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a b s t r a c t

The present paper investigates the influences of surface tension and the stress distribution
in the bulk induced by the surface tension, surface curvature and ions’ diffusion on the
elastic properties of nanostructures. In the electro-chemical diffusion process, the surface
tension, ions diffusion and stress distribution will strongly dependent with each other.
Here, considering the curvature effect, a surface elastic model coupled with the ions diffu-
sion is proposed. In the model, the coupling between the stress and ions diffusion is
revealed through the chemical potential variation. To reveal the curvature effect on the
surface energy, a Tolman length for solid is introduced. As a typical application of the
model, we analyze the stress distributions in the silicon anode of the lithium ion battery.
In recent years, silicon, due to large theoretical energy density, becomes one of the prom-
ising candidate anode materials. However, huge volume changes of silicon in charging and
discharging process hinders its application. We depict the stresses provenance and evolu-
tion of hollow nanosphere and nanotube induced by lithium ions diffusion. Self-buckling
induced by surface stresses of the two nanostructures is also taken into consideration. Crit-
ical buckling sizes are analyzed. All results show that hollow nanosphere will be a more
suitable structure for electrode. Finally, a new dimensionless number j related to Young’s
modulus, Tolman length and surface energy is proposed to estimate the relative impor-
tance of the Tolman length with the intrinsic material length. It is believed that the diffu-
sion and curvature dependent surface elastic model will be a powerful tool to investigate
the diffusion behaviors in nanostructured electrode.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Rechargeable lithium ion batteries become the most suitable energy carrier for portable electro-equipments, electromo-
biles and high performance computing, not only for the high energy density and low cost, but also for the environmental
needs for energy storage (Nazri & Pistoia, 2003). However, the low energy density of traditional carbonaceous materials
(for graphite 372 mAhg�1) as the anode material for commercial lithium ion batteries cannot meet the requirements for
more applications and has become the choke point for developments of batteries. Lots of high capacity substitutes to carbo-
naceous materials were investigated (Bruce, Scrosati, & Tarascon, 2008), such as antimony (660 mAhg�1) (He et al., 2007), tin
(994 mAhg�1) (Kwon, Kim, Kim, Lee, & Cho, 2006). Compared with these materials, energy density of silicon is one order of
magnitude higher, which is about 4200 mAhg�1 (Boukamp, Lesh, & Huggins, 1981). Therefore, silicon will be a more suitable
promising anode material. Nevertheless, loss of electrical contact due to the fracture and crack induced by huge volume
. All rights reserved.
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Fig. 1. Stress-induced pulverization of 1–5 lm Silicon particles cycled at �0.05 C for (a) 0 cycle and (b) 200 cycles.
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change (�400%) in charging and discharging cycles hinders its application. During the charging and discharging process, the
Li ions move from one electrode through electrolyte to the other. The electrons to-and-fro movements induce the current
flow in circuit. The silicon electrode deforms hugely because large number of Li ions jam into the lattice and form full
charged state of Li22Si5. The Young’s modulus of silicon decreases in an approximately linear manner with increasing Li con-
centration leading to significant elastic softening (Shenoy, Johari, & Qi, 2010). The lattices of electrodes are always con-
strained by the substrate, or the mismatch between grains of different crystalline orientations (Hu, Zhao, & Suo, 2010).
The stress field is induced when the Li ions keep diffusing in and out of the electrodes. Cracks and fragmentation gradually
form. Several cycles latter, the electrode will break into pieces even into powders. Battery failure occurs due to loss of elec-
trical contact. Fig. 1 is a scanning electron microscope picture taken in our experiments for silicon particles with average
particle sizes 1–5 lm cycled at �0.05 C for 0 cycle and 200 cycles, which vividly show the pulverization process.

In recent years, researches demonstrated that using nanostructured electrode can effectively circumvent the fragmenta-
tion. In the low-dimensional nanostructures, like nanoparticles, nanowires and nanofilms, the surface-to-volume ratios are
very large. The surface effects will significantly affect the properties of the nanomaterials. Morozov and his coworkers estab-
lished the linear and nonlinear theory of shells with the surface stresses and proved that the surface stresses are responsible
for the size effect, especially in modeling nanostructures (Altenbach & Eremeyev, 2011; Altenbach, Eremeyev, & Morozov,
2009; Altenbach, Eremeyev, & Morozov, 2010). Some previous researches have proved that nanostructures can accommo-
date the volume changes well and have longer stability in terms of cycle life and less fading of capacity (Chan et al.,
2008; Kasavajjula, Wang, & Appleby, 2007; Song et al., 2010; Teki et al., 2009). Consequently, it is necessary to clarify the
provenances and evolutions of stresses induced by ions diffusion in nanoscale electrode and, further, explore more suitable
nanostructures. At the very beginning, many researchers paid more attentions on the diffusion in the solid structures. Li and
Mehl studied the diffusion induced stresses in several solid microstructures (Li & Mehl, 1978). Paukshto established a cou-
pled nonlinear theory of diffusion in elastic media and provided some analytical solutions (Paukshto, 1999). Chu and Lee
investigated effect of chemical stresses on diffusion and showed that chemical stresses enhance the mass transfer due to
increasing diffusivity (Chu & Lee, 1994). Yang studied the interactions between the diffusion and chemical stresses and
established a relationship between hydrostatic stress and concentration of solute atoms (Yang, 2012). Furthermore, he used
the linear elasticity theory investigating the breakage behaviors in the active materials in the battery (Yang, 2010). Recently,
Haftbaradaran et al. got the relation of electrode size and charging rate, and proved that a surface locking instability once the
product between electrode dimension and charging rate exceeds a critical value (Haftbaradaran, Gao, & Curtin, 2010). How-
ever, with decreasing size of structure to nanoscale, surface effect plays a significant role that has effect on behaviors of
structures. Cheng et al. found that the effects of surface tension on diffusion induced stresses have much effect on the stres-
ses distribution if the structure in nanometer ranges (Cheng & Verbrugge, 2008; Cheng & Verbrugge, 2009). They also exam-
ined the crack formation in different scale electrodes (Li, Dozier, Li, Yang, & Cheng, 2011).

However, all researches mentioned have paid no attention on surface energy variation in nanoscale caused by diffusion
and curvature. Tolman found that for a nanosize liquid droplet, the surface energy will be affected by the curvature obviously
(Tolman, 1949). With decreasing of droplet size, the curvature modification cannot be neglected. Compared to nanodroplet,
the energy in nanoscale solid structures is also sensitive with the bond length or bond angle between atoms. The surface
energy of a curved surface will be quite different from its planer value and the similar modification also should be introduced
into a solid structure. Moreover, diffusion of ions on the surface will cause surface chemical potential and the surface strain
energy variation. Considering the electrochemistry reaction in the battery, electromotive force of the battery can be calcu-
lated through the chemical potential difference of two electrodes which can be represented by DG = � EeF. DG is the Gibbs
free energy, Ee is the electromotive force of the battery and F is Faraday constant. During the charging and discharging pro-
cess, accompanying by the ions moving into and out the electrode, the free energy of the electrode will change. Therefore,
considering structure curvature and ions diffusion in nanostructure, a suitable surface elastic model is still not available and
a better understanding is needed.

In the present paper, based on the previous work (Wang & Zhao, 2011; Wang, Zhao, & Huang, 2010), a surface elastic
model coupled with diffusion, curvature effect and residual stress is firstly proposed. Two typical nanostructures: hollow
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nanosphere (HNS) and nanotube (NT) were analyzed using this model. The origination and evolution of stresses in HNS and
NT induced by Li ions diffusion were depicted. Furthermore, critical buckling sizes of the two structures under the residual
stresses were analyzed. Using HNS, compared with the NT, will significantly reduce the magnitude of effective von Mises
stress under the same concentration of Li ions. Meanwhile, if the wall-thickness of HNS and NT is same, the critical buckling
radius of HNS will be larger than NT. A variety of choices in radius allow the HNS have more flexibility in designing and man-
ufacturing, Thus, HNS becomes a more suitable structure for electrode from the mechanical view.

2. Diffusion and curvature coupled surface elastic model

In this work, we use Gibbs surface model (Gibbs, 1961) which is modeled as a two-dimensional (2D) geometrical bound-
ary of bulk which extends uniformly right up to the mathematical surface with no thickness. The physical properties of the
geometrical surface are assigned to preserve the total physical properties of the system. The geometry and kinematics of a
deformable surface is similar with what have been proposed in previous work (Wang & Zhao, 2011; Wang et al., 2010). De-
tailed expressions of these notations are explained in Appendix A. In this paper, three surface stress tensors were introduced,
namely surface Cauchy stress tensor rs, the first surface Piola–Kirchhoff stress tensor Ss and the second surface Piola–
Kirchhoff stress tensor Ts, in which rs is the force measured per unit length in current configuration, Ss and Ts are in reference
configuration. Cs ¼ FT

s � Fs is surface deformation tensor in which Fs is surface deformation gradient tensor. Es is surface strain
tensor in reference configuration. These three stress tensors satisfy the following work conjugate relations:
_ws ¼ J2rs : _Es ¼ Ss : _Fs ¼
1
2

Ts : _Cs; ð1Þ
where c is the surface energy density in current configuration, J2 is the ratio between the area elements of after and before
deformations which is the second invariant of tensor Us (see Appendix) and ws = J2c is the surface energy per unit area of
surface A0 in reference configuration. The three surface stresses satisfy the following relations
Ss ¼ Fs � Ts;rs ¼
1
J2

Fs � Ts � FT
s : ð2Þ
For the surface, we can use the work conjugate relations to deduce constitutive relations. Generally, the surface energy den-
sity c is a function of the Us, furthermore, c can be written as a function of J1; J2 for an isotropic surface, in which J1 is the first
invariant of Us (J1 = trUs). Under the Lagrangian description, the constitutive relation can be written as
Ts ¼ 2
@ðJ2cÞ
@Cs

: ð3Þ
For small deformations, the J1; J2 can be rewritten as a function of Es:
J1 ¼ 2þ trEs; J2 ¼ 1þ trEs þ det Es: ð4Þ
c also can be expanded as a function of J1, J2 and the surface concentration of Li ions Cs:
c ¼ c0 þ c1ðJ1 � 2Þ þ c2ðJ2 � 1Þ þ 1
2
c11ðJ1 � 2Þ2 þ c12ðJ1 � 2ÞðJ2 � 1Þ þ 1

2
c22ðJ2 � 1Þ2 þ FðCsÞ þ � � � ; ð5Þ
where F(Cs) is the surface energy variation caused by ions diffusion (Belova & Murch, 1995):
FðCsÞ ¼ c3Cs þ c31CsðJ1 � 2Þ þ c32CsðJ2 � 1Þ þ c33C2
s : ð6Þ
Therefore, from the Eqs. (3)–(6) and neglecting higher-order small quantities, the surface constitutive relation can be ex-
pressed as
Ts ¼ 2
@ðJ2cÞ
@Cs

¼ c�0I0 þ ðc�0 þ c�1ÞtrðEsÞI0 þ ðc1 � 2c�0ÞEs þ aCsI0; ð7Þ
where c�0 ¼ c0 þ c1 þ c2; c�1 ¼ c1 þ 2c2 þ c11 þ 2c12 þ c22, a = c3 + c31 + c32. The surface energy in the absence of the external
loading c0, residual surface stress c�0 and surface elastic constants c1; c�1 are material properties intrinsic to the solid (Miller &
Shenoy, 2000) a is a constant which can reveal the diffusion properties of an isotropic surface.

What is more, as mentioned, the surface energy c should be modified for a curved surface, especially in nanosize. Tolman
put forward an equation to calculate surface energy for a curved surface of a droplet (Tolman, 1949). In Tolman’s work, based
on the Kelvin relation to describe the relation between pressure difference and curvature, the expression for the dependence
of surface tension on radius can be written as Gibbs–Tolman–Koenig–Buff (GTKB) differential equation (Mandell & Reiss,
1975):
1
c0

dc0

dr
¼

2d
r2 1þ d

r þ d2

3r2

� �
1þ 2d

r 1þ d
r þ d2

3r2

� � ; ð8Þ
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where r is the curvature radius for a surface, and d is the Tolman length which denotes the extent by which the surface ten-
sion of a small liquid drop deviates from its planar value. Integrating Eq. (8) from r =1 corresponding to a planar surface to
any radius r, and assuming c1 is the surface energy for a planar surface, the integral form for the Eq. (8) can be rewritten as
ln
c0

c1
¼
Z r

1

2d
r2 1þ d

r þ d2

3r2

� �
1þ 2d

r 1þ d
r þ d2

3r2

� � dr: ð9Þ
Considering d is a quantity of the order of average distance between atoms and treating it as a constant, neglecting d2 and d3

in the integration, we can get a simple equation:
c0 ¼
c1

1þ 2d
r

: ð10Þ
Finally, the c0 in Eq. (10) will be used in stress calculation. Here, we would like to give some more remarks on Tolman length.
In physical view, the d, which is the difference between the radii of the equimolar surface and the surface of tension, repre-
sents the size effect of surface tension. If a solid particle is large enough, the term d/r in denominator of Eq. (10) is a small
quantity and could be neglected. The surface tension will have no deviation from its planar value. However, in nanoscale, the
d/r is not a small quantity, and the surface tension c0 will have a huge variation compared with the planar value.

The Tolman length d is defined as:
d ¼ Re � Rs; ð11Þ
where Re and Rs are the radii of the equimolar surface and the surface of tension, respectively. The two radii Re and Rs can be
calculated using molecular dynamics (MD) simulations. The details to calculate the Tolman d will be given in next part.

The surface concentration of Li ions can be obtained through Fick’s second law (Li & Mehl, 1978; Paukshto, 1999)
�rsðMsCs
�rslsÞ ¼ @Cs

@t ;

ls ¼ ls0 þ RT ln Cs � 1
2 trðTsÞS;

(
ð12Þ
where �rS is the surface gradient operator in the current configuration, Ms is the molar mobility of solute in the surface, ls is
the surface chemical potential, ls0 is a constant, R is the gas constant, T is the absolute temperature and S is the partial molar
area. The chemical potential can be regarded as the reason for the variation of free energy DG = �EeF in the electrochemical
reaction.

The above all are constitutive relations for the surface. Considering a bulk material with the surface properties aforemen-
tioned, the surface tension induces a stress field in the bulk. According to Young-Laplace equations, the surface tension will
result in a non-classical boundary condition. The boundary condition together with the equations of classical elasticity forms
a coupled system of field equations to determine the stress distribution (Gurtin & Murdoch, 1978).

In the reference configuration, the elastic stress field TR in the bulk satisfies the generalized Young–Laplace equations
which also should be modified due the curvature effect:
TR � �rB ¼ 0 ðin the bulkÞ; ð13Þ

N � sTRt �N ¼ � c1�

1þ2d
r

I0 : b0

P0 � sTRt �N ¼ �r0s
c1�

1þ2d
r

� �
8<
: ðon the surfaceÞ; ð14Þ
in which �rB is the three-dimensional Laplace operator, c1� is residual surface stress for a plane surface, b0 is the surface cur-
vature tensors and P0 = 1 � N � N s the perpendicular projection of all vectors upon the space of tangential vectors in the
reference configuration, 1 is the identity tensor in 3D Euclidean space. r0s is the surface gradient operator in the reference
configuration.

Consequently, to determine the linear elastic constitutive relations for the nanostructure, the constitutive relations
should consider the residual stress effect rather than using the classical Hooke’s law (Hoger, 1986). For the bulk, the linear
elastic constitutive relations can be written as
T ¼ TR þ LðTR;C
0
BÞ : Eþ aBCB1; ð15Þ
where LðTR;C
0
BÞ is the incremental elastic modulus for the bulk, E is the infinitesimal strain, and aB is a constant which rep-

resents the diffusion properties for the bulk. The concentration of Li ions for the bulk can be determined through
�rBðMBCB
�rBlBÞ ¼

@CB
@t ;

lB ¼ lB0 þ RT ln CB � 1
3 trðTÞV ;

(
ð16Þ
where MB is the molar mobility for a solute in the bulk, lB is the Li ions chemical potential in the body and lB0 is a constant,
CB is the concentration of Li ions in the bulk, V is the partial molar volume. In these symbols, the subscript B represents the
properties or operators in the bulk.
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We can use all relations mentioned above to analyze stress distributions in two nanostructures: HNS and NT for nano-
structured electrode of Li ions batteries.
3. Two nanostructured electrodes analyses

Nanostructured electrodes will have genuine potential to make a significant impact on the performance of Li ions batter-
ies. Using nanostructred electrodes can increase the rate of lithium insertion and removal due to the short transportation
distance; the high surface-to-volume ratio permits a large contact area with the electrolyte and improves the Li ions’ flux
across the interface. The huge strain induced by the Li ions’ insertion will also be accommodated (Bruce et al., 2008). In pre-
vious works, a lot of nanostructured electrodes had been experimentally investigated, for examples, nanofilm, nanowire or
nanorod and nanoparticle(Chan et al., 2008; Kasavajjula et al., 2007; Song et al., 2010; Teki et al., 2009). However, in these
works, there are little theoretical interpretations and few comparisons for different structures. Moreover, as elucidated, the
nanostructures will have extraordinary behaviors due to the surface effect. Therefore, to predict or understand the behaviors
of nanostructures, especially in nanostructured electrodes, the theoretical model with surface effect coupled the diffusion
should be considered. In this part, we will use the proposed theoretical model to investigate the stress distributions in
two structures: HNS and NT, and a comparative study on stress distributions is performed. The structure of this part is or-
ganized as follows: for each nanostructure (HNS, NT), we will analyze the stress distributions with different sizes; the Tol-
man length adopted in analysis is calculated by MD simulations. Afterwards, without considering the MD data of Tolman
length, the different Tolman length is assumed and the Tolman effect on stress distributions is depicted. At last, surface stress
induced structure self-buckling is discussed for nanostructured electrode stability.
3.1. HNS stress distributions analysis

First, an isotropic HNS with outer radius ro and inner radius ri is considered, as illustrated in Fig. 2. The HNS is located in
spherical coordinate system ðr; h;uÞ. The HNS will experience self-stressing due to the surface energy and keep in a residual
stress state. Meanwhile, due to the spherical symmetry, surface energy has no effect on the magnitude and distribution of
shear stresses for any size. The concentration of Li ions was assumed continuously distributed on the surface and in the bulk.
Additionally, the atomic diffusion in solids is much slower than elastic deformation. Therefore, the mechanical equilibrium
can be treated as a quasi-static process.

A steady diffusion process was considered, in which the concentration on the inner and outer surfaces were constants
Ci;Co, respectively. Solve the diffusion Eqs 12,16 with initial and boundary conditions:
@Cs

@t
¼ 0;

@CB

@t
¼ 0;Csjr¼ri

¼ Ci;Csjr¼ro
¼ Co: ð17Þ
Fig. 2. HNS for the nanostructured electrode.
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Then, the Cauchy stresses of HNS in spherical coordinate system ðr; h;uÞ are:
rrr ¼ � EXðCo�CiÞ
3ð1�mÞ

roriðr�roÞðr�riÞ½roriþrðroþriÞ�
r3ðr3

o�r3
i
Þ þ 2c1

riþ2d

r3
o

r3�1

r3
o

r3
i

�1
� 2c1

roþ2d

1�
r3
i

r3

1�
r3
i

r3
o

rhh ¼ ruu ¼ EXðCo�CiÞ
3ð1�mÞ

rori ½r2
o r2

i
�2r3ðroþriÞþr2ðr2

oþroriþr2
i
Þ�

2r3ðr3
o�r3

i
Þ � 2c1

riþ2d

r3
o

2r3þ1

r3
o

r3
i

�1
� 2c1

roþ2d

1þ
r3
i

2r3

1�
r3
i

r3
o

8>>>>>><
>>>>>>:

: ð18Þ
In the equations, E is the Young’s modulus for the isotropic material, m is the Poisson’s ratio and X is the partial molar volume
of the solute. A � EX(Co � Ci)/[3(1 � m)] is a stress induced by the maximum and minimum concentration in the structures.
Dividing the characteristic stress A on both sides of the Eq. (18) and using the dimensionless parameters d⁄ = d/ro, a = r/
ro, ai = ri/ro to obtain the dimensionless stresses:
r�rr ¼ �
aiða�1Þða�aiÞ½aiþað1þaiÞ�

a3ð1�a3
i
Þ þ 2c1

roA
1

aiþ2d�
a�3�1
a�3

i
�1
� 2c1

roA
1

1þ2d�
1�a3

i
a�3

1�a3
i

r�hh ¼ r�uu ¼
ai ½a2

i
�2a3ð1þaiÞþa2ð1þaiþa2

i
Þ�

2a3ð1�a3
i
Þ � 2c1

roA
1

aiþ2d�
0:5a�3þ1
a�3

i
�1
� 2c1

roA
1

1þ2d�
1þ0:5a3

i
a�3

1�a3
i

8>><
>>: : ð19Þ
For illustration, the parameters E = 130 GPa, m = 0.28, c1 = 1.4 Jm�2 (Hara, Izumi, Kumagai, & Sakai, 2005) were chosen for
silicon. The HNS, whose inner radius is ri = 5 nm and outer radius is ro = 10 nm, is under the diffusion condition
XCi = 0, XCo = 0.08.

The Tolman length for the silicon sphere was obtained through MD simulations. The d was calculated through the defi-
nition according to Eq. (11). Like Thompson, Gubbins, Walton, Chantry, & Rowlinson, 1984, the radii of equimolar surface Re

and surface of tension Rs in sphere, respectively, are:
Re ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR1

0
r3dqðrÞ

dr dr

qB�qg

3

r
;

Rs ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR1

0
r3dpðrÞ

dr dr

pB�pg

3

r
;

8>>><
>>>:

ð20Þ
in which q(r), p(r) are density and pressure distributions with respect to the radius r . The subscript g represents the prop-
erties in the gas phase, which is usually zero at infinity. Within the Eqs. (20), we can see the statistical meaning of Re and Rs.
Re is defined so that the system contains an equal number of molecules where the density to remain constant at its two
respective limiting values on either side of the surface, with a discontinuous change at the surface itself (Thompson et al.,
1984). The Rs has the similar meaning as Re but the difference is that Rs reflects the pressure variation. In simulation, con-
sidering the computation cost and small fluctuation of Tolman length in nanoscale, a 5 nm silicon sphere was parameterized
within the Tersoff force field (Tersoff, 1988) and all MD runs were carried out by using the large-scale atomic molecular mas-
sively parallel simulator (LAMMPS) (Plimpton, 1995). The system was relaxed to a minimum energy configuration, and then
thermally equilibrated to 300 K for 100 ps using the Nose-Hoover thermostat (Nose, 1984) with a time step of 1 fs. The dis-
tributions of q(r), p(r) and the quantities qB;qg ; pB; pg were obtained with respect to the time average of all simulation
progress. In Fig. 3, the square dots are simulated quantities and the solid lines are fitted functions.
Fig. 3. Density and pressure profiles for the silicon sphere.



Fig. 4. Stresses distribution in the HNS.
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Using the Eqs. 11,20 and the quantities from the simulations, the Tolman length for the nanosphere is obtained, which is
d = 0.293 nm. The lattice constant of diamond structure silicon is 0.543 nm which is one the same order of d. Finally, we can
draw the stress distributions of HNS in Fig. 4.

In the HNS, compared with r�rr ;r�hh and r�uu play dominant roles to influence the deformation. The surface stress on the
outer surface will precompress the nanosphere which can effectively improve the anti-pulverization ability. In contrast, the
surface energy of the inner surface will shrink the inner surface. This surface energy aggravates the tensile stress in the inner
part of HNS which will induce cracks. However, if the size and shape of electrode are properly chosen, the stress will be well
controlled.

In general, the surface energy can contribute to the ‘‘size effect’’ in the stress distribution, so the stress distribution in
small size structure is no longer the same as that for the large size. Here, we first investigate the suitable size for the
HNS. In the HNS, r�hh and r�uu will be compressive in most outer part of the sphere, while r�rr will always be tensile, but play
a less important role. Considering silicon will be ductile in nanosize (Gioia & Dai, 2006) and to indicate the total effect of
stresses, the effective von Mises stress was introduced through
�r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðr�11 � r�22Þ

2 þ ðr�22 � r�33Þ
2 þ ðr�33 � r�11Þ

2
h ir

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðr�rr � r�hhÞ

2 þ ðr�uu � r�rrÞ
2

h ir
; ð21Þ
in which �r� represents the dimensionless von Mises stress and r�ii (ii can be 11, 22 or 33) are the dimensionless principal
stresses. The thickness ratio ri/ro was fixed to be 0.5, whereas the size of the HNS varies from nanometer to micrometer.
Fig. 5. The von Mises stresses for HNSes with different sizes.
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Fig. 5 illustrates the effect of different HNS sizes on the distribution of von Mises stresses. The red crossed line represents
the stress in the 10 nm HNS and the hollow triangle line is the stress distribution without considering the surface stress for
the same size. Apparently, the surface stress will reduce the magnitude of total stress nearly 58%, that is to say, it can effec-
tively resist pulverization. For different sizes, the stress in the HNSes will increase with respect to the scale of the particle
sizes. The insertion indicates the maximum stress variations with respect to the size of HNSes. At nanoscale, the maximum
stress is about 67% lower than the microscale particles. It is also evident that the influence of surface effect increases with
decreasing particle sizes. Suitable thickness also can minimize the magnitude of the von Mises stress. Fig. 6 shows the sev-
eral von Mises stress distributions for HNSes with different wall thickness. The blue crossed line represents the stress in the
HNS whose inner radius is ri = 0.5 nm and outer radius is ro = 10 nm. The red triangle line and black square one show the
stresses with the same outer radius as the blue crossed one, but the inner radii are 0.1 nm and 0.6 nm, respectively. It is
obviously that if the wall thickness of HNS is not properly chosen, the HNS will suffer a larger stress.

3.2. Curvature effect on HNS stress distributions

The above all are studies of stress distribution in HNS under special diffusion condition. We have analyzed the size effect
and wall thickness effect on stress distribution and mentioned that, in nanoscale, the surface tension of a curved surface will
change a lot compared with its planar value. This effect can be revealed through the Tolman length d. In foregoing work, the d
we adopted in all analyses is calculated by the MD simulation and is assumed to have a small fluctuation. However, it is also
Fig. 6. Stresses distribution for several HNSes with different wall thickness at nanoscale.

Fig. 7. The stress variation of HNS with respect to the Tolman length.
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necessary to know how the Tolman length d change will affect the stress distribution. For instance, if we change silicon by
another material for electrode and using different shape, the Tolman length also will be recalculated. To illustrate the Tolman
effect, the d is assumed to be changed from 0 nm, which means the surface tension will be the planar value, to 1.0 nm.

For comparison, the MD value 0.293 nm for spherical silicon structure is also taken into consideration. A HNS, whose in-
ner radius is ri = 0.5 nm and outer radius is ri = 10 nm, is used for indicating the curvature effect. The curvature radius of in-
ner surface is on the same order of d and the d/r will be a large quantity in Eq. (10) to influence the surface tension.

Insertion in Fig. 7 shows the von Mises stress distribution along the radial direction with different Tolman length. The
stress near the outer surface becomes the same value gradually due to small curvature of outer surface. By contrast, the
stresses in the inner part will change a lot. Surface tension decreases with increasing in Tolman length. In other words, if
the Tolman length is large enough, the stress induced by surface tension can be diminished and will have small fluctuation
along the radial direction. From Fig. 7, we can find that about 30% area near to the inner surface is sensitive with the Tolman
length. Most importantly, the peak of stress also appeared in this area. The peak stress will reduce 70% approximately if the
Tolman length d is changed from 0 nm to 1.0 nm.

3.3. NT analysis in stress distributions and curvature effect

Based on what we have analyzed, there are different appropriate size and thickness for HNS under different diffusion con-
dition, which can significantly minimize the stresses, and the curvature changes will also have effect on the stress distribu-
tion. Similarly, we have modeled another structure NT, whose inner radius and outer radius are also donated by ri, ro. The
structure and the symbols are illustrated in Fig. 8.

For comparison and to find a suitable structure for electrode from the mechanical view, the same diffusion condition and
material properties of HNS were used in NT analysis. Nevertheless, Tolman length for the tube should be modified. The q(r),
p(r) in Eqs. (20) are calculated according to the tube. In the simulation, a silicon tube with diameter 5 nm is fully relaxed like
what have been done in sphere. Profiles for the density and pressure distribution are plotted in Fig. 9 and the calculated Tol-
man length is d = 0.248 nm.

Considering a long enough NT with the symmetrical diffusion process, we can assume that the NT was in the plane-strain
state. Using the similar treatments in Eqs. 18,19, the dimensionless Cauchy stresses of NT in cylindrical coordinate system
ðr; h; zÞ (z is the symmetrical axis of NT) can be written as
r�rr ¼ ln a�1
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and the von Mises stress
�r� ¼
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Fig. 8. NT for the nanostructured electrode.



Fig. 10. The von Mises stresses for NTs with different sizes.

Fig. 9. Density and pressure distributions for the silicon tube along the radius.
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Fig. 10 shows the effect of different NT sizes on the von Mises stress distributions. The red crossed line represents the stress
in the 10 nm NT and the hollow triangle line is the stress without considering surface stress for the same size. The surface
stress will reduce the magnitude of total stress especially in the inner part of the tube. For different sizes, the stress in the
NTs will increase with increasing tube sizes. The variation tendency is similar with HNS.

Like what we have analyzed in HNS, we still want to investigate surface tension variation with respect to the curvature
change. The inner radius of the tube is ri = 0.5 nm and outer radius is ri = 10 nm. The following values of d will be adopted in
our analysis 0 nm, 0.248 nm and 0.5 nm, to get the Tolman effect on the surface energy variation. Fig. 11 is the illustration for
von Mises stress distribution near the inner surface whose curvature radius is a quantity on the order of Tolman length. The
insertion is the stress distribution for the tube. We can get a similar phenomenon in HNS: the stress will change a lot in the
inner area next to the large curvature surface. However, on the outer surface with small curvature, the magnitude of stress
will not be affected too much.

3.4. Comparison of HNS and NT in stress distributions and self-buckling

The foregoing work is mainly focused on the sphere and tube separately. The following section, based on what we have
obtained, a comparison between two structures was performed. Fig. 12 is the von Mises stress distributions for the HNS and
NT whose inner and outer radii are ri = 5 nm and ro = 10 nm, respectively. From this graph, we can clearly see that different
structures will influence the stress distribution significantly. In the HNS, not only the absolute value of stress is much lower
but also the stress fluctuation is much smaller.

In nanostructured electrode design, besides stress analysis, another important issue is self-buckling. Since the surface
stress affects the stress distribution in nanostructure obviously, the nanoelectrodes will be self-buckled with the decreasing



Fig. 12. Comparison of von Mises stresses for HNS and NT.

Fig. 11. The stress variation of HNT with respect to the Tolman length.
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structure sizes even without insertion and extraction or Li ions. Therefore, the surface stress induced self-buckling should be
taken into consideration. Based on the bucking theory in solid structures (Timoshenko & Gere, 1961), we depicted the critical
sizes for different wall thicknesses.

For the HNS, using the Tolman length d to scale all geometric parameters (r is radius of HNS’s neutral layer and the h is the
wall thickness), the dimensionless critical size with respect to the wall thickness is
r
h
¼ j

h
d þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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d
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 3m2
p

j�1
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4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 3m2
p ; ð24Þ
Similarly, we obtain the relationship between the critical sizes and the thicknesses for the NT
r
h

� �3
¼ j

2þ r
d

	 

8ð1� m2Þ : ð25Þ
The meaning of the dimensionless number j = Ed/c1 in the last two equations will be given in the following part. Then, we
can see the variation of the critical sizes for different thickness of the wall for HNS and NT through Fig. 13.

The thickness varies from 1 nm to 30 nm. The red crossed line represents the critical radius of HNS and the blue triangle
line represents the tube’s. Then, we can see the variation of the critical sizes for different thickness of the wall for HNS and



Fig. 13. Critical size for variant thickness for HNS and NT.
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NT. When the wall thickness is 1 nm, the radius of HNS should not be larger than 28 nm while for the NT, cannot be larger
than 3.5 nm otherwise the nanostructures are self-buckled. When the wall thickness reaches 30 nm, the critical radius for
the HNS can be 25.13 lm and for the NT, the critical radius has still in submicron. Therefore, based on the buckling analysis
for the same wall thickness, more choices on radius also make the HNS become a suitable structure for electrode.

At last, we emphasize that the quantity c1/E in the Eqs. 24,25 is an intrinsic material length. Usually, this length charac-
terized a region near to the surface in which the material mechanical properties will be quite different from the bulk mate-
rial. In 1963, Mullins (Mullins, 1963) argued that the work, U(1), required to separate two adjacent atomic planes of area A
can be estimated as the surface-free energy or the elastic work required to move them through a distance y, with the result:
c1 ¼ Uð1Þ
2A

¼ 1
2

Z RF

0

Fy

A
dy 	 E

2

Z RF

0

y
a0

dy ¼ E
4a0

R2
F ; ð26Þ
where a0 is the lattice spacing, and RF 	 1 Å is the elastic limit for the separation of the two surfaces. Without loss of gen-
erality, we have the rough estimation for the lattice spacing a0 	 (2 � 6)RF � 4RF, therefore, we have the order-of-magnitude
estimation:
c1

E
¼ R2

F

4a0
� a0

60
: ð27Þ
Mullin’s rough estimation above clearly relates the intrinsic material length with the lattice spacing in Eq. (27). Generally
speaking, the Tolman length d 	 a0/2, then, the dimensionless number we suggested is on the magnitude of
Ed
c1
	 30; ð28Þ
That is to say that this dimensionless number is on the order of several tens. In the two typical cases (HNS, NT), the calculated
dimensionless number j is about 23, which is apparently of the same order-of-magnitude as Eq. (28). Considering the mean-
ing of the Tolman length, we can suggest that when a planar surface changed to a curved one, the arrangement of atoms on
the surface and next to the surface will reconstruct. As a result, the material properties, the electrons distribution will also
have a new state. In the dimensionless number, d is used to estimate when this ‘‘reconstruction effect’’ should be considered.
In the cases (HNS, NT) we analyzed, it is obviously that how this ‘‘reconstruction effect’’ influences the stresses distribution
through Figs. 7 and 11.

4. Conclusions

In this paper, we proposed a diffusion and curvature dependent surface elastic model to investigate the diffusion behavior
for nanostructured electrodes. In the model, the coupling between the stress and ions diffusion is revealed through the
chemical potential variation. The main conclusions of present paper are as follows:

1. To reveal the curvature effect on surface stress, Tolman length d for the solid structure was introduced. The d for sphere
and tube were calculated through the MD simulation.
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2. Using the model, two structures (HNS, NT) were analyzed. On the one hand, we depicted the stress distributions in the
two structures for strength analysis; on the other hand, the critical sizes were obtained for different wall thicknesses to
make sure the structure is stable. Both analyses promise the HNS will be a more suitable structure for electrode in
mechanical view.

3. A new dimensionless number j = Ed/c1 is proposed to estimate the relative importance of the Tolman length d with the
intrinsic material length c1/E. The dimensionless number is also a dominant parameter in Eqs. (24) and (25) to charac-
terize nanostructure buckling induced by surface tension.

We believed that the nanostructured electrode with suitable structure and size will be self-strengthened by the surface
stress which can effectively diminish the silicon anode expansion during insertion and desertion of Li ions. The curvature and
diffusion dependent surface model will be an appropriate tool to investigate the diffusion behaviors in nanostructured
electrode.
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Appendix A. Symbolic descriptions of geometrical and kinematics of a deformable surface

Considering a smooth surface A0 in the reference configuration in 3D Euclidean space which can be represented by
Y = Y(h1, h2). Y is a position vector represent a point on the surface from the origin of the coordinate frame. ha are curvilinear
coordinates on the surface, which a indicate the value 1 or 2. The covariant base vectors Aa of the surface A0 are defined as
Aa ¼ Y; a: ðA1Þ
The comma represents partial derivatives with respect to ha. The contra-variant base vectors Ab of surface A0 can be defined
through
Aa � Ab ¼ db
a; ðA2Þ
where db
a is the Kronecker delta in 2D space.

After deformation, the surface A0 in reference configuration deform to A which is in the current configuration. The vector
Y = Y(h1, h2) on undeformed surface moved to y = y(h1, h2) on deformed surface. Similarly, the covariant base vectors aa and
contra-variant base vectors ab in current configuration can be defined through
aa ¼ y; a; ðA3Þ

aa � ab ¼ db
a: ðA4Þ
A surface deformation gradient tensor Fs is a linear transformation that maps a vector in the tangent plane of the undeformed
surface to a vector in the tangent plane of the deformed surface, which can be defined through
Fs ¼ aa � Aa
: ðA5Þ
The Einstein summation convention is adopted in this equation.The inverse transformation of Fs can be defined as
F�1
s ¼ Aa � aa: ðA6Þ
Therefore, we can deduce some properties of Fs and F�1
s ,
Fs � F�1
s ¼ I; F�1

s � Fs ¼ I0;

Fs � I0 ¼ I � Fs ¼ Fs; F�1
s � I ¼ I0 � F�1

s ¼ F�1
s ;

ðA7Þ
in which, I0 = Aa � Aa and I = aa � aa are identity tensors on the tangent planes of the surface before and after deformations.
The displacement vector u of a point on the surface either in reference or in current configuration can be written as
u ¼ y � Y ¼ ua
0Aa þ un

0N ¼ uaaa þ unn: ðA8Þ
The vector N and n are unit normal vectors of the surface before and after deformation. ua
0 and un

0 (ua and un) are displace-
ments on tangent plane of surface and normal to the surface, respectively. Notations mentioned above are graphical repre-
sented in Fig. A.1.

Furthermore, two surface deformation tensors Cs ¼ FT
s � Fs and B�1

s ¼ F�T
s � F

�1
s can be defined in the reference and the cur-

rent configurations, and they are both positive-definite. Therefore, the deformation gradient tensor Fs can be polar
decomposed,
Fs ¼ Rs � Us ¼ Vs � Rs: ðA9Þ



Fig. A.1. Deformation of a surface.

J.-L. Zang, Y.-P. Zhao / International Journal of Engineering Science 61 (2012) 156–170 169
The Us and Vs are defined with Us ¼
ffiffiffiffiffi
Cs
p

and V�1
s ¼

ffiffiffiffiffiffiffiffi
B�1

s

q
, respectively. The Rs is the two point rotation tensor satisfying
RT
S � RS ¼ I0; Rs � RT

S ¼ I;
RS � I0 ¼ RS; I � Rs ¼ Rs:

ðA10Þ
For infinitesimal deformation of surface, the high-order surface displacement gradient will be the small quantities compared
to the first-order displacement gradient. Therefore, the high-order small quantities of surface displacement gradient will be
neglected and the deformation tensors Cs, Bs can be expressed as
Cs ¼ I0 þ 2Es;Es ¼ Iþ 2es;
in which
Es ¼
1
2
ð �r0su0 þ u0

�r0sÞ; es ¼
1
2
ð �rsuþ u �rsÞ:
The details about operations �r0s; �rs and more geometry and kinematics of the surface can be found in Wang et al. (2010),
Wang and Zhao (2011).
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