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a b s t r a c t

In this paper, we present a fracture model for composite laminates and its numerical solution by using
the Fast Fourier Transforms (FFTs). The FFT-based formulation initially proposed for seeking the average
behaviour of linear and non-linear composites by means of the homogenisation procedures [1,2] was
adapted to evaluate the damage growth in brittle materials. A non-local damage model based on the
maximal principal stress criterion was proposed to assess the failure in the matrix and the fibres. This
non-local model was then connected to the Griffith–Irwin criterion in the aim of predicting crack growth.
In order to assess the matrix/fibre interface delamination, we have adapted the cohesive model devel-
oped by Li [3] for accounting the mixed-mode dependent interface failure. To this end, the interfaces
between the matrix and the fibres are replaced by a thin layer of interphase with the purpose of facili-
tating the FFT simulations. By using the proposed model, we carried out several numerical simulations
on fracture process in different specimens. From these studies, we can conclude that the present FFT-
based analysis is capable to deal with crack initiation and crack growth in composite laminates with high
accuracy and efficiency, especially in the cases of matrix/fibre interface debonding and of multi-crack
growth.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Currently, the carbon fibre reinforced polymer matrix compos-
ite laminates have been increasingly employed in various fields
including the airplane, hoses in fluid transport, electricity systems
or sportive equipments due to their outstanding performance,
combining high stiffness and strength at low density, high-specific
energy absorption, excellent fatigue performance and high corro-
sion resistance. Since the stiffness and strength of an individual
layer are much higher in the fibre direction than in the transverse
direction, an appropriate design associating the physical and
mechanical properties of materials with the geometry shapes is
necessary to profit from the fibre performance.

The stiffness degradation is an important response to the dam-
age and crack evolution of fibre-reinforced composite laminates
under monotone or cyclic loads. The failure mechanisms of these
composites have a complex nature due to their sophisticate micro-
scopic and/or mesoscopic structures. Generally speaking, two prin-
ll rights reserved.
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cipal failure mechanisms can be distinguished: the first one is the
bulk damage in the matrix and the fibres and the second is the
interface debonding between them. The most widely used theoret-
ical tools in the assessment of these failure mechanisms are the
fracture mechanics and damage mechanics.

Over the past decades, the continuum damage mechanics [4]
has been widely used to predict the isotropic/anisotropic damage
evolution of composites by introducing a phenomenological dam-
age tensor D relevant to the matrix and fibre failure [5–9]. The
damage/plasticity coupling non-linear models have also been
developed to describe the interactive effect of the plastic deforma-
tion on damage properties [10–12]. Combined to different failure
criteria [13–17] on the initial failure of composite laminates with
fibre principal orientations, the continuum damage mechanics
has proven its efficiency on bulk failure assessment. However,
the numerical application of this approach on interface debonding
between the matrix and fibres is quite difficult due to its small
thickness dimension for which very fine element meshing is
required.

On the other hand, there is an evolving trend to develop energy-
based failure criteria in the frame of fracture mechanics. Particu-
larly, the cohesive zone conception [18,19] was adapted to describe
the crack propagation in composite materials. The delamination

http://dx.doi.org/10.1016/j.compositesb.2011.08.055
mailto:jia.li@univ-paris13.fr
http://dx.doi.org/10.1016/j.compositesb.2011.08.055
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mechanisms and crack-bridging mechanisms were thoroughly
studied by using the cohesive theory [20–25,3]. These cohesive
fracture criteria gain insight into the microscopic damage evolu-
tion mechanisms of composites. However, numerical convergence
problems may arise from cohesive modelling due to assumed soft-
ening properties which require to be solved appropriately as it is
implemented into a finite element code. This poses a large chal-
lenge to the practical application of the cohesive theory in the
damage evolution modelling of composite laminates.

Even though multiple numerical techniques were proposed in
the literature, the multiscale progressive failure analysis still meets
huge difficulties in incorporating discrete fibre/matrix microscopic
modelling and failure mechanisms into damage and failure proper-
ties of the whole composite laminates. We believe that alternative
methods are useful to enrich the numerical tools in the resolution
of such a complicated problem.

In this paper, we propose a non-local fracture model resolved by
using the FFT (Fast Fourier Transform) method. A macroscopic fail-
ure criterion, in occurrence the maximum stress criterion for sim-
plicity, was used to describe the failure of the matrix and the fibres.
This criterion was connected to the Griffith criterion in order to en-
able it to predict the crack initiation and propagation. A debonding
model established on the basis of the Dugdale cohesive concept [3]
was adapted for describing the matrix/fibre delamination. The
main advantage of the FFT method is its high resolution in discret-
ization of the composite structures such that the matrix/fibre
interface can be modelled by a thin layer of interphase. Conse-
quently, some complicated mechanisms such as the matrix/fibre
debonding, the propagation of multiple cracks or the crack bridg-
ing can directly be simulated.

In this paper, we first recall the FFT-based formulation and the
non-local damage model in Sections 2 and 3. In Sections 4 and 5,
we describe the adaptation of the Griffith criterion to bulk damage
and to interface debonding criteria via the non-local approach.
After a short explanation of the numerical algorithm in Section 6,
we present in Section 7 several numerical simulations in which
the accuracy and the efficiency of the proposed method were
examined. Some concluding remarks are given in Section 8.

2. The FFT-based formulation

The damage states that develop in brittle or quasi-brittle mate-
rials can be evaluated using an extension of an iterative method on
the basis of Fast Fourier Transforms (FFT), originally proposed by
Moulinec and Suquet [1,2] and Michel et al. [26] for homogenising
linear and non-linear composites. The FFT-based formulation for a
periodic heterogeneous cell with damage can straightforwardly be
written according to the original FFT scheme. By omitting the rigid
body motion, the displacement in a periodic cell is split into two
parts:

uðxÞ ¼ u � ðxÞ þ E � x ð1Þ

where x denotes the Cartesian coordinates originated at the geo-
metrical centre of the cell; u�(x) is the periodically oscillatory part
of the displacement with

R
X u � ðxÞdV ¼ 0; E is the average strain

tensor. In the case when the damage field can be expressed by a sca-
lar variable D(x) e [0,1], the problem of elasticity for an inhomoge-
neous elastic composite under periodic boundary conditions writes:

rðxÞ ¼ ½1� DðxÞ þ k0�CðxÞ : ½eðu � ðxÞÞ þ E�
divrðxÞ ¼ 0
u � ðxÞ is periodic 8x 2 X;r:n is anti� periodic 8x 2 @X

ð2Þ

where r is the Cauchy stress field; e(u�) is the fluctuation term of
the strain field in X and satisfies

R
X eðu � ðxÞÞdV ¼ 0; the damage

field D(x) and the stiffness tensor C(x) are also periodic; k0 is a
parameter of very small value, it ensures the existence and unique-
ness of the numerical solution; n is the unit outward vector of the
cell boundary. This local problem can be resolved by introducing
a polarisation stress field s(x),

rðxÞ ¼ Cr : eðu�Þ þ sðxÞ ð3Þ

with Cr being the stiffness of a homogeneous reference material and

sðxÞ ¼ ð1� Dþ k0ÞC : ½eðu�Þ þ E� � Cr : eðu�Þ ð4Þ

The solution of (2) can be expressed by means of the periodic
Green operator C associated with Cr, namely

eðxÞ ¼ �
Z

X
Cðx� yÞ : sðyÞdy ð5Þ

By performing the Fourier transformation, this convolution
integral is transformed into a direct tensor product:

êðnÞ ¼ �bCðnÞ : ŝðnÞ 8n–0 êð0Þ ¼ E ð6Þ

where ê, ŝ and bC are respectively the Fourier transforms of e, s andbC, n denotes the frequencies in Fourier space. When the reference
material is isotropic with the Lamé coefficients kr and lr, the Green
operator bC takes the form:

Ĉijkl ¼
1

4lr jnj2
dkinknl þ dlinknj þ dkjnlni þ dljnkni

� �
� kr þ lrð Þ

lr kr þ 2lrð Þ
ninjnknl

jnj4
ð7Þ

The anti-transforming of (6) gives the strain field of the
problem. However, since the polarisation stress field is a priori
unknown for a damaged heterogeneous material, iterative proce-
dure has to be used to obtain a compatible strain field and then
a stress field in equilibrium.

In the present work, only the plane problems are considered.
For plane strain, all the precedent formulas are directly valid for
bi-dimensional simulations. For plane stress, the same equations
in plane strain can be kept if the Lamé coefficient k is replaced
by k 2l

kþ2l .

3. Non-local damage model

Numerous continuum damage models exist in the literature to
describe the progressive degradation of materials. The accuracy of
the classical damage models often depend on the finite element
discretization in their numerical implementation. In order to over-
come this shortcoming, various regularization methods have been
proposed. Among these methods, the so-called non-local ap-
proaches are widely used. The basic idea of this approach consists
in replacing the local damage driving force, an effective stress re

for example, by its weighted average over a representative volume
V [27]:

~reðxÞ ¼
1R

V a x� yð Þdy

Z
V
aðx� yÞreðyÞdy ð8Þ

In the literature, a is often taken as the Gaussian function. In the
present work, a cone-shape weighting function is used in the place
of the Gaussian function for its periodic feature required in FFT cal-
culations. This function writes:

aðrÞ ¼
0 r > R

1� r
R r 6 R

(
ð9Þ

where r ¼ kx� yk; R is the radius of non-local action, representing a
material characteristic length which defines the size of interaction
zone for failure processes.
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4. Matrix and fibre fracture

In this study, the matrix and fibre layers are considered as iso-
tropic linear elastic materials. The extension of the present model
to anisotropic materials does not present particular difficulties and
will be developed later. In this section, the non-local damage mod-
el proposed by Li et al. [28] is briefly presented, as follows.

We assume, for simplicity, that the material failure obeys the
maximum principal stress criterion under regular stress field. This
criterion cannot be directly applied to cracked materials due to the
stress singularity near the crack tips. However, it can be related to
a crack growth criterion through a non-local approach. Thus, we
write the non-local maximum principal stress criterion as follows:

D ¼
0 ~r1 < rc

1 ~r1 P rc

�
ð10Þ

where rc is the ultimate stress of the material, ~r1 is the non-local
first principal stress. We assume that the near-tip stress field is gov-
erned by the Williams asymptotic expansion [29], therefore. For a
mode-I loaded crack, the non-local near-tip first principal stress
writes:

~r1ðr; hÞ ¼
1R R

0

R p
�p 1� r0

R

� �
r0dr0dh0

Z R

0

Z p

�p
1� r0

R

� �
r1ðr; hÞr0dr0dh0

¼ 3
pR2

Z R

0

Z p

�p
1� r0

R

� �
KIffiffiffiffiffiffiffiffiffi
2pr
p 1þ cos

h
2

� �
sin

h
2

���� ����r0dr0dh0

ð11Þ

where KI is the stress intensity factor. Under mode I loading, the
maximal non-local principal stress is located at a point on the crack
axis near the crack tip r = r0, h = 0 due to the symmetry. We assume
that r0 is small such that the stress at its vicinity is still governed by
the crack-tip asymptotic field.

On the one hand, according to the damage criterion (10), the
element at (r = r0, h = 0) is broken when ~r1 P rc: On the other
hand, from the Griffith–Irwin criterion of fracture [30,31], the crack
grows when KI P KIc , where KIc is the critical stress intensity fac-
tor. This class of strength–toughness crack growth criteria was suc-
cessively used in the prediction of crack initiation near a V-notch
tip or a hole [32,33]. This condition permits us to determine the
non-local action radius R and the location of the most loaded point
(r = r0, h = 0) by resolving numerically the following equation:

f ðRÞ ¼rc �max
r0

Z R

0

Z p

�p

3
pR2 1� r0

R

� �
� KIcffiffiffiffiffiffiffiffiffi

2pr
p 1þ cos

h
2

� �
sin

h
2

���� ����r0dr0dh0 ¼ 0 ð12Þ

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 þ r0 cos h0ð Þ2 þ r0 sin h0ð Þ2

q
tan h ¼ r0 sin h0

r0þr0 cos h0

By taking KIc=rc ¼ 0:5
ffiffiffiffiffiffiffiffiffi
mm
p

, for example, we can find
R = 0.105 mm, r0 = 0.03 mm. For mode II and mixed modes, the
non-local action radius R is slightly larger. In general, the mode I
crack propagation is the most frequent fracture mode in brittle
materials. Therefore, for simplicity, the value of R obtained from
a mode I crack is used for all the mixed-mode cracks in the present
work, this leads to slightly conservative critical loads at fracture
comparing with the criterion G P Gc ¼ K2

Ic=E, where G and Gc are
respectively the energy release rate of the crack and its critical va-
lue; E is the Young modulus of the material. As a result, the non-lo-
cal damage criterion (10) is equivalent to the Griffith–Irwin
criterion for crack propagation and to the maximal principal stress
criterion for failures in non-cracked structures. Consequently, it
can be used to predict the crack initiation as well as the crack prop-
agation. In practice, we just need to find the point where the non-
local principal stress is maximal: this point is broken when the
non-local stress attaints the material strength.

5. Interface debonding

In the present study, the interface debonding is modelled by
fracture of a thin layer of interphase zone. This approach is numer-
ically costly but can provide more detailed information on matrix/
fibre debonding compared with the pure theoretical interface
assessments.

Consider now a bi-material interface lying along the x-axis, the
material 1 occupies the half space y > 0 while the material 2 occu-
pies the half space y < 0. The interface is modelled in the present
study by a thin layer of interphase whose fracture can be described
by a damage criterion similar to (10):

D ¼
0 ~re=rc < 1
1 ~re=rc P 1

�
ð13Þ

Here we have replaced the non-local maximum principal stress
~r1 by a non-local effective stress ~re. In fact, due to the thin geom-
etry of the interphase zone, we have to distinguish the fracture due
the interface debonding from that due to rxx. Thus, the nominal
effective stress should be understood as the maximum of these
two failure origins:

~re=rc ¼ max ~rdebond
e

~ryy; ~rxy
� �

=rc; ~rxx=rc
� �

ð14Þ

In interface fracture mechanics, the interface crack growth is
usually predicted by comparing the energy release rate to its crit-
ical value. In general, the interface toughness is highly influenced
by the mode mixity near the crack tip with respect to the interface
plan [34,35]. Some empirical interface debonding criteria account-
ing for this influence have been proposed in the literature [21,36].
Based on the Dugdale cohesive model, Li [3] has obtained the crit-
ical energy release rate Gc for interfacial crack growth that can be
written, for a sufficiently long interface crack, as follows:

Gc ¼ GIc

1þ sc=rcð Þ2
h i

ð1þ tan2 WÞ

1þ ðsc=rcÞ2 þ 1þ ðrc=scÞ2
h i

tan2 W
ð15Þ

where GIc is the critical energy release rate for pure mode I debond-
ing; rc and sc are respectively the critical interface cohesive forces
under normal tension and pure shear; tanW = q/p where p and q
are respectively the normal traction and the shear force acting on
the crack lips in the cohesive zone. Consequently, W represents
the mixity angle at the crack tip. For an interface crack between
two dissimilar materials, the traction along the interface ahead of
the crack tip writes:

ðryy þ irxyÞinterface ¼
Krieffiffiffiffiffiffiffiffiffi
2pr
p ð16Þ

where r is the distance between the crack tip and the considered
point; K = (KI + iKII) cosh (pe) is a complex stress intensity factor
which uniquely characterise the singular field [37]; e is the oscilla-
tory index. The energy release rate for an interfacial crack tip is
[38]:

G ¼ j1 þ 1
l1

þ j2 þ 1
l2

� �
K �K

16cosh2ðpeÞ
ð17Þ

with

j1 ¼ ð3� m1Þ=ð1þ m1Þ j2 ¼ ð3� m2Þ=ð1þ m2Þ for plane stress
j1 ¼ 3� 4m1 j2 ¼ 3� 4m2 for plane strain

l1 ¼
E1

2ð1þ m1Þ
l2 ¼

E2

2ð1þ m2Þ



964 J. Li et al. / Composites: Part B 43 (2012) 961–971
where E1, m1, E2 and m2 are respectively the Young moduli and the
Poisson ratios of the two materials. We can calculate the non-local
interfacial traction at a point r0 ahead of the crack tip by

~ryyþ i~rxy
� �

ðr¼ r0Þ¼
1R R

�r0
1�jr0=Rjð Þdr0

Z R

�r0

K r0þ r0ð Þieffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p r0þ r0ð Þ

p 1� r0

R

���� ����� �
dr0

ð18Þ

The maximal values of these non-local stresses are found at
r0 = 0. Thus

ð~ryy þ i~rxyÞðr ¼ 0Þ ¼ Cffiffiffiffiffiffiffiffiffi
2pR
p K 0I þ iK 0II

� �
coshðpeÞ ð19Þ

with

K 0I ¼KI cosða� e lnRÞþKII sinða�e lnRÞ K 0II ¼KII cosða� e lnRÞ�KI sinða�e lnRÞ
tana¼ 2e

3=4�e2 C¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=4�e2Þ2þ4e2
p

ð20Þ

Without introducing confusions, hereafter ð~ryy þ i~rxyÞðr ¼ 0Þ
will be replaced by ~ryy þ i~rxy for conciseness. The non-local action
radius R is calculated by considering the pure normal tension mode
according to the arguments mentioned in Section 4. In this case,
the interfacial crack grows when the non-local strength and tough-
ness criteria ~ryy P rc and K 0I P KIc are both satisfied, thus we
obtain:

R ¼ C2cosh2ðpeÞ
2p

KIc

rc

� �2

ð21Þ

This relation also permits us to connect the non-local stresses to
the energy release rate. According to (17) and (19), we have

G ¼ j1 þ 1
l1

þ j2 þ 1
l2

� �
2pR

C2

~r2
yy þ ~r2

xy

	 

16cosh2ðpeÞ

ð22Þ

From (17), the critical energy release rate for interfacial crack
growth under pure mode-I loading is defined as follows:

GIc ¼
j1 þ 1

l1
þ j2 þ 1

l2

� �
K2

Ic

16
ð23Þ

Thus according to (15) and (23), the interface crack growth cri-
terion G P Gc under mixed mode loading is equivalent to:

~rdebond
e P rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ ðsc=rcÞ2�ð1þ tan2 WÞ

1þ ðsc=rcÞ2 þ ½1þ ðrc=scÞ2� tan2 W

s
ð24Þ

where

~rdebond
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2

yy þ ~r2
xy

q
; ~ryy ¼ 0if ~ryy < 0 ð25Þ

is the effective non-local traction at the crack tip. The non-local
mode mixity tanW = q/p is reasonably replaced by tan W ¼
~rxy=~ryy. Thus the nominal effective non-local stress in the damage
criterion (13) writes

~re ¼max
~rdebond

e

a1
;
~rxx

a2

� �
ð26Þ

where a1 and a2 are strength factors defined as follows

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ sc=rcð Þ2 � 1þtan2 Wð Þ

1þðsc=rcÞ2þ½1þðrc=scÞ2 � tan2 W

r
a2 > 1

ð27Þ

It is clear that the non-local effective stress ~rdebond
e is the main

responsible of the interface debonding. The criterion
~rxx=a2rc P 1 is less important but numerically necessary to ensure
the rupture of the interphase under pure tension rxx. The parame-
ter a2 should be sufficiently large such that the non-local effective
stress ~rdebond

e remains predominant in interface failure.
As the interface is considered as an interphase zone, geometri-

cal and material constants have to be attributed to it. In the case of
the joins formed by glue, welding or cement between two ele-
ments, an interphase zone does exist and we can just use the geo-
metrical and mechanical parameters of the considered join in the
modelling. In the case of the direct adhesion between the matrix
and the fibres, the effective Young’s modulus Ei and Poisson’s ratio
mi of the interphase can be determined by considering the energy
release rate. For a crack in the interphase, the energy release rate
at a crack tip writes

G ¼ K2
I þ K2

II

E0
E0 ¼ Ei for plane stress

E0 ¼ Ei
1�v2

i
for plane stress

(
ð28Þ

Comparing (28) to (17), the effective Young’s modulus of the
interphase is given by:

Ei ¼
2E1E2

E1 þ E2
ð29Þ

and the Poisson’s ratio by

mi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2m2

1 þ E1m2
2

E1 þ E2

s
ð30Þ

Interface strength and toughness parameters GIc, rc and sc can
be obtained by appropriate experiments.

The thickness of the interphase is an important parameter in
the fracture assessment. It should be small enough within the limit
of the numerical discretization in order to ensure a sufficient accu-
racy. We did not attempt to give a quantitative estimation for the
thickness in the present work. Detailed analysis on its role in inter-
face fracture can be investigated in future works.
6. Numerical algorithm

The proposed FFT fracture model was coded by using the pro-
gramming language MATLAB. First, this language benefits from
its complete package for FFT analyses; second, the numerical
non-local integration (8) can directly be performed by using the
convolution functions provided in the software. Since a composite
consists of several phases, the non-local volume used in the calcu-
lation of the non-local stresses at a point (Eq. (8)) should only con-
tain the same phase as the considered point.

In the present work, the initial cracks and their growth are rep-
resented by domains with very low material stiffness. For example,
we can set Edamaged = k0E where Edamaged and E are respectively
Young’s moduli of cracked zone and non-damaged material. The
parameter k0 is numerically very small.

In the case of very high contrast between materials, the initial
FFT method [1,2] has difficulty to converge. This difficulty can gen-
erally be overcome by making use of an augmented Lagrangian
method [26]. Nevertheless, k0 = 0 represents an infinite material
contrast between damaged and non-damaged materials and as a
consequence, leads to a too low convergence speed. We found that
k0 = 10�5 represents a good compromise between the computa-
tional efficiency and the numerical accuracy.

Since a material element is linearly elastic before its complete
failure, therefore, the crack propagation evaluation is very similar
to that adopted in the linear elastic fracture mechanics: An elastic
calculation is first carried out for the cracked structure, and then
small crack propagation and the corresponding remote load are
determined according to a suitable criterion. This procedure is then
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Fig. 1. Basic periodic bi-material cells containing an interfacial crack.

Table 1
Material constants of the interphase.

Efibre/Ematrix Ei/Ematrix mmatrix = mfibre = mi e Ri

1 1 0.22 0 0.2829
2 1.333 0.22 0.0383 0.2852
5 1.667 0.22 0.0777 0.2923

10 1.818 0.22 0.0963 0.2973
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repeated after each small crack progression in the structure.
Accordingly, the following algorithm is coded:

1. Resolve the elasticity problem (2) by using the FFT method.
2. Calculate the non-local effective stresses and find the position

xdamaged where the non-local effective stress is maximal.
3. Calculate the remote load for crack growth according to (10) if

xdamaged is located in the matrix or the fibres, (13) if xdamaged is
located in the interphases.

4. Set D = 1 � k0 for pixels in a small zone around xdamaged, the
radius of this spot rd should be small enough in order to ensure
that the broken zones form a continuously growing crack.
When this spot covers several phases, we take precautions such
that the broken zone contains only points of the same phase as
that of the point xdamaged.

5. Repeat this algorithm until a desired crack growth is achieved.

7. Numerical results and discussions

In this section, we present the results several numerical simula-
tions in order to verify the validity and the performance of the
present FFT fracture model in predicting the crack evolution in
composite laminates with interface debonding.
7.1. Crack growth in matrix and fibres

In Li et al. [28], the prediction of the crack growth in a 2D bulk
body by means of the FFT damage model described in Section 4 has
been compared with that by using the conventional linear fracture
mechanics. The principal conclusions of these studies are:

1. The proposed non-local damage model is equivalent to the cri-
terion KI P KIc for mode I cracks.

2. The crack growth prediction is independent of the FFT grid res-
olution if the discretization is fine enough.

3. The proposed fracture model is capable to predict crack initia-
tion as well as crack growth.

The numerical results show that the FFT damage model is
highly accurate and efficient, particularly in multi-cracking
simulations.
7.2. Interface crack growth

Now let us consider a 2D plane strain periodic cell formed by
two dissimilar materials containing a central interface crack. The
dimension of the basic cell is 10 � 5 mm2 with a central interface
crack 2a of different sizes, namely a = 0, 0.1, 0.2, 0.3, 0.5, 0.75, 1,
1.25, 1.5 and 2 mm, here a = 0 represents a plate without crack.
The interface was simulated by an interphase of 0.025 mm. The cell
was discretized using a grid of regularly spaced Fourier points of
800 � 400 pixels. Thus the interphase contains 2 FFT pixels in its
thickness. The geometry of the basic cell is drawn in Fig. 1.

Let the material 1 in y > 0 be the fibre and harder and the mate-
rial 2 in y < 0 be the matrix and softer. Several material combina-
tions were examined. The Young modulus Ei and the Poisson
ratio mi of the interphase were calculated from (29) and (30). By
assuming that the toughness/strength ratio of the interphase
KIc=rc ¼ 0:5

ffiffiffiffiffiffiffiffiffi
mm
p

, the non-local action radius Ri for the interphase
can be calculated by (21). The material parameters of such a bi-
material are listed in Table 1 for different bi-materials.

The critical energy release rate for a pure mode I crack in inter-
phase is given by, according to (28):

GIc ¼ K2
Ic

E0

E0 ¼ Ei for plane stress
E0 ¼ Ei

1�v2
i

for plane stress

(
ð31Þ

With these parameters and by setting the interphase ultimate stress
ratio sc/rc = 10, the interphase toughness under mixed mode load-
ing can directly be obtained by using the criterion (13).

This simple bi-material cell containing interfacial cracks was
used to evaluate the accuracy of the present FFT model, namely:
7.2.1. Comparison with the Griffith criterion G P Gc

For the considered interfacial cracks, the stress intensity factors
can be approximated by those for an interfacial crack between two
semi-infinite panels of dissimilar materials when the crack length
is small compared with the size of the basic cell. For the interface
crack of length 2a subjected to remotely uniform stress r1yy and r1xy,
the stress intensity factors at the right-hand crack tip are given by
[39]:

K ¼ KI þ iKII ¼ r1yy þ ir1xy

	 

ð1þ 2ieÞð2aÞ�ie ffiffiffiffiffiffi

pa
p

ð32Þ

The energy release rate can be calculated from (17), namely:

G ¼ j1 þ 1
l1

þ j2 þ 1
l2

� � r1yy

	 
2
þ r1xy

	 
2
� �

1þ 4e2
� �

pa

16cosh2ðpeÞ
ð33Þ

Therefore, the theoretical toughness of the interface crack can
easily be evaluated according to the Griffith criterion G P Gc: In
the following, we will compare the theoretical toughness with
the numerical FFT results of the present non-local model.
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In FFT simulations, the remote load was applied by imposing an
average strain E11 = E12 = 0 and E22 > 0. The remote stress at frac-
ture was calculated by averaging the tensile stress over the basic
cell, r122 ¼ R22 ¼ 1

V

R
X r22dV . By using the damage criterion (13),

the critical remote stress corresponding to the crack growth was
calculated by using the present non-local model. According to
(30), this remote load allows the calculation of the energy release
rate G at fracture. At the same time, the crack-tip mode mixity
can be evaluated by the non-local stresses at the broken point
according to tan W ¼ ~r12=~r22, thus the critical energy release rate
Gc is obtained from (15) and (31). Theoretically,

G/Gc should be unity at crack growth. In Fig. 2, we plot G/Gc and
r122=rc as function the normalised crack length a/Ri for different
material combinations. From Fig. 2, we can remark the following
points:

� The present non-local interphase damage model is equivalent to
the criterion G/Gc = 1 with quite a good accuracy.
� When the interface crack length tends to zero, the proposed

crack growth criterion is degenerated to the maximum stress
criterion.

7.2.2. Comparison with experimental data of Liechti and Chai [34]
Amongst many test data on interface crack toughness, the

experimental work carried out by Liechti and Chai [34] may be
one of the most accurate studies due to the optical interferometry
technique used in their crack opening measurements. The speci-
men that they used was an edge-cracked epoxy/glass biomaterial
strip. The specimen is quite thick such that it can be considered
as a plane strain structure. The material properties of the speci-
mens are:

� Glass: E1 = 69,000 MPa, m1 = 0.2.
� Epoxy: E2 = 2030 MPa, m2 = 0.36.
� Oscillatory index: e = 0.061.
� Interface: Critical energy release rate for mode I fracture is

GIc = 3.3 J/m2.

It is clear that the real experimental specimens cannot directly
be simulated by the FFT method as this method deals with exclu-
sively periodic structures. However, due to the autonomy of the
crack-tip fields, we can still use the 2D plane strain periodic cell
shown in Fig. 1 to assess the crack growth of the real specimens
if the energy release rates are identical in the two structures. In
the present numerical study, the interface is simulated by an inter-
phase with a thickness of 0.025 mm. Some material constants of
the interphase can be calculated according to Eqs. (29) and (30),
namely,

Ei = 3944 MPa, mi = 0.3564; The critical stress intensity factor is

therefore KIc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GIcEi=ð1� m2

i Þ
q

¼ 3:86MPa
ffiffiffiffiffiffiffiffiffi
mm
p

. Apart from these

parameters, we assume that the toughness/strength ratio of the
interphase KIc=rc ¼ 0:5

ffiffiffiffiffiffiffiffiffi
mm
p

, the ultimate stress ratio sc/rc = 10.
Thus the non-local action radius of the interphase is Ri = 0.282 mm
according to (21).

The critical energy release rates were calculated for this basic
cell under different mixed mode loads according to the non-local
criterion (13). In Fig. 3, we compare the numerical predictions thus
obtained with the experimental results in [34]. The crack-tip mode
mixity in this figure is calculated on the basis of a reference length
of 100 lm as in [34], i.e., u ¼ arctan KII

KI
þ e lnð0:1Þ according to the

definition in (16), with KI and KII calculated from (32).
From Fig. 3, we can notice that the numerical predictions for

interface crack growth agree very well with the experimental data.
The U-shaped asymmetric mixed mode interface toughness was
correctly reproduced.
7.3. Fracture in composite laminates

Through the examples above-presented, we can confirm that
the proposed non-local crack growth models are highly accurate
and efficient for the prediction of crack propagation in bulk mate-
rials and along bi-material interfaces. Another notable advantage
of the present method is its capacity to evaluate multiple crack
growth as it does not require the calculation of the energy release
rate at each crack tip. Since the proposed non-local damage model
is equivalent to the Griffith crack growth criterion, the failure of
the most loaded point in the body corresponds to the growth of
the most loaded crack. In the following examples, we will illustrate
this capacity of the proposed models by simulating the fracture
evolution in composite laminates, which were frequently studied
in the literature.

Let us consider a plane strain composite laminate cell of dimen-
sion 20 � 18.2 mm2 formed by three phases: matrix, fibres and
interfaces. The thicknesses of these layers are: 0.625 mm for ma-
trix, 0.625 mm for fibres and 0.025 mm for interphases. The entire
cell was divided into pixels by a 400 � 728 Fourier grid such that
an interphase layer is represented by a row of Fourier points, a ma-
trix layer and a fibre layer are represented each by 25 rows of Fou-



Table 2
Material constants of the components.

E (MPa) m rc (MPa) KIc ðMPa
ffiffiffiffiffiffiffiffiffi
mm
p

Þ R (mm)

Matrix (epoxy) 5100 0.35 100 50 or 200 0.105 or 1.486
Fibre (carbon) 210,000 0.27 1400 700 0.105
Interphase 10,451 0.3483 40 or 60 20 or 30 0.2906

Oscillatory index e = 0.0702
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rier points. A small initial crack of length 2a = 0.625 mm normal to
the fibre direction is located in a matrix layer at the cell centre.
Each layer of the composite is assumed to be linearly elastic and
isotropic. The material parameters of each component are listed
in Table 2.
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The external loads can be applied by imposing average stresses
R11 > 0, R22 = R12 = 0 or average strains E11 > 0, E22 = E12 = 0. The
FFT simulations were carried out step by step with small crack
growth (about 0.1 mm) at each step until the full failure of the cell.
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In the following, we will examine the influence of different mate-
rial and loading parameters on the fracture of the composite.

We present hereafter a FFT simulation with a reference config-
uration, i.e., the basic cell subjected to a uniaxial tension by impos-
ing average stresses R11 > 0 and R22 = R12 = 0 as remote loads.

7.3.1. Basic cell subjected to uniaxial tension
We first present a FFT simulation with a reference configura-

tion, i.e., the basic cell subjected to a uniaxial tension by imposing
average stresses R11 > 0 and R22 = R12 = 0 as remote loads. A weak
interphase was chosen with rc = 40 MPa and KIc ¼ 20MPa

ffiffiffiffiffiffiffiffiffi
mm
p

.

Fig. 4a illustrates the global response, i.e., the E11–R11 curve of
the cell during the loading. Fig. 4b–d shows the fracture patterns
of the cell at the beginning, the middle and the end of the failure
process. With the aid of these figures, we can describe the fracture
process of the composite as follows:

� Under uniaxial tension, the global response of the composite
laminate presents a saw-tooth snap-back feature. Each tooth
represents the crack growth though a fibre layer.
� When a short crack grows in a layer of matrix and meets a fibre,

a high level load is needed to overcome this energy barrier. It
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first deviates a little into the interface or in the matrix before
entering in the fibre.
� When the crack grows in a layer of fibre and meets the matrix, it

deviates slightly in the matrix before penetrating into the
matrix. As the matrix strength is much lower than that of the
fibre, the remote load drops significantly.
� As the transversal main crack grows and becomes longer, the

length of its deviations into the interfaces increases when it
meets a fibre.
� We can remark that the interface debonding acts as a crack

arrestor as described in previous studies [3]. When the crack
propagates in an interface, the crack tip mode mixity varies
from mode I toward mode II. Its growth requires more and more
energy according to the interface fracture criterion (Eq. (15)).
� As a result of the interface debonding, the final fracture surfaces

take a stair form as observed in previous experimental studies
[40,41].
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7.3.2. Case of the biaxial tension
In the second calculation, the same basic cell is subjected to the

average strains E11 > 0 and E22 = E12 = 0. The condition E22 = 0
engenders a transversal tension and therefore changes the fracture
feature of the composite.

In Fig. 5a, we plot the average strain–stress curve of the cell dur-
ing the loading. Fig. 5b illustrates the crack patterns of the cell at
the end of the failure.

We can remark that even though the global response seems to
only be slightly affected by the load change, the fracture patterns
are quite different from that under uniaxial loading. Contrary to
the case of uniaxial loading, the first interface cracks (Fig. 5b) un-
der biaxial tension are very long. The subsequent interface cracks
become shorter as the biaxial tension decreases but still quite long
(several millimetres). Consequently, the degradation of the trans-
versal stiffness is more important compared to the case of uniaxial
loads.
(b)

(d)

Initial crack

(c) and the end (d) of the failure process of the basic cell with tough matrix.
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7.3.3. Case of strong interfaces
If the strength and the toughness of the interphase are larger

than those in the above-presented simulations, for example,
rc = 60 MPa and KIc ¼ 30MPa

ffiffiffiffiffiffiffiffiffi
mm
p

, different numerical results
can be obtained. In this case, the strength and the toughness of
the interphase are larger than the half of the corresponding values
of the matrix. In Fig. 6a, we show the global response of the cell
during the loading. Fig. 6b illustrates the cracking patterns at the
end of the fracture. From these figures, we can remark that first,
the remote stress required to break a layer of fibre is higher com-
paring to that with a weaker interface, and consequently the frac-
ture of this composite is more energy consuming. Second, as the
interfaces are stronger, the crack does not deviate into the interface
before it passes across a fibre, but continues to propagate in the
matrix nearby and by following a parallel path to the interface.
Comparing to the composite with weaker interfaces, the sub-inter-
face crack is even longer. This is because that even though the ma-
trix is stronger than the interphases, its fracture follows a non-local
maximal principal stress criterion but not a mode-dependent crite-
rion as that defined for an interface. Consequently, there is no such
a mode-resistance behaviour for the sub-interfacial cracking.
7.3.4. Case of large matrix toughness
In practice, epoxies with large fracture toughness are often cho-

sen in order to improve the global toughness of the composite.
These epoxies may manifest plasticity or viscosity that should be
taken into account in the modelling. In the following calculation,
the same basic cell subjected to a uniaxial tension with a tougher
matrix was simulated, namely KIc ¼ 200MPa

ffiffiffiffiffiffiffiffiffi
mm
p

while the ulti-
mate stress remains unchanged. In this case, the non-local action
radius of the matrix becomes much larger with R = 1.486 mm.

Fig. 7a illustrates the E11–R11 curve of the cell during the load-
ing. Fig. 7b–d shows the fracture patterns of the cell at the begin-
ning, the middle and the end of the failure process. The global
response of the cell does not manifest significant difference from
that with a brittle matrix apart from the residual strength after
the failure of all the fibres. As the fibres are always much stronger
and tougher than the matrix, their failure is still predominate. The
visible quasi-brittle behaviour is due the larger toughness of the
matrix. From Fig. 7b–d, we can observe the sequential and spatial
details of the cell failure. Compared with the cell fracture with a
weak matrix (Fig. 4), following observations can be made:

� The failure of the fibres and interfaces always precedes the fail-
ure of their adjacent matrix as the matrix becomes much
tougher.
� The damaged zones in the matrix become larger.
� Since the interface crack initiates before the main crack touches

the interface, the opening of the interface crack decreases and
as a consequence, the interface cracks are shorter.

The numerical simulations presented in this section show the
validity and the efficiency of the proposed failure model. Its capac-
ity in describing different fracture mechanisms of the composite
materials allows for detailed fracture prediction of this kind of
composites.
8. Concluding remarks

In this work, we have established a non-local fracture model for
composite laminates and resolved it by using the Fast Fourier
Transforms (FFT). An attempt was made to model some of the
important failure mechanisms in composite laminates, including
the crack growth in matrix and fibres, especially the mixed-mode
interfacial cracking and its role in the fracture of the whole struc-
ture. For crack propagation in the matrix and the fibres, the maxi-
mal stress criterion was adapted by using the non-local concept.
This non-local criterion is equivalent to the Griffith–Irwin criterion
when a macrocrack is formed and to the maximal stress criterion
in the case of a regular stress field. Consequently, the proposed
fracture model is capable to predict crack initiation as well as crack
growth. For matrix/fibre interfacial debonding, the crack growth
criterion developed in Li [3] was adapted and transformed to a
non-local strength criterion. The proposed model is able to de-
scribe the interface fracture mechanism observed in many experi-
ments, according to which the interfacial fracture toughness
increases with the increase of mode-II/mode-I ratio. Another par-
ticularity of the proposed approach is its ability to deal with an
interface by a thin layer of interphase. The interface fracture is
therefore considered exactly as that of a bulk material and no spe-
cial interface separating laws is required as those defined in the
cohesive models. As a consequence, the present model provides
the same performance as the cohesive models by avoiding the
associated convergence difficulties.

The FFT-based formulation has the advantage of leading to
accurate numerical results for a periodic structure. Its possibility
to profit from high resolution in discretization allows for a detailed
description of the microstructure in heterogeneous materials. Con-
sequently, this approach is particularly interesting for fracture sim-
ulations of composites in different scales. Moreover, the proposed
approach enables an automatic selection of crack growth without
calculating the toughness of each crack tip. Consequently, multiple
crack growth problems can easily be dealt with. We believe that
further studies in this direction will allow for more efficient dam-
age models and provide abundant information on fracture process
in linear or non-linear composite materials, especially in the
microscopic scale.
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