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An optimal motion planning of a free-falling cat based on the spline approximation is investigated. Nonholonomicity arises in 
a free-falling cat subjected to nonintegrable velocity constraints or nonintegrable conservation laws. The equation of dynamics 
of a free-falling cat is obtained by using the model of two symmetric rigid bodies. The control of the system can be converted 
to the motion planning problem for a driftless system. A cost function is used to incorporate the final errors and control energy. 
The motion planning is to determine control inputs to minimize the cost function and is formulated as an infinite dimensional 
optimal control problem. By using the control parameterization, the infinite dimensional optimal control problem can be trans-
formed to a finite dimensional one. The particle swarm optimization (PSO) algorithm with the cubic spline approximation is 
proposed to solve the finite dimension optimal control problem. The cubic spline approximation is introduced to realize the 
control parameterization. The resulting controls are smooth and the initial and terminal values of the control inputs are zeros, 
so they can be easily generated by experiment. Simulations are also performed for the nonholonomic motion planning of a 
free-falling cat. Simulated experimental results show that the proposed algorithm is more effective than the Newtoian algo-
rithm. 
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1  Introduction 

It is well known that a cat, when released from an upside 
down configuration starting from rest, is able to land on its 
feet. At the end of the 19th century, people began to try to 
explain this interesting phenomenon. Guyou and Marey [1] 
firstly explained from classical mechanics that the angular 
momentum of a falling cat is conserved. McDonald [2] also 
represents this problem from a physiological point of view. 
He believed a cat firstly contracts its front feet, then pro-
tracts the front feet while rotating its front body. Meanwhile, 

its rear body also experiences a rotation. According to the 
conservation law of angular momentum, the rotation angle 
of the front body is larger than that of the rear body in the 
opposite direction. This theory satisfied the principle of 
mechanics. However, in free-falling cat experiments, we 
hardly find any obvious protract-contract motion of a cat’s 
feet. Лойцянский et al. [3] presented another explanation, 
where the rapid rotation of the cat’s tail makes its body turn 
over in the opposite direction. However, this conjecture is 
not valid either. Experiments show that a cat without tail 
can also finish the rotating motion. Kane and Scher [4] 
proposed the dynamical explanation of the phenomenon that 
a free-falling cat usually lands on its feet. They assumed the 
cat’s turning motion with its waist as the top point using the 
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model of two symmetric rigid bodies. Based on this model, 
a set of governing equations was established and the general 
characteristic of the turning motion was obtained. Further 
numerical analysis showed this model was in good agree-
ment with experimental results. For the more general condi-
tion of two unsymmetrical rigid body’s turning motion, a set 
of dynamics equations was set up by Liu [1]. 

Recently, with the development of manned spacecrafts 
and exploratory researches of human turning motion under 
zero-gravity conditions, the research of a free-falling cat has 
become a significant topic. Due to the non-integrable angle 
velocity, the first integration of the equation of a cat’s rota-
tion is an equation with nonholonomic constrains, and it is a 
special nonlinear system. In this equation, the dimension of 
generalized coordinates is larger than that of the control 
input. Brockett et al. [5] first suggested a systematic re-
search on the optimal control problem of the driftless non-
holonomic system. Using control objective functions to 
construct Lagrangian functions, they reached conclusions 
under optimal input of sinusoidal function and elliptical 
function respectively. Murray and Sastry extended Brock-
ett’s conclusion to the control of nonholonomic chain sys-
tem under sinusoidal input [6]. A similar motion planning 
method was also given by Reyhanoglu and Mukherjee, 
which used Stokes theorem and Taylor series expansion to 
analyze the dynamic model of the nonholonomic system 
[7,8]. For motion planning problems of nonholonomic con-
trol systems, various numerical methods were achieved by 
some investigators. Fernandes et al. formulated the nonho-
lonomic motion planning problem as an optimal control 
problem, and developed a simple algorithm for a coupled 
rigid body system using ideas from Ritz’s Approximation 
Theory [9]. Yih and Ro proposed the algorithms of near 
optimal motion planning using multipoint shooting and 
quasi Newtonian method for nonholonomic systems [10,11]. 
Duleba and Sasiadek discussed a modification of the New-
ton algorithm applied to nonholonomic motion planning 
with energy optimization [12]. The Lyapunov control 
method for solving motion planning was proposed by 
Tsuchiya et al. [13]. In this method, the control input was 
obtained by multiplying the gradient vector of the Lyapunov 
function by a tensor. Ge et al. studied an optimal control of 
a free-falling cat using the Newtonian algorithm by Fourier 
approximation [14]. 

In this paper, the motion of free-falling cat is formulated 
through a double rigid body model which can represent the 
front and rear half of its body. The motion equation of a 
free-falling cat is established based on multibody dynamic 
and conservation of angular momentum. When the total 
angular momentum is zero, the attitude motion equations of 
a free-falling cat take on nonholonomic constraint. The con-
trol of a free-falling cat can be converted to the motion 
planning problem without drift. By using the control pa-
rameterization, the infinite dimensional optimal control 
problem can be transformed to a finite dimensional one. The 

particle swarm optimization (PSO) algorithm with the cubic 
spline approximation is proposed to resolve the optimal 
control of a free-falling cat. Finally, the algorithm is tested 
through simulation. The simulation results indicate that the 
algorithm is an effective approach to deal with a free-falling 
cat. 

2  The attitude motion equation of a free-falling 
cat 

To simplify the free-falling cat motion model, the body of a 
cat is taken as two symmetric rigid bodies B1 and B2 which 
are joined at O. Assume the rigid bodies are torsion free and 
only bending exists when the cat bends its spine shown in 
Figure 1. The coordinate systems O-XiYiZi (i=1,2) are pre-
scribed as follows: OXi is the centroid axis of the rigid bod-
ies pointing from O to the head of the cat (i=1) or the tail of 
the cat (i=2), OZi points to the abdomen of the cat. 

The coordinate system O-X2Y2Z2 is obtained by firstly 
rotating about axis OX1 through angle  to obtain 

* * *
1 1 1-O X Y Z  as shown in Figure 2, then rotating about axis 

*
1OY  through angle   to obtain # # #

1 1 1-O X Y Z , and finally 

rotating about axis #
1OX  through angle  to obtain 

O-X2Y2Z2. After getting O-X2Y2Z2, we construct a new coor-
dinate system O-X*Y*Z*, in which OX* and OZ*are along the 
bisector of * #

1 1X OX  and * #
1 1Z OZ  separately, and OY* 

is coincident to *
1OY  and #

1OY . The angle , which equals 

2 , is the angularity between the front half (or rear half) 

spine and OX*. X*OZ* is the spine-curving plane.  denotes 
the position of the plane in the cat’s body. 

The angular velocity ′ of B2 with respect to B1 is ob-
tained by projection on the O-X*Y*Z* coordinate system as: 

 * * *( )cos 2 ( )sin .i j k                 (1) 

According to the torsion free condition, the velocity 
component along axis OX* must be zero, and then we obtain 

the relationship .     Since the initial condition is also 

torsion free, we get     by employing integration. 

Considering the relation between angle  and , eq. (1) can 
be simplified as: 

 * *2(   sin  ).j k        (2) 

After bending the spine, the center of mass of the cat Oc 
locates on axis OZ*. If we move the origin from O to Oc, the 
axis OcX0 keeps a steady horizontal direction during the 
observation of a free-falling cat. A new coordinates Oc-XYZ 
is built, in which OcX is coincident to OcX0, and the axis 
OcZ goes upward and vertically to the ground. During the 
process of free falling, the inertia forces in Oc-XYZ are bal- 
anced with gravity. When we consider rotating about the  
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Figure 1  A free-falling cat model. 

 

Figure 2  Attitude angle transform. 

center of mass, coordinates Oc-XYZ can be taken as the iner-
tial reference frame. Set vertical plane XOcZ as 0, and let  
be the clockwise angle from plane 0 to 1. The purpose of 
rotation motion of the cat is to make its abdomen from fac-
ing upward to downward, namely, the angle  from 0 to . 

The angular velocities of Bi (i=1,2) with respect to 
O-X*Y*Z* reference frame are 
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Let A, B, C, m and a be the central inertia moments, the 
mass and the distance between the centroid and O of Bi 
(i=1,2) respectively. The moment of momentum Hi of Bi 
with respect to Oc could be computed. The vector Hi can be 
decomposed into components with respect to O-XiYiZi (i=1, 
2) coordinate systems [1]: 
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where 
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and 
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The sum of H1 and H2 is the total moment of momentum 
of the cat with respect to Oc. After transformation to the 
O-X*Y*Z* coordinate system, the component of the sum 
along axis OX* is 
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(7)

 

During the process of falling a cat, the moment with re-
spect to centroid is zero. Since the angular momentum H is 
conservative, the assumption of invariance of the direction of 
axis OcX

* or OcX is proved to be correct. By considering H≡ 
0, we can obtain the motion equation from eq. (7) given by 
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,
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where =(BA)/A, =(BC)/A are parameters associated 

with the mass of cat. Eq. (8) is the nonholonomic attitude 

motion equation of a free-falling cat. 

3  Nonholonomic motion planning by spline 
approximation method 

Consider the system configuration variable x=(, , )T∈ 
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R3, and notice that u∈R2 is the control input with 1u    

and 2u .   Introducing the above expressions in eq. (8), 

one has 

 3
0( ) ,   ,  ,f x G x u x x R  (9) 
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The nonholonomic motion planning problem is to find 

control inputs steering the system (9) from a given initial 
configuration x0 to a final state xf in time T for the minimum 
control energy. Assuming that the system is controllable 
[15], there must exist a solution u∈L2([0, T]) for the prob-
lem. Here, L2([0, T]) denotes the Hilbert space of measura-
ble vector functions of the form u(t), t∈[0, T]. Based on the 
law of minimal energy control, dissipated energy of each 
rotation joint of a free-falling cat is chosen to minimize the 
cost function. It can be described as follows: 

 0
min ( ) , d ,

subject to    ( )

f t

T .





 


T

f

u u u

x x
 (10) 

Thus, the problem of nonholonomic motion planning is 
equivalent to an infinite dimensional optimization problem. 
We can use the calculus of variations to find the necessary 
optimality conditions for the above nonlinear optimal con-
trol problem. Since the system is nonlinear, the optimal 
control depends on the solution of the nonlinear multi-point 
boundary value problem [10,11]. Numerical schemes such 
as multi-point shooting method and quasi-linearization 
method can be used to solve the boundary value problem. 
However, one needs to have a close solution to the optimum 
point in order to ensure the convergence of these numerical 
algorithms. Also, since only necessary conditions are satis-
fied, it is not guaranteed that the solution is a minimum 
point to the optimization problem. For complicated under-
actuated systems like the rigid spacecraft with two wheels, 
it is a very difficult task to compute the optimal conditions. 

The problems mentioned above can be overcome by us-
ing the control parameterization method. Using the parame-
terization of the control variables, one can transform the 
infinite dimensional optimization problem to a finite dimen-
sional problem. In this paper, each control input is approx-
imated by the cubic spline control. The cubic spline inter-
polation is a most common piecewise-polynomial approxi-
mation. It is not only continuously differentiable on the in-
terval, but also has a continuous second derivative. Given a 
set of nodes 0= t0 <t1 <   < tN = T, and the values of con-
trol inputs in those nodes  = [u0, u1,  , uN]T, a natural 
cubic spline approximation can be constructed [16]  

 ( ) ( , ),   [0, ].u t S t t T   (11) 

Taking  as a new control vector and applying the theory 
of penalty function, substituting eq. (11) to eq. (10), one can 
obtain 

 
T 22

0
( , ) [ ( , )] d ( ) ,fF S t t f x   λ λ λ  (12) 

where  is a penalty parameter. Solution  can be obtained 
through minimizing the unconstrained optimization problem 
given by eq. (10). The limit of  is the solution of the prob-
lem given by eq. (10) as .  

Because the cubic spline approximation has a continuous 
second derivative, and the initial value of control input can 
be predefined as arbitrary value, the resulting control inputs 
are easily generated by motors. 

4  The optimal control with particle swarm op-
timization 

In the particle swarm algorithm, the trajectory of each indi-
vidual in the search space is adjusted by dynamically alter-
ing the velocity of each particle, according to its own flying 
experience and the flying experience of other particles in 
the search space. The particles have a tendency to fly to-
ward better search areas over the course of a search process. 
The PSO algorithm is given as follows [17]:  

 1 1 2()( ) ()( ),t t i t g tV wV c rand P X c rand P X       (13) 

 1 1,t t tX X V    (14) 

where rand() generates uniformly distributed random fig-
ures in the range [0,1]. w is called the inertia weight and is 
less than 1, Vt and Xt represent the speed and the position of 
the particle at time t, Pi refers to the best position found by 
the particle, and Pg refers to the global best position found 
by the whole particle swarm. c1 and c2 are constants known 
as acceleration coefficients. 

The solution of unconstrained optimization problem (12) 
can be resolved by the PSO algorithm. Using the updating 
eqs. (13) and (14), the pseudo code for nonholonomic mo-
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tion planning is as follows: 
Begin 
    initialize the population and the penalty parameter 
     for(k=1 to M) 
        while(the error of the trajectory end-point<) 
           for(i=1 to N) 
             calculate the fitness F(Xi), update Pi and Pg 

             Vt+1=wVt+c1rand()(PiXt)+c2rand()(PgXt) 
             Xt+1 = Xt+ Vt+1 

           increase i 
        end while 
     r=cr 
increase k 
end. 
 
where, M is the changing times of penalty parameter r, N is 
the number of particles in the PSO algorithm, and c>1 is a 
scale factor. The penalty parameter r increases with the 
running of the optimal process. The parameters, , in eq. 
(12) correspond to Xi in eqs. (13) and (14). 

5  Numerical simulation  

Assume that during the process of a cat’s free falling, only 
its spine bends and there is no rotation between the front 
and rear body. Also assume that the cat bends its spine for-
ward to all the directions in turn and keeps angle  constant. 
When the front body of cat finishes a circle motion, the 
whole body of cat turns p in the reverse direction, i.e. when 
the angle  changes from 0 to 2, the angle  changes from 
0 to . From the experimental data, ≈3, || 1. In the 
simulation experiment, let =3, =0.01, parameters N=20, 
=120 diag[30 7.8 2.5], =194.85, e=106, the time interval 
of falling t=1 s. The prescribed time space in simulation 
computation is 0.05 s. 

We denote the initial position and the end position of a 
free-falling cat as: 

 T T
0 (0   π 6    0) ,  (2π π/6  π ) .  fx x   

The control inputs are approximated by cubic spline inter-
polation. Six parameters and 10 parameters are selected to 
construct the cubic spline function and the initial values and 
final values are predefined as zero. The number of particles 
in the PSO algorithm is set as 15. 

In case 1, the optimal parameterization vectors, 1=(0, 
7.6304, 6.9315, 6.1626, 7.9481, 0)T for u1 and 2=(0, 0.9617, 
0.2293, 1.4009, 3.9462, 0)T for u2, are obtained by the 
PSO algorithm. The energy of the optimal trajectory equals 
J = 46.6951. The simulation results are shown in Figures 3 
and 4. Figure 3 shows plots of the optimal control inputs for 
the middle joint of the double rigid body. Figure 4 shows 
the attitude optimal trajectories of the cat during its falling. 
In case 2, the optimal parameterization vectors, 1=(0, 

7.3156, 6.2829, 7.3269, 7.3731, 6.3557, 6.2621, 5.9847, 
7.0186, 0)T for u1 and 2=(0, 1.5054, 0.1261, 0.4861, 
1.7109, 4.4987, 3.4949, 1.6012, 0.1889, 0)T for u2, are 
obtained by the PSO algorithm. The energy of the optimal 
trajectory equals J = 45.7667. The simulation results are 
shown in Figures 5 and 6. Figure 5 shows plots of the opti-
mal control inputs for the middle joint of the double rigid 
body. Figure 6 shows the attitude optimal trajectories of the 
cat during its falling. The two ends of the curves are indi-
vidually the initial point and the landing point. Compared 
with the Fourier series approximation, J = 29.7 units energy 
is saved by using the spline approximation that both of the 
initial values and final values of the control are zero. From 
Figures 4 and 6, it can be seen that the control inputs start at 
zero values and land on zero values also. It is obvious the 
cat experiences a steady rotation. There is no detour behav-
ior in the turndown motion. We can see the bending angle 
has a small amplitude variation in Figures 4 and 6. These 
simulation results are very inosculate to the experimental 
record. 

 
Figure 3  Optimal trajectory for the attitude angle (n=4). 

 

Figure 4  The optimum control input for a free-falling cat (n=4). 
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Figure 5  Optimal trajectory for the attitude angle (n=8). 

 

Figure 6  The optimum control input for a free-falling cat (n=8). 

6  Conclusion 

From the modeling of a free-falling cat and numerical anal-
ysis, we get the following conclusions. Firstly, the nonlinear 
control problem of a free-falling cat can be transformed to a 
nonholonomic motion planning problem of a driftless sys-
tem. It can be solved effectively by spline approximation, 
which implements the attitude planning of a free-falling cat 
and the optimal of control input. During the simulation 
computation, the spline approximation method shows fast 
convergence speed and good accuracy. 

Secondly, in the motion planning method that control 
inputs are parameterized Fourier series and wavelet ap-
proximation [14,18], smooth control trajectories are ob-
tained. However, the start and final values of control inputs 
are non-zero values and they are not easy to implement with 
typical servomotors. Comparing with Fourier approximation 
method, one can find that excellent performance has been 
obtained by the proposed method in this paper. The result-

ing control inputs are smooth and start at zero values and 
land on zero values also. 

Thirdly, the Newtonian algorithm for the nonholonomic 
motion planning is sensitive to the initial value. For differ-
ent initial values, different local optima can be obtained. 
The PSO is insensitive to the initial values, and stands a 
good chance of finding the global optimum. A PSO algo-
rithm is proposed to resolve the nonholonomic motion 
planning, which is parameterized by spline approximation. 
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