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Abstract The main purpose of this paper is to prove the well-posedness of the two-dimensional Boussinesq

equations when the initial vorticity ω0 ∈ L1(R2) (or the finite Radon measure space). Using the stream function

form of the equations and the Schauder fixed-point theorem to get the new proof of these results, we get that

when the initial vorticity is smooth, there exists a unique classical solutions for the Cauchy problem of the two

dimensional Boussinesq equations.
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1 Introduction

In this paper, we consider the following two-dimensional Boussinesq equations
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut − μ�u + u · ∇u + ∇p = θf, (x, t) ∈ R2 × [0, T ),
θt − νΔθ + u · ∇θ = 0, (x, t) ∈ R2 × [0, T ),
div u = 0, (x, t) ∈ R2 × [0, T ),
u |t=0= u0, θ |t=0= θ0 x ∈ R2.

(1.1)

The unknown functions here are u = u(x, t) = (u1(x, t), u2(x, t)), θ = θ(x, t) and p = p(x, t),
which stand for the velocity field, the temperature function and the pressure of the flow, re-
spectively. The given functions u0 = u0(x), θ0 = θ0(x) are the initial velocity and the initial
temperature, respectively. Moreover, μ > 0 is the constant coefficient of fluid viscosity and
ν > 0 is the constant coefficient of heat conduction. For simplicity, we assume that μ = ν = 1.

Taking the curl on both sides of the first equation in (1.1), and denoting by ω = curlu the
vorticity, we get

⎧
⎪⎨

⎪⎩

ωt −�ω + u · ∇ω = curl(θf), (x, t) ∈ R2 × [0, T ),
θt − Δθ + u · ∇θ = 0, (x, t) ∈ R2 × [0, T ),
divu = 0, (x, t) ∈ R2 × [0, T ),

(1.2)

with the initial data
ω(x, 0) = ω0, θ(x, 0) = θ0, x ∈ R2. (1.3)
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When θ = 0 in (1.1), it is clear that (1.1) becomes the incompressible Navier-Stokes equa-
tion. Since then, in the case that u0 ∈ L2(Ω), the uniqueness and the regularity of the
weak solutions and the global (in time) existence of strong solutions have been extensively
investigated (see [1, 7–9, 11–13] and references therein). The strong well-posedness is only
local in time if n=3. F.J. McGrath[10] proved the existence and uniqueness of classical so-
lutions of the non-stationary Navier-Stokes and Euler equations in the entire plane R2 when
ω0(x) ∈ L1(R2)∩C2,λ(R2), 0 < λ < 1. M. Ben-Artzi[3] constructed the unique smooth solutions
to the Navier-Stokes equations of incompressible flow in the whole plane under the assumption
that the initial vorticity belongs to L1(R2) or the finite Radon measure space. Moreover, the
large-time behavior was investigated in [3].

In the case that u0(x) ∈ L2(R2), θ0(x) ∈ L2(R2), the well-posedness of the problem (1.1)
was proved in [6]. Chae and Nam[4] proved the local existence of classical solutions in Hm(R2)
with μ = ν = 0. The main purpose of this paper is to prove the well-posedness of (1.1) when
the initial vorticity ω0 ∈ L1(R2) (or the finite Radon measure space). Since the equations in
(1.1) have more coupled nonlinear terms between the velocity and the temperature function,
the problem becomes more difficult. In this paper, we use the stream function form of the
equations and the Schauder fixed-point theorem to get the new proof of these results. The use
of the stream function equations results in stronger differentiability requirements on the initial
data.

The main result of this paper can be stated as

Theorem 1.1. Assume that for some 0 < λ < 1, ω0(x) ∈ L1(R2) ∩ C2,λ(R2), θ0(x) ∈
C2,λ(R2), f ∈ W 1,∞(QT ) ∩ W 1,1(QT ). Then there exists a solution (ω, θ) of (1.2)–(1.3) such
that

(a) The solution is classical: all derivatives appearing in (1.2) are continuous in R2×(0,∞).
(b) ω(x, t), θ(x, t), u(x, t) are continuous and uniformly bounded in R2 × (0,∞).
(c) ω(x, t), θ(x, t) ∈ L∞(0, T ; L1(R2)).
(d) For any T > 0,

sup
0≤t≤T,|x|>R

|u(x, t)| → 0, as R → ∞.

sup
0≤t≤T,|x|>R

|θ(x, t)| → 0, as R → ∞.

Moreover, under conditions (a)–(d) the solution is unique.

2 The Case of Smooth Initial Data

It is known that the velocity can be recovered by

u(x, t) = (K ∗ ω)(x, t) =
∫

R2
K(x − y)ω(y, t)dy, (2.4)

where
K(x) =

1
2π

|x|−2(−x2, x1). (2.5)

The relation (2.5) is called Biot-Savart law. Note that ∇ · K = 0, which implies the
incompressibility condition ∇ · u = 0.

Define

B =
{
ω : ω ∈ C(QT ) ∩ L∞(QT ) ∩ L∞(0, T ; L1(R2)), ‖ω‖L∞(QT ) + ‖ω‖L∞(L1(R2))

≤ ‖ω0‖L∞(R2)| + ‖ω0‖L1(R2) + T ‖θ0‖L∞(R2)‖∇f‖L∞(QT ) + T
1
2 ‖f‖L1(QT )

+ T
3
2 ‖f‖L∞(QT ) + ‖θ0‖L∞(R2)‖∇f‖L1(QT )

}
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We should note that B is a closed convex subset of C(QT ). We will construct a mapping A
which maps B into itself in such a way that a fixed point of A is a solution of (1.2) .

To this end, for ω ∈ B, we first define A1ω = a in the following way

a(x, t) =
−1
2π

∫

R2
ω(ξ, t)

xi − ξi

|x − ξ|2 dξ

for all (x, t) ∈ QT and i = 1, 2.
Then, for each a ∈ A1B, let La be the linear parabolic operator

La = ∂t − Δ + a · ∇.

Define the operator N by Na = θ where θ ∈ C(QT ) is the solution of
{

Laθ(x, t) = 0,

θ(x, 0) = θ0(x)
(2.6)

for all x ∈ R2, t > 0.
Once θ is defined by (2.6), we define the operator A2 by A2a = v where v ∈ C(QT ) is the

solution of {
Lav(x, t) = curl(θf),
v(x, 0) = ω0(x),

(2.7)

for all x ∈ R2, t > 0.
Finally, we define the operator A by A = A2A1. Then, we have

Theorem 1.2. For each a ∈ A1B, there exists a unique fundamental solution Γa(x, t; ξ, s)
corresponding to La which has the following properties:

i) Γa is defined if (x, t), (ξ, s) ∈ QT and t > s.
ii) For any fixed (ξ, s) ∈ QT , Γa satisfies LaΓa = 0 as a function of (x, t) (x ∈ R2, s < t ≤

T ).
iii) If f is continuous on R2, then

lim
t→s

∫

R2
Γa(x, t; ξ, s)f(ξ)dξ = f(x).

iv) Γa(x, t; ξ, s) > 0, for t > s.

v)
∫

R2
Γa(x, t; ξ, s)dξ = 1, for t > s.

vi) v = A2a is given by

v(x, t) =
∫

R2
Γa(x, t; ξ, 0)ω0(ξ)dξ −

∫ t

0

∫

R2
Γa(x, t; ξ, s)curl(θf)(ξ, s)dξds.

And θ is given by

θ(x, t) =
∫

R2
Γa(x, t; ξ, 0)θ0(ξ)dξ.

vii) The second derivatives of v are bounded on QT .

Proof. The proof can be found in [10] and we omit it here. �

Now we state some properties of the fundamental solution.

Lemma 1.1. Let L∗
a = ∂t + Δ − a · ∇ be the adjoint operators of La and Γ∗

a(x, t; ξ, s) be the
fundamental solution for L∗

a. Then we have

Γa(x, t; ξ, s) = Γ∗
a(x, t; ξ, s)
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for all a ∈ A1B; x, ξ ∈ R2 and 0 ≤ s < t ≤ T .
Moreover,

|Γa(x, t; ξ, s)| < C(t − s)−1 exp[−C|x − ξ|2/(t − s)], (2.8)
∣
∣
∣
∂Γa

∂xi
(x, t; ξ, s)

∣
∣
∣ < C(t − s)−

3
2 exp[−C|x − ξ|2/(t − s)], (2.9)

|Γ∗
a(x, t; ξ, s)| < C(t − s)−1 exp[−C|x − ξ|2/(t − s)], (2.10)

∣
∣
∣
∂Γ∗

a

∂xi
(x, t; ξ, s)

∣
∣
∣ < C(t − s)−

3
2 exp[−C|x − ξ|2/(t − s)]. (2.11)

In these estimates the constants C, C can be chosen independently of a ∈ A1B.

Proof. The proof can be seen in [10] and we omit it here. �

By the maximum principle for parabolic equations, it is easy to get

‖θ‖L∞(QT ) ≤ ‖θ0‖L∞(R2),

and

‖v‖L∞(QT ) ≤‖ω0‖L∞(R2) + T ‖∇θf‖L∞(QT ) + T ‖θ∇f‖L∞(QT )

≤‖ω0‖L∞(R2) + T ‖∇θ‖L∞(QT )‖f‖L∞(QT ) + T ‖θ‖L∞(QT )‖∇f‖L∞(QT )

≤‖ω0‖L∞(R2) + T ‖∇θ‖L∞(QT )‖f‖L∞(QT ) + T ‖θ0‖L∞(R2)‖∇f‖L∞(QT ).

Lemma 1.2. If a ∈ A1B, θ0 ∈ C2,λ(R2), then ‖∇θ‖L∞(QT ) ≤ M .

Proof. For a = A1ω with ω ∈ B, we write

θ(x, t) = θ1(x, t) + θ0(x, t)

where θ1(x, t) satisfies
Laθ1(x, t) = −Laθ0(x), θ1(x, 0) = 0.

Note that −Laθ0(x) ∈ Cλ,0(QT ) and ‖ − Laθ0(x)‖L∞(QT ) < C, where C is independent of
a ∈ A1B. Using Theorem 1.2, we obtain

θ1(x, t) = −
∫ t

0

∫

R2
Γa(x, t; ξ, s)[−Laθ0](ξ, s)dξds.

For a ∈ A1B, it follows from (2.9) that

∣
∣
∣
∂θ1

∂xi
(x, t)

∣
∣
∣ ≤C

∫ T

0

∫

R2

(t − s)−
3
2 exp

[
− C|x − ξ|2

t − s

]
dξds

=
πC

C

∫ T

0

(t − s)−
1
2 ds

≤2πC

C
T

1
2 , (2.12)

where C, C are constants and i = 1, 2. The proof of the lemma is finished.
By Lemma 1.2, we have

‖v‖L∞(QT ) ≤ ‖ω0‖L∞(R2) + T
3
2 ‖f‖L∞(QT ) + T ‖θ0‖L∞(R2)‖∇f‖L∞(QT ) < ∞. (2.13)

�
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This and the following Lemma imply that AB ⊂ B.

Lemma 1.3. If v ∈ AB, then v ∈ L∞([0, T ]; L1(R2)) and

‖v‖L∞([0,T ];L1(R2)) ≤ ‖ω0‖L1(R2) + T
1
2 ‖f‖L1(QT ) + ‖θ0‖L∞(R2)‖∇f‖L1(QT ).

Proof. It follows from Theorem 1.2 that
∫

R2
|v(x, t)|dx

≤
∫

R2
|ω0(ξ)|dξ

∫

R2
Γa(x, t, ξ, 0)dx

+
∫ t

0

∫

R2
|curl(θf)(ξ, τ)|dξdτ

∫

R2
Γa(x, t, ξ, τ)dx

≤
∫

R2
|ω0(ξ)|dξ

∫

R2
Γa(x, t, ξ, 0)dx +

∫ t

0

∫

R2
|∇θf |dξdτ

×
∫

R2
Γa(x, t, ξ, τ)dx +

∫ t

0

∫

R2
|θ∇f |dξdτ

∫

R2
Γa(x, t, ξ, τ)dx

≤‖ω0‖L1(R2) + ‖∇θ‖L∞(QT )‖f‖L1(QT ) + ‖θ‖L∞(QT )‖∇f‖L1(QT )

≤‖ω0‖L1(R2) + T
1
2 ‖f‖L1(QT ) + ‖θ0‖L∞(R2)‖∇f‖L1(QT ) < ∞. (2.14)

�

By (2.13), Lemma 1.3, the fact that AB ⊂ B has been proved.

Lemma 1.4. There exists a constant M such that for all v ∈ AB and

‖∇v‖L∞(QT ) < M.

Proof. The proof is similar to that of [10], and we give the sketch here.
For v = A2a ∈ AB, we write

v(x, t) = v1(x, t) + ω0(x),

where v1(x, t) satisfies
Lav1(x, t) = −Laω0(x), v1(x, 0) = 0.

Note that −Laω0(x) ∈ Cλ,0(QT ) and ‖ − Laω0(x)‖L∞(QT ) < C, where C is independent of
a ∈ A1B. Using Theorem 1.2, we have

v1(x, t) = −
∫ t

0

∫

R2
Γa(x, t, ξ, s)[−Laω0](ξ, s)dξds.

Then
∣
∣
∣
∂v1

∂xi
(x, t)

∣
∣
∣ ≤C

∫ T

0

∫

R2

(t − s)−
3
2 exp

[
− C|x − ξ|2

t − s

]
dξds

=
πC

C

∫ T

0

(t − s)−
1
2 ds

≤2πC

C
T

1
2 , (2.15)
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which implies
‖∇v‖L∞(QT ) ≤ M = CT

1
2 .

�

In the following, we will prove that AB is a relatively compact subset of C(QT ), which is
needed to apply the Schauder fixed point theorem. We first give the following lemma which
extends the usual version of Ascoli’s theorem to a class of continuous functions defined on an
unbounded set (see [10]).

Lemma 1.5. If {un}∞n=1 is equicontinuous and uniformly bounded on QT , and if given ε > 0
there exists P > 0 such that (x, t) ∈ QT and |x| ≥ P imply |un(x, t)| ≤ ε for n = 1, 2, 3 · · · ,
then there exists a subsequence of {un} that convergence uniformly on QT .

Next we prove the equicontinuous.

Lemma 1.6. For a ∈ B, let v = A2a ∈ AB. Then v is equicontinuous on QT .

Proof. Due to Lemma 1.4, we only need to prove the continuity of v(x, t) with respect to t.
Let 0 ≤ t2 ≤ t1 ≤ T. Using Theorem 1.2 v) yields

v(x, t2) = v(x, t2)
∫

R2
Γa(x, t1; ξ, t2)dξ.

Using Theorem 1.2 v) yields

v(x, t1) =
∫

R2
Γa(x, t1; ξ, t2)v(ξ, t2)dξ −

∫ t1

t2

∫

R2
Γa(x, t1; ξ, s)curl(θf)(ξ, s)dξds.

Then for any x ∈ R2, we have

|v(x, t1) − v(x, t2)| ≤
∫

R2
|Γa(x, t1; ξ, t2)||v(ξ, t2) − v(x, t2)|dξ

+
∫ t1

t2

∫

R2
|Γa(x, t1; ξ, s)||curl(θf)(ξ, s)|dξds

=I1 + I2. (2.16)

Now we estimate I1 and I2. Using Theorem 1.2 iv) and v), we have

I2 ≤ ‖curl(θf)‖L∞(QT )(t1 − t2).

By Lemma 1.4 and (2.8), we get

I1 < CM

∫

R2
(t1 − t2)−1|x − ξ| exp[−C|x − ξ|2/(t1 − t2)]dξ,

where C, C and M are constants independent of v ∈ AB. Noting that

[|x − ξ|2/(t1 − t2)]
1
2 exp

[
− 1

2
C|x − ξ|2/(t1 − t2)

]
dξ

uniformly with respect to x, ξ ∈ R2 and 0 ≤ t2 < t1 ≤ T, we obtain

I1 < C1

∫

R2
(t1 − t2)−

1
2 exp

[
− 1

2
C|x − ξ|2/(t1 − t2)

]
dξ = C1(t1 − t2)

1
2 .

The proof of the lemma is finished. �

Concerning the uniform behavior at infinity, we have
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Lemma 1.7. For any ε > 0, there exists a n > 0 such that
∫

R2−B(0,n(ε))

|v(x, t)|dx < ε

for all v ∈ AB, 0 < t ≤ T.

Proof. Thanks to (2.8) and Theorem 1.2, there exists constants C and C such that for any
all v ∈ AB and all (x, t) ∈ QT , we have

|v(x, t)| ≤ C[h1(x, t) + h2(x, t)],

where
h1(x, t) =

∫

R2
|ω0(ξ)|t−1 exp[−C|x − ξ|2/t]dξ

and

h2(x, t) =
∫ t

0

∫

R2
(t − s)−1 exp[−C|x − ξ|2/(t − s)] |curl(θf)(ξ, s)|dξds.

For n > 0 and 0 < t ≤ T , one has
∫

R2−B(0,n)

h1(x, t)dx

=
∫

R2
|ω0(ξ)|dξ

∫

R2−B(0,n)

t−1 exp[−C|x − ξ|2/t]dx

=
∫

R2−B(0,n/2)

dξ

∫

R2−B(0,n)

dx +
∫

B(0,n/2)

dξ

∫

R2−B(0,n)

dx

=I1 + I2. (2.17)

Direct estimates yield

I1 ≤
∫

R2−B(0,n/2)

dξ

∫

R2
dx ≤ π

C

∫

R2−B(0,n/2)

|ω0(ξ)|dξ,

I2 ≤ t−1 exp
[
− 1

2
C

(n

2

)2

t−1
] ∫

B(0,n/2)

|ω0(ξ)|dξ

∫

R2−B(0,n)

t−1 exp[−C|x − ξ|2/2t]dx

≤ 8[eCn2]−1

∫

R2
|ω0(ξ)|dξ

∫

R2
t−1 exp[−C|x − ξ|2/2t]dx

≤ Cn−2‖ω0‖1. (2.18)

Moreover, one has
∫

R2−B(0,n(ε))

h2(x, t)dx

=
∫ t

0

∫

R2−B(0,n)

dx ×
∫

R2
(t − s)−1 exp[−C|x − ξ|2/(t − s)] |curl(θf)(ξ, s)|dξds

≤ π

C

∫ t

0

[ ∫

R2−B(0,n(ε))

|curl(θf)(ξ, s)|dξ + Cn−2
]
ds. (2.19)

Using the estimates (2.17) and (2.19), we finish the proof of the lemma. �

Lemma 1.8. The operator A : B → B is continuous.
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Proof. Let {ωn}∞n=0 ⊂ B and ‖ωn−ω0‖L∞(QT ) → 0 as n → ∞. Let an = A1ωn and vn = Aωn.

Then
‖an − a0‖L∞(QT ) = ‖A1ωn − A1ω0‖L∞(QT ) → 0

as n → ∞.

Let θn, θ0 satisfy

Lanθn = ∂tθn −�θn + an · ∇θn = 0,

La0θ0 = ∂tθ0 −�θ0 + a0 · ∇θ0 = 0,

respectively.
Then

Lan(θn − θ0) =Lanθn − La0θ0 + La0θ0 − Lanθ0

=Lanθn − (Lan − La0)θ0 − La0θ0

=(La0 − Lan)θ0 = (a0 − an) · ∇θ0 (2.20)

with initial data
(θ0 − θn)|t=0 = 0.

By the maximum principle for parabolic equations and Lemma 1.2, one has

‖θn − θ0‖L∞(QT ) ≤ T ‖a0 − an‖L∞(QT )‖∇θ0‖L∞(QT ) → 0, (2.21)

as n → ∞.

By Theorem 1.2 vi), integrating by parts over R2, we get

∇θn(x) =
∫

R2
∇xΓan(x, t; ξ, 0)θ̃0(ξ)dξ =

∫

R2
∇ξΓan(x, t; ξ, 0)θ̃0(ξ)dξ

= −
∫

R2
Γan(x, t; ξ, 0)∇ξ θ̃0(ξ)dξ, (2.22)

where θ̃0 is the initial data.
By (2.8) and the assumption that θ0(x) ∈ C2,λ(R2), we get

‖∇θn‖L∞(QT ) ≤ C

∫

R2
(t − s)−1 exp[−C|x − ξ|2/(t − s)]dξ ≤ C. (2.23)

Similar arguments yield
‖∇θ0‖L∞(QT ) ≤ C.

Let vn, v0 satisfy

∂tvn −�vn + an · ∇vn = curl(θnf),
∂tv0 −�v0 + a0 · ∇v0 = curl(θ0f),

respectively. Then we have

∂t(vn − v0) −�(vn − v0) + an · ∇(vn − v0) + (an − a0) · ∇v0

=curl((θn − θ0)f). (2.24)
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Multiply (2.24) by (vn − v0) and integrate over R2 to obtain

1
2

d

dt
‖vn − v0‖2

2 + μ‖∇(vn − v0)‖2
2

≤‖vn − v0‖2‖∇v0‖2‖an − a0‖∞ + ‖θn − θ0‖∞‖f‖2‖∇(vn − v0)‖2

≤C‖vn − v0‖2
2‖an − a0‖∞ + C‖∇v0‖2

2‖an − a0‖∞
+ C‖θn − θ0‖2

∞‖f‖2
2 +

μ

2
‖∇(vn − v0)‖2

2. (2.25)

Thus

1
2

d

dt
‖vn − v0‖2

2 +
μ

2
‖∇(vn − v0)‖2

2

≤C‖vn − v0‖2
2‖an − a0‖∞ + C‖∇v0‖2

2‖an − a0‖∞ + C‖θn − θ0‖2
∞‖f‖2

2. (2.26)

By Gronwall’s inequality, we have

‖vn − v0‖L∞(L2) → 0, (2.27)
‖∇vn −∇v0‖L2(QT ) → 0 (2.28)

as n → ∞.
Similar to (2.22), by Theorem 1.2 vi), we get

∇xvn(x, t) =
∫

R2
∇xΓan(x − y, t)ṽ0(y)dy

+
∫ t

0

∫

R2
∇xΓan(x − y, t − s)curl(θnf)(y, s)dyds

= −
∫

R2
Γan(x − y, t)∇yṽ0(y)dy

+
∫ t

0

∫

R2
∇xΓan(x − y, t − s)curl(θnf)(y, s)dyds, (2.29)

where ṽ0 is the initial data. Then we have

‖∇xvn‖L∞(QT )

≤C‖∇ṽ0‖∞ + ‖curl(θnf)‖L∞(QT )

∫ t

0

∫

R2
∇xΓan(x − y, t − s)dyds

≤C. (2.30)

Similar estimates give
‖∇v0‖L∞(QT ) ≤ C.

By the Gagliardo-Nirenberg inequality, we get that

‖vn − v0‖L∞(QT ) ≤‖∇vn −∇v0‖
1
2

L∞(QT )
‖vn − v0‖

1
2
L∞(L2)

≤C(‖∇vn‖L∞(QT ) + ‖∇v0‖L∞(QT ))‖vn − v0‖
1
2
L∞(L2)

≤C‖vn − v0‖
1
2
L∞(L2). (2.31)

Hence, using (2.27), we get
‖vn − v0‖L∞(QT ) → 0
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as n → ∞.
The proof of the lemma is finished. �

Proof of Theorem 1.1. Since A is continuous, the Schauder fixed point theorem yields ω ∈ B
such that ω = Aω. The uniqueness is shown by a similar argument to [10]. �

Remark 1.1. The maximum principle can be applied to (2.6) and its dual since ∇ · u = 0.
We can therefore conclude (for the solution of (1.2)) that

‖ω(·, t)‖1 ≤ ‖ω0‖1, ‖θ(·, t)‖1 ≤ ‖θ0‖1,

and
‖ω(·, t)‖∞ ≤ ‖ω0‖∞ + C(T )‖θ0‖W 1,∞ , ‖θ(·, t)‖∞ ≤ ‖θ0‖∞

for t > 0 and by interpolation,

‖ω(·, t)‖p ≤ ‖ω0‖p + C(T )‖θ0‖W 1,∞ , 1 ≤ p ≤ ∞,

‖θ(·, t)‖p ≤ ‖θ0‖p, 1 ≤ p ≤ ∞.
(2.32)

Remark 1.2. When the initial vorticity belongs to L1(R2) (or the finite Radon measure
space), whether (1.2) has global solution is still unknown. We will study it in future works.
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