predicted by the MTKM will be compared with those by the DSMC,
the NSE and the early TTKM. In order to have a fair comparison, in
this paper we use the same strategy, i.e. Eqs. (23)–(26), to treat the
slip boundary conditions for the NSE, TTKM and MTKM simula-
tions, and no special treatment is needed for the four corner cells
of the computational domain.

In the present tests, the working gas is argon with the molecular
mass m ¼ 6:63� 10�26 kg, the fully diffuse reflection is assumed
for all walls. For all the numerical tests the initial gas state is set
to be T0 ¼ 273 K and p0 ¼ 1 atm ¼ 101;325 Pa, the dynamic vis-
cosity coefficient l is obtained by

l ¼ l0
T
T0

 !x

; ð27Þ

with l0 ¼ 2:117� 10�5 Pa s and x ¼ 0:81. The mean free path l of
the gas is defined by

l ¼ 4ð7� 2xÞð5� 2xÞ
30

ffiffiffiffi
p
p � l

q
ffiffiffiffiffiffiffiffiffi
2RT

p : ð28Þ

In our numerical studies, the Knudsen number Kn is defined as the
ratio of the mean free path l0 at the initial gas state and the side
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length L of the cavity Kn ¼ l0=L, the Mach number Ma is defined by
the upper lid velocity Uw and the initial gas state Ma ¼ Uw=

ffiffiffiffiffiffiffiffiffiffiffi
cRT0

p
,

where c is the specific heat ratio.
The numerical results from the MTKM, TTKM and NSE are com-

pared with the DSMC solutions. The variable hard sphere (VHS)
collision model has been used with a reference particle diameter
of d ¼ 4:17� 10�10 m. The particle–wall interactions are assumed
to be inelastic and follow the diffuse reflection model with the full
thermal accommodation. In the present study, the uniform mesh is
used and the cell size is set to be Dx ¼ Dy ¼ 0:25l0, which is small
enough for all the numerical tests considered here. The time step is
set to be Dt ¼ 0:125Dxð2RTmaxÞ�1=2, where Tmax is the maximum of
the averaged temperature within the domain. 40 particles per cell
have been employed for the initialization in the present work. The
variation in Knudsen number Kn is achieved by changing the side
length L of the cavity.

First we consider a test problem with large temperature gradi-
ents. The upper wall temperature is 273 K and all other wall tem-
perature is 546 K, the upper lid velocity is Uw ¼ 15:39 m=s with the
corresponding Mach number Ma ¼ 0:05, the Knudsen number is
Kn ¼ 0:1. Due to the large temperature gradients, this test case is
not an easy one for many continuum-based approaches.

Fig. 1a shows the U-velocity along a vertical line crossing the
cavity center by the previously mentioned four methods, where
we can see that the numerical results by the NSE, TTKM and MTKM
are similar and close to the DSMC solutions. Fig. 1b gives the V-
velocity along a horizontal line crossing the center, where it is ob-
served that compared with the DSMC data the overall performance
of the MTKM is slightly better than the NSE and much better than
the TTKM. Fig. 2 shows the contours of the temperature Txy by the
DSMC and the MTKM. The agreement between the DSMC and
MTKM data is good. It should be pointed out here that the temper-
ature Txy, which is defined by

Txy ¼
1
qR

Z
ðu� UÞðv � VÞfdudvdw; ð29Þ

can be zero or negative. From the definition we know that the rela-
tion between the temperature Txy and the viscous stress sxy is
sxy ¼ �qRTxy, therefore, the non-positive values of Txy in this figure
can be easily understood.

The second test considers the case with all wall temperature
273 K, Uw ¼ 10 m=s, and Kn ¼ 0:2. Compared with the first exam-
ple, the temperature gradients here are very small. In Fig. 3, a com-
parison of the DSMC, NSE, TTKM and MTKM is made for the
contours of the averaged temperature T , and the stream traces of
the heat flux vector q, which is defined as

qi ¼
1
2

Z
ðui � UiÞðu� UÞ2fdudvdw: ð30Þ

It can be seen from Fig. 3 that the contours of the averaged tempera-
ture T by the MTKM agree much better with those by the DSMC than
the contours by the NSE and the TTKM. As shown and discussed in
[29,30], the very interesting thing in Fig. 3 is that the heat flow direc-
tion predicted by the DSMC is from the cold to hot region under the
non-equilibrium flow conditions. This indicates that a counter-gradi-
ent heat flux is possible due to various non-equilibrium effects like
expansion cooling, viscous heat generation, compressibility and ther-
mal creep, etc. Interested readers may refer to [30] for more discus-
sions and explanations for this unusual phenomenon. In terms of
the comparisons among the different models in describing this phe-
nomenon, the NSE and the TTKM fail to capture this counter-gradient
heat flux pattern, but the MTKM can capture this unusual phenome-
non very well.

The third example is a relatively high speed case with all wall
temperature 273K;Uw ¼ 100 m=s, and Kn ¼ 0:2. The numerical re-
sults are shown in Fig. 4. Compared with the high reliable DSMC
method, the NSE cannot predict the cold region around the upper
left corner, the TTKM performs better than the NSE but worse than
the MTKM, which can capture the cold region well. Regarding to
the hot region around the upper right corner, the results by the
NSE and MTKM are closer to the DSMC data than those by the
TTKM. Again, the counter-gradient heat flux phenomenon can be
well captured by both the DSMC and the MTKM, but the NSE and
the TTKM fail to capture it.

From the three numerical examples previously shown, we can
see that the MTKM has the obvious advantages over the TTKM,
in particular, the former can predict the counter-gradient heat
transfer while the latter fails to do that. In fact the major differ-
ences between the two models are that for the MTKM the temper-
atures used in the intermediate Gaussian distribution g are
assumed to be a symmetric second-order tensor, while for the
TTKM they are only assumed to be three temperatures in the x-,
y- and z-directions which are coordinate-dependent, in some sense
this means artificially imposing the principal axes of the tempera-
ture tensor to be the computational coordinate axes everywhere.
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Fig. 6. Velocity profiles for the case with Kn ¼ 0:001; Re ¼ 62:5 (Ma ¼ 0:05). (a):
The U-velocity along a vertical line crossing the cavity center; (b): The V-velocity
along a horizontal line crossing the cavity center.
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Therefore, it is believed that physically the TTKM is less reasonable
and accurate than the MTKM, which is also clearly demonstrated
by the numerical tests presented.

Finally we want to investigate the performance of the MTKM at
the continuum limit, i.e. Kn! 0. Two examples with a small Knud-
sen number Kn ¼ 0:001 are considered: Ma ¼ 0:005 and
Ma ¼ 0:05, the corresponding Reynolds numbers (Re ¼ q0UwL=l0)
are Re ¼ 6:25 and Re ¼ 62:5, respectively. All wall temperature is
273 K in both cases. The numerical results are shown in Figs. 5
and 6, where the velocity profiles by the MTKM and the NSE cannot
be distinguished by eyes. From the figures, we can see that the
MTKM solutions can recover the NSE solutions at the continuum
limit, which is consistent with the theoretical analysis in [1].
Therefore the MTKM can be faithfully used to study both contin-
uum and near continuum gas flows.
4. Conclusions

A numerical algorithm for solving the MTKM is proposed, and
the strategy used for the proposed method is similar to those in
[2,31]. For the present gas-kinetic scheme, instead of using the
macroscopic generalized gas dynamic equations directly to find
the numerical fluxes across cell interfaces, based on the Chap-
man-Enskog expansion of the MTKM, the time-dependent gas dis-
tribution function f at the cell interface can be obtained. Then, it is
used to calculate the numerical flux there by taking moments and
time integration.

Many numerical tests have been used to validate the MTKM in
the continuum and near continuum flow regimes. The micro-scale
gas flow tests clearly demonstrate the advantages of the MTKM
over the NSE and the early TTKM for modeling the non-equilibrium
flows, especially in the cases with complicated flow structures. In
the transition flow regime, the unusual counter-gradient heat flux
phenomenon has been captured by the MTKM, but the NSE and the
TTKM fail to do that. It is also numerically manifested that the NSE
solutions can be recovered from the MTKM in the continuum limit
(Kn! 0). The multiple temperature kinetic model is useful in the
study of micro-scale gas flows.
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