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Abstract

The present work examines the mechanism of formation of thermal shock crack patterns in ceramics. An attempt has been made to
bridge the gap between theoretical predictions and experimental data. A set of experiments on thin ceramic specimens yielded two-dimen-
sional readings of thermal shock crack patterns with periodical and hierarchical characteristics that vary with the thermal shock temper-
ature. Based on the minimum potential energy principle the finite element method was used for numerical simulations, in which the
temperature dependence of the material properties was considered. To overcome the difficulty of a lack of accurate data on the convec-
tive heat transfer coefficient at high temperatures, a “semi-inverse method” was developed, which explores a new method for estimating a
physical quantity that is difficult to measure using physical quantities, which are relatively easy to measure. The numerical and exper-
imental data were compared and discussed. The obtained numerical results are in good agreement with the experimental data. Further-
more, the numerical simulations can conveniently reproduce the evolution of thermal shock cracks, which is difficult to observe
experimentally. In addition, some interesting phenomena related to thermal shock crack pattern evolution were observed. The present
theoretical–numerical–experimental study has led to a much improved understanding of the formation and evolution of thermal shock
crack patterns in ceramics.
� 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Due to their excellent high temperature mechanical
properties, corrosion resistance, wear resistance, erosion
resistance, and oxidation resistance ceramic materials have
been widely used in various industries, especially in ther-
mostructures such as gas turbine engines [1] for aircraft
propulsion, power generation, marine propulsion, and
thermal protection structures in hypersonic vehicles [2,3].

However, the inherent brittleness and lack of ductility of
ceramic materials make them particularly susceptible to
thermal shock failure, even catastrophic fracture. Research
on the thermal shock failure of ceramics has been
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performed for more than half a century. In the 1950s
Kingery [4] proposed the critical stress fracture theory,
which requires that materials have a high tensile strength
and low Young’s modulus to avoid the initiation of
fracture by thermal stress. Subsequently, Hasselman [5,6]
proposed the thermal shock damage theory, which requires
that materials have a low tensile strength and high Young’s
modulus to prevent cracks from propagating. Both theories
have been extensively used, but some basic problems
remain. Numerous theoretical and experimental studies
on the thermal shock failure of ceramics have been con-
ducted [7–15]. Among them, Hasselman [7] provided qual-
itative theoretical predictions of the crack propagation
behavior of polycrystalline alumina rods under thermal
shock caused by water quenching. Lu and Fleck [9] ana-
lyzed the thermal shock resistance of brittle solids using a
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http://dx.doi.org/10.1016/j.actamat.2012.05.020
mailto:jiangchiping@buaa.edu.cn
http://dx.doi.org/10.1016/j.actamat.2012.05.020


Fig. 1. Bound specimens for thermal shock.

C.P. Jiang et al. / Acta Materialia 60 (2012) 4540–4550 4541
stress-based fracture criterion for a plate containing a dis-
tribution of flaws, such as pores, and a critical stress inten-
sity factor criterion for a plate containing a single
dominant crack aligned with the through thickness direc-
tion. Collin and Rowcliffe [11] studied the thermal shock
behavior of brittle materials using the indentation quench
method, obtained crack growth vs. temperature curves,
and derived an expression for predicting the thermal shock
resistance. Han and Wang [15] conducted thermal shock
studies for three typical thermal shock specimens and dem-
onstrated the significance of incorporating temperature-
dependent material properties for the thermal shock resis-
tance of ceramics for high temperature applications.

Although great progress has been achieved in studying
the thermal shock failure of ceramics, it is still largely insuf-
ficient for practical engineering needs; designing ceramics
has to be approached statistically, and proof testing is still
a frequently used technique to guarantee the minimum ser-
vice life of a ceramic component [1]. It is recognized that a
basic understanding of the thermal shock failure mecha-
nism must be gained to achieve the full potential of
ceramics.

Researchers very early noticed that thermal shock cracks
exhibit generally regular and elegant patterns, such as peri-
odical and hierarchical characteristics, which are of practi-
cal importance for a clear understanding of the thermal
shock failure mechanism of ceramics. Bažant [16] and
Nemat-Nasser et al. [17,18] studied the stability of propa-
gated thermal shock cracks (or drying shrinkage cracks)
using the energy principle, and they theoretically discussed
the length hierarchy phenomenon. Bahr et al. [19–21] theo-
retically and experimentally studied thermal shock crack
patterns. Jenkins [22] used a method based on energy mini-
mization to determine the spacing and penetration of a reg-
ular array of cracks in a shrinking slab due to a changing
temperature field. Recently Bourdin et al. [23] surveyed
the variational approach to fracture. The authors stated that
the variational approach addresses crack initiation and
crack propagation in a united framework. The total energy
in a body is the sum of the elastic energy and the Griffith’s
surface energy associated with the cracks. The authors
addressed three main issues, initiation, irreversibility, and
path, which have plagued fracture mechanics over the last
100 or so years. Based on this variational approach, efficient
numerical algorithms were developed which are capable of
performing rather complicated fracture analyses in brittle
materials. Furthermore, numerical studies for predicting
cracks induced by thermal stresses were also performed [24].

However, no quantitative predictions of thermal shock
crack patterns in practical materials have been reported
to date. There are two main difficulties in predicting ther-
mal shock crack patterns. The first is the temperature
dependence of the material properties. From Fig. 8 in
Section 4 it can be seen that for 99% Al2O3 ceramics the
thermal conductivity, specific heat, and coefficient of
thermal expansion possess steep non-linear temperature
dependencies. Apparently, the assumption of constant
material properties cannot yield accurate quantitative pre-
dictions. The second is the lack of accurate data on the
material properties at high temperatures. The available
data [33–36] on effective heat transfer coefficients are dis-
perse, with the consensus being between 104 and
105 W m�2 K�1. Such dispersion prohibits an accurate
quantitative study.

This work constitutes a continuing study in the quest to
elucidate the mechanism of formation and undertake quan-
titative numerical simulations of thermal shock crack pat-
terns in ceramics. To overcome the above mentioned
difficulties, a new approach combining experiments with
numerical simulations has been explored and developed.
This paper is organized as follows.

Section 2 reports a set of thermal shock experiments
using 99% Al2O3 ceramics, in which thin specimens exhibit
rather regular thermal shock through crack patterns, and
the dispersion of the crack spacing is small at the same
thermal shock severity. Section 3 formulates the basic ther-
mal stress theory, and the minimum potential energy prin-
ciple that is used to predict thermal shock crack patterns.
Section 4 develops a numerical simulation of thermal shock
cracks, where the effective heat transfer coefficient is esti-
mated inversely from the crack spacing; in turn, the length
and hierarchy of the thermal shock cracks are quantita-
tively predicted. Section 5 is a comparison of the numerical
and experimental results with a discussion of the results.
The emphasis is on the mechanism of formation of thermal
shock crack patterns. Finally, several conclusions are
drawn in Section 6.

2. Experimental

The study on the mechanism of formation of thermal
shock crack patterns requires high accuracy measurements
of the crack geometry, thus two-dimensional through
cracks are highly desirable. To this end 99% Al2O3 powder
(University of Science and Technology Beijing Experimen-
tal Factory Co., Beijing, China) was thermoformed into
50 � 10 � 1 mm thin specimens. The specimens were then
polished and tightly stacked together in sets of five, with
two thick ceramic plates on the outside to prevent the tem-
perature distribution from being disturbed by coolant
accessing the interior surfaces of the specimens. Finally,
the stacks of alumina plates were bound with inconel wires
positioned 3–4 mm from the ends of the specimens, as
shown in Fig. 1.

The bound specimens were heated in a furnace at a rate
of 10 �C min�1 to the preset temperature T0 and



Table 1
Variations in the dimensionless crack spacing �s = s/Lc with thermal
temperature T0, where s is the crack spacing and Lc = 5 mm is half of the
specimen width.

T0 (�C) �s ¼ s=Lc

No. 1 No. 2 No. 3 No. 4 No. 5 Average

300 0.335 0.342 0.272 0.314 0.338 0.320
350 0.172 0.194 0.173 0.170 0.210 0.184
400 0.173 0.156 0.159 0.162 0.161 0.162
500 0.143 0.142 0.143 0.136 0.145 0.142
600 0.128 0.134 0.109 0.118 0.111 0.120

Fig. 2. Both sides of a specimen after thermal shock at T0 = 400 �C.

4542 C.P. Jiang et al. / Acta Materialia 60 (2012) 4540–4550
maintained at this temperature for approximately 30 min.
The range of T0 was from 300 to 600 �C, with an interval
of 100 �C. It will be observed from the later experiments
that there is a dramatic change in the thermal shock crack
patterns between T0 = 300 �C and T0 = 400 �C. Such a
phenomenon may imply dramatic changes in the relevant
material properties, therefore, T0 = 350 �C was added.
After heating the heated specimens were dropped into a
water bath at T1 = 20 �C by free fall while continuously
stirring the cooling water. The specimens were removed
from the water bath 10 min later and dried, then dyed with
blue ink to observe the cracks formed.

It was observed that the thermal shock cracks passed
through and were perpendicular to the top or bottom face,
with reference to the digitally scanned photographs of a
specimen after thermal shock at T0 = 400 �C (Fig. 2),
where the crack patterns on both of the sides of the speci-
men were identical. At various values of T0 (from 300 to
600 �C) this feature remained unchanged. The two-dimen-
sional crack patterns are convenient for measuring crack
geometry and thermal stress analysis and, consequently,
for a thorough study of the mechanism of formation of
crack patterns.
mm01mm01
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Fig. 3. Specimens after thermal shock at various values of T0.
Furthermore, it was observed that the crack patterns
(spacing, length, length hierarchy, and periodicity) were sim-
ilar in the five specimens at each value of T0, whereas the
crack patterns evolved with an increase in the thermal shock
temperature T0. The higher T0, the less crack spacing there
was. In addition, the long cracks became longer and the short
cracks became shorter as T0 increased, as shown in Fig. 3.

In measuring the geometry of the thermal shock cracks,
to remove the effects of the end boundaries, the regions
within 10 mm from the two ends of the specimens were
excluded, as shown in Fig. 3. The average dimensionless
spacing �s = s/Lc of the thermal shock cracks in a specimen
was easy to measure, where s is the crack spacing and
Lc = 5 mm is half of the specimen width. The variations
in the dimensionless crack spacing �s with the thermal shock
temperature T0 for all specimens are presented in Table 1.
It can be seen that at each value of T0 the fluctuation in the
average crack spacing among the five specimens was very
small, and the maximum deviation from the total average
value was less than 10%, except for a very small number
of specimens with a slightly larger deviation.

To investigate the crack length distribution we intro-
duced a dimensionless crack length, �p = p/Lc, where p is
the crack length. The histogram of the frequency distribu-
tion of �p at T0 = 400 �C is shown in Fig. 4, where the range
of �p, namely 0–1, is divided into 50 equal parts. The histo-
grams at various values of T0 refer to Fig. 14 in Section 5.
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tion in the measurement region at the thermal shock temperature
T0 = 400 �C.
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From the shocked specimens (Figs. 2 and 3) and their
measurements (Fig. 4 and Table 1) it can be seen that the
length and distribution of the thermal shock cracks exhibit
an interesting elegant regularity (such as periodical and
hierarchical characteristics). In the following sections the
theoretical and numerical approaches will be developed
to gain a scientific understanding of the mechanism of for-
mation and evolution of thermal shock crack patterns.

3. Theoretical considerations

3.1. Model

Using the measurement region of the specimen (Fig. 3)
as the analytical model A1A2A3A4, as shown in Fig. 5,
where the ceramic material is assumed to be homogeneous
and isotropic, the random effects induced by the micro-
structural heterogeneity and other uncertainties will be
considered in Section 5.

3.2. Temperature and thermal stress fields

A Cartesian coordinate system Oxz in the model in
Fig. 5, where the origin is at the center of the region, was
established. Noting that the water temperature holds at
T1 = 20 �C during the water quenching process and that
the effect of the end boundaries of the measurement region
is precluded, the temperature field T = T(z, t) is one-dimen-
sional (z-direction). The heat conduction equation can be
written as [25]:

@

@z
kðT Þ � @T

@z

� �
¼ qðT Þ � cðT Þ � @T

@t
ð1Þ

where t is the time and k(T), q(T), and c(T) are the temper-
ature-dependent thermal conductivity, density, and specific
heat, respectively. The initial thermal condition can be
written as:

T ðz; tÞjt¼0 ¼ T 0 ð2Þ
where T0 is the preset temperature of thermal shock with
values of 300, 350, 400, 500, and 600 �C, respectively. Not-
ing that the x-axis is a symmetrical axis of temperature and
that both ends of the model can be regarded as being ther-
mally insulated, the boundary condition of the upper half
model can be written as [25]:
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Fig. 5. Analytical model of the measurement region.
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where h(T) is the temperature-dependent convective heat
transfer coefficient.

The transient temperature field T = T(z, t) in the model
can be obtained from Eqs. (1)–(3). The stress field at any
time point can then be obtained using thermo-elastic the-
ory. Despite the one-dimensional temperature field, no
analytical expressions of the temperature and thermal
stress fields are available, because of the non-linear temper-
ature dependence of the material properties of ceramics. In
this work the software ANSYS was employed to calculate
the temperature and thermal stress fields.

3.3. Optimal crack patterns

Griffith’s theory of fracture addresses the initiation and
propagation of cracks in a unified variational framework
[22,23]. The cracking path is an issue that has plagued frac-
ture mechanics for a long time [23]. Because the analytical
model of the specimens is homogeneous and isotropic, dur-
ing the initial stages it was assumed that the thermal shock
cracks were of equal length and equal spacing and perpen-
dicular to the boundary, as shown in Fig. 5. This assump-
tion was verified by our experiments (Fig. 3). As a
consequence of this result, the thermal shock cracks do
not disturb the transient temperature field, but change
the transient stress field in the specimens. The strain energy
U in the specimen can be written as:

U ¼ Uðs; p; tÞ ð4Þ
where s and p are the spacing and length of the thermal
shock cracks, respectively. Assuming that the surface en-
ergy S, which is the energy required to form new crack sur-
faces, is proportional to p this expression can be written as:

S ¼ cp ð5Þ
where c is the surface energy density. The total potential
energy of the analytical model can be written as:

W ðs; p; tÞ ¼ U þ S ð6Þ
By considering the periodicity and symmetry of the

model with cracks the rectangular region O1B1B2B3B4 in
Fig. 5 can be used as a computational region, where
O1B4 is the crack face, B2B3 is the perpendicular bisector,
and B1B2 is located on the symmetrical axis Ox. In the
computational region the average total potential energy
of the unit area can be written as:

W ðs; p; tÞ ¼ W
Lc � ðs=2Þ ð7Þ

According to the minimum potential energy principle,
optimal crack patterns minimize the average total potential
energy of the unit area. Let s0 and p0 be the spacing and
length of the optimal thermal shock cracks, respectively,
at time t0, then we have
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W ðs0; p0; t0Þ ¼ min W ðs; p; t0Þ ð8Þ
As an illustrative example take T0 = 400 �C and observe

the location change of the minimum value on the curved
surface of W during the thermal shock process. It is
observed that when the thermal shock time t is less than
a certain critical time tc the minimum value on the curved
surface of �W is located at �p0 = p0/Lc = 0, as shown in
Fig. 6a, which indicates that the specimen does not crack.
However, when t > tc the minimum value shifts to
�s = �s0 = s0/Lc and �p = �p0 = p0/Lc, as shown in Fig. 6b,
which indicates that s0 and p0 are the optimal crack spacing
and length, respectively.

Now consider the evolution of thermal shock crack pat-
terns with time. Theoretically, during the thermal shock
process the average total potential energy curved surface
changes continuously with time. Consequently, the ideal-
ized optimal crack spacing and length (s0, p0) also change
continuously with time. As an illustrative example, the ide-
alized curve of �s0 vs. time at T0 = 400 �C is plotted by a
solid line in Fig. 7. It can be observed that the idealized
optimal crack spacing rapidly reaches its theoretical mini-
mum, then increases. However, the cracks formed do not
recede or disappear, which prevents the crack spacing from
changing continuously with time. The crack spacing should
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Fig. 6. Graphs of the average total potential energy curved surfaces for
two time points at T0 = 400 �C.
rapidly reach a minimum �s0 min (in the vicinity of the theo-
retical minimum) due to the appearance of additional
cracks. The cracks then continue to propagate while main-
taining a constant spacing until the minimum point of the
potential energy jumps to a curve representing “spatial per-
iod doubling” [22], i.e. every second crack continues to
propagate, whereas the other cracks stop. The process
can be repeated and forms a hierarchical crack pattern.
The practical hierarchical crack spacing is shown by the
dashed line in Fig. 7. It can be seen that the practical
hierarchical spacing approaches the idealized spacing by
stepping, with the restraint of “spatial period doubling”.

4. Numerical simulations

4.1. Semi-inverse method

The finite element software ANSYS was used for the
numerical simulations, in which the main challenge arises
from the temperature dependence of the material proper-
ties and the difficulties associated with measuring these
properties at high temperatures.

From the available data the Young’s modulus E [26], the
Poisson ratio m [26], the density q [26], and the surface
energy density c [27] of 99% Al2O3 ceramics are listed in
Table 2.

Because the thermal expansion coefficient of ceramics is
very small the density q can be regarded as being tempera-
ture-independent. Fukuhura and Yamauchi [28] experi-
mentally studied the temperature dependence of the
Young’s modulus E and the Poisson ratio m for alumina
and reported that they remain approximately unchanged
in the range 20–600 �C. An experimental report by de Smet
Table 2
Four material properties of 99% Al2O3 ceramics.

E (Gpa) m q (kg m�3) c (J m�2)

370 0.22 3980 12.16
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and Bach [29] showed that the fracture toughness KIC of
two types of alumina differ slightly at 20 and 600 �C. Based
on fracture mechanics 2c ¼ K2

IC=E, thus the surface energy
density c can also be regarded as being temperature-inde-
pendent in this temperature range.

However, the thermal conductivity k, the specific heat c,
and the thermal expansion coefficient a are strongly
temperature-dependent, as shown in Fig. 8.

The biggest challenge in numerical simulations arises
from a lack of accurate data on the convective heat transfer
coefficient in thermal shock. From the available data
[33–36] the mutual deviation is high, up to one order of
magnitude (104–105 W m�2 K�1). In fact, this large disper-
sion prevents accurate quantitative analysis. To overcome
this difficulty let us examine Table 1.

It can be seen that the fluctuation in the average crack
spacing among the five specimens at each thermal shock
temperature was small, at the same time it is easy to mea-
sure. Therefore this work explores and develops a new
semi-inverse method combining experimental data and
numerical simulations, i.e. the convective heat transfer
coefficient is inversely estimated from the thermal shock
crack spacing. The crack length, hierarchical characteris-
tics, and their evolution are then numerically predicted. It
will be seen that although the presently developed semi-
inverse method is not a quantitative prediction method in
the complete sense, it has led to a much improved under-
standing of the mechanism of formation of thermal shock
crack patterns. Furthermore, the semi-inverse method pro-
vides a new method for estimating a physical quantity that
is difficult to measure using physical quantities, which are
easy to measure.

4.2. Computational region

From the theoretical considerations in the last section it
can be seen that during the initial stages of thermal shock
cracking all periodically distributed cracks propagate uni-
formly. Based on this fact, we defined a fundamental region
with a minimum period, as shown in Fig. 9a, where s0min is
the minimum crack spacing (which can be predicted, but in
this work, to inversely estimate the convective heat transfer
coefficient, the values are taken from experimental data), p
is the crack length and Dp is the small propagation value
within a small time interval Dt. According to the symmetry
the rectangular region O1B1B2B3B4 in Fig. 5 (see also
Fig. 9) can be used as a computational region, as shown
in Fig. 10a. When the minimum point of the potential
energy jumps to a certain curve of “spatial period dou-
bling” every second crack continues to propagate, whereas
the other cracks stop (with a length of p1). The fundamen-
tal region is extended in Fig. 9b and the corresponding
computational region is extended in Fig. 10b. The process
can be repeated for multilevel crack patterns.

According to the periodicity and symmetry of the ther-
mal shock cracks the displacement boundary conditions
of the computational region can be prescribed as shown
in Fig. 10. The crack surfaces are traction free.

4.3. Numerical simulations

4.3.1. Finite element mesh and time step

In the process of calculating numerical solutions the
average total potential energy of the unit area needs to
be accurately calculated, therefore a fine mesh is employed
in the computational region. Because of the large tempera-
ture gradient in the vicinity of the line B3B4 and the stress
singularity at the crack tip finer meshes are used in these
regions.

Based on our experience, the calculation time was set to
1 s, which was uniformly divided into 500 time steps. Dur-



Table 3
Effective heat transfer coefficients �h derived by the semi-inverse method at
various values of T0.

T0 (�C)

300 350 400 500 600

�h (W m�2 K�1) 54,500 100,000 86,000 57,000 45,000
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Fig. 12. Curve of the effective heat transfer coefficient �h at various values
of T0.
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ing the first 0.1 s, when the large variation in the tempera-
ture distribution was considered, the time steps were
increased from 50 to 500.

4.3.2. Estimation of the effective heat transfer coefficient

Let us now estimate the heat transfer coefficient h inver-
sely from the crack spacing. For any value of h finite ele-
ment calculations can provide the corresponding
temperature and stress fields, then providing the crack
spacing s0min using the minimum potential energy principle.
The variations in the dimensionless crack spacing �s0 min with
the heat transfer coefficient h at T0 = 400 �C are shown in
Fig. 11. The value of h corresponding to the practical crack
spacing is called the effective heat transfer coefficient, which
is used to predict the following evolution of the crack pat-
tern. For example, from the experiments the dimensionless
crack spacing is �s ¼ 0:162 at T0 = 400 �C (see Table 1).
Then, from Fig. 11, the corresponding effective heat trans-
fer coefficient is �hT 0¼400 �C ¼ 86; 000 W m�2 K�2. The val-
ues of the effective heat transfer coefficient �h, derived by
the semi-inverse method at various values of T0, are listed
in Table 3. The fitting curve of the effective heat transfer
coefficient �h vs. the thermal shock temperature T0 is plotted
in Fig. 12. It can be seen that the effective heat transfer
coefficient first rapidly increases, then decreases. The ten-
dency of variation is in agreement with the existing data
[33–36], which indicate the potential for the application
of the semi-inverse method. It can be used to estimate a
physical quantity that is difficult to measure directly using
physical quantities, which are easy to measure. Fig. 12 also
reveals that there is a dramatic change in the thermal shock
crack patterns between T0 = 300 and T0 = 400 �C (see
Fig. 3 and Table 1), which corresponds to the peak of
the effective heat transfer coefficient.

4.3.3. Numerical simulation results

The above developed method can simulate the evolution
of thermal shock cracks. It has been shown that the process
can be divided into two stages for T0 = 300 �C and three
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Fig. 11. Variations in the dimensionless crack spacing �s0 min with the heat
transfer coefficient h at T0 = 400 �C.
stages for T0 = 350, 400, 500, and 600 �C. The variations
in the dimensionless crack spacing �s = s/Lc and the dimen-
sionless crack length �p = p/Lc with time t are plotted in
Fig. 13, where the solid lines represent the dimensionless
spacing of the propagating cracks in various stages and
the dashed lines represent the dimensionless lengths of
the propagating cracks in various stages.

In stage I the thermal shock cracks initiate and propa-
gate uniformly with an equal spacing �s ¼ �s1. At first the
thermal shock cracks propagate very rapidly, then the
propagation speed decreases gradually with the release of
thermal stress until the strain energy cannot support the
simultaneous propagation of all cracks. At this moment
the minimum point of the potential energy jumps to a cer-
tain curve of “spatial period doubling”, i.e. every second
crack continues to propagate, whereas the other cracks
stop (see Section 3.3). The stationary cracks with a length
of �p1 are termed level I cracks. The evolution of crack pat-
terns then continues to stage II.

In stage II the cracks with an equal spacing
�s ¼ �s2 ¼ 2�s1 continue to propagate uniformly. At first
the crack propagation speed shows a sudden increase
because the strain energy supports propagation of only
half of the cracks, then the propagation speed gradually
decreases with the release of thermal stress until the strain
energy cannot support simultaneous propagation of all
propagating cracks in stage II. At this moment the mini-
mum point of the potential energy again jumps, and every
fourth crack continues to propagate, whereas the other
cracks stop. The cracks which stop propagating at the
end of stage II are termed level II cracks with a length
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Fig. 13. Evolution of the thermal shock crack patterns reproduced by numerical simulations at various values of T0.
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�p2, and then evolution of the crack patterns goes to stage
III. This process can be repeated until the strain energy
induced by thermal stress cannot support the propagation
of any cracks.

The simulation results of the final crack patterns at var-
ious values of thermal shock temperature T0 are listed in
Table 4, where the long cracks for T0 = 300 �C are classi-
fied as level III cracks, which will be explained below.
5. Comparison and discussion

The evolution of thermal shock cracks is difficult to
observe experimentally, whereas it can be conveniently
reproduced by numerical simulations. It is of interest to
compare the numerical simulations and the experimental
data. The theoretical, numerical, and experimental studies
complement each other.



Table 4
Simulation of crack patterns at various values of T0, where �s ¼ �s1 is the
dimensionless spacing, �p1, �p2, and �p3 denote the dimensionless lengths of
levels I, II, and III, respectively.

T0 (�C)

300 350 400 500 600

�s 0.320 0.184 0.162 0.142 0.120
�p1 0.22 0.12 0.11 0.1 0.08
�p2 – 0.38 0.35 0.33 0.28
�p3 0.68 0.77 0.78 0.81 0.82
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5.1. Evolution of crack patterns

The numerical simulations precisely predict the periodi-
cal and hierarchical crack patterns, as shown in Fig. 13 and
Table 4. The simulations show that once the thermal shock
cracks initiate the longest level III cracks penetrate to a
considerable distance. Then the level III crack (the longest
crack) length increases slowly with increasing thermal
shock temperature T0, but will not reach half of the speci-
men width, i.e. Lc. In contrast, the lengths of the shortest
level I cracks and the shorter level II cracks decrease with
increasing T0. Such laws, predicted by numerical simula-
tions (Fig. 13 and Table 4), are in good agreement with
the experimental observations (Fig. 3).

It is of especial interest to examine the evolution of the
thermal shock crack hierarchy with thermal shock temper-
ature T0. The numerical simulations show that there are
two crack levels at T0 = 300 �C, and three levels of cracks
at T0 = 350 �C. During the transition process the embry-
onic third level cracks are located between, but not outside,
the two developed crack levels. Therefore, at T0 = 300 �C
“level II” is reserved for the embryonic third level cracks,
whereas the longer of the two developed levels of cracks
is termed “level III”. From Figs. 3 and 13 and Table 4 this
classification captures the evolution characteristics of the
thermal shock crack patterns with respect to the thermal
shock temperature T0.

5.2. Random effects

The thermal shock crack patterns predicted by the
numerical simulations have strict periodical and hierarchi-
cal characteristics, whereas the experiments exhibit some
degree of uncertainty. Fig. 14 presents histograms of the
experimental data, which show the frequency distribution
of the dimensionless crack length �p = p/Lc at various ther-
mal shock temperatures T0. In these histograms �p is divided
into 20 equal parts for T0 = 300 �C due to the small num-
ber of cracks, but into 50 equal parts for other values of T0.
For convenience of comparison the predicted lengths for
every level (�p1;�p2; and �p3) are also shown in Fig. 14 by
the dashed-dotted lines. It can be seen that the numerical
simulations predict three distinct levels of thermal shock
cracks, whereas the statistical experimental data exhibit a
random distribution with three peaks. This difference
indicates that random effects, caused by the ceramic micro-
structural heterogeneity, experimental non-deterministic
factors, and so on, must be considered.

Assuming that each crack level obeys a Gaussian distri-
bution, then the entirety can be described by a composite
Gaussian function:

y ¼
Xn

1

An

Bn
e
ðx�xnÞ2

2B2
n ð9Þ

where n = 2 or 3 is the crack level number, the mean value
of the Gaussian distribution xn denotes the theoretical
length of level n, and An and Bn are constants related to
the amplitude and standard deviation, respectively.

Fitting the experimental data (the solid curves in
Fig. 14) to the composite Gaussian function (Eq. (9)) it
can be seen that the experimental data are in reasonable
agreement with the numerical predictions, except for
T0 = 300 �C. At T0 = 300 �C the numerical simulations
predict two crack levels, but the experimental data seem
to exhibit three “peaks”. A reasonable explanation seems
to be the effect of the embryonic level of the cracks (see Sec-
tion 5.1). In addition, there are more random effects during
the transition in crack patterns (from two to three crack
levels).

6. Conclusions

(1) On visual observation thin alumina ceramics speci-
mens after water quenching exhibit temperature-
dependent crack patterns with rather regular periodic
and hierarchical characteristics. The higher the tem-
perature, the less the crack spacing and the larger
the difference in crack length. At the same thermal
shock temperature the dispersion in the number of
cracks (or the average crack spacing) in various spec-
imens is small, and the crack length distribution is the
same from a statistical standpoint. The frequency
counts vs. crack length histograms exhibit several
peaks, which correspond to different crack lengths.

(2) Based on the minimum potential energy principle, the
finite element method was used for numerical simula-
tions. The temperature dependence of the material
properties was considered to enable quantitative pre-
dictions of the thermal shock crack patterns. To over-
come the difficulty of a lack of accurate data on the
convective heat transfer coefficient at high tempera-
tures (the dispersion is high up to one order of mag-
nitude) a “semi-inverse method” was developed. The
convective heat transfer coefficients were inversely
estimated from the measured crack spacing at each
temperature. It can be seen that the tendency for a
variation in the effective convective heat transfer coef-
ficient estimated by the semi-inverse method is in
agreement with the existing data. The semi-inverse
method is also an exploration of a new method to
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Fig. 14. Histograms of the dimensionless crack length (�p = p/Lc) distribution at various values of T0, where the curves are the fitted results using the
composite Gaussian function, and �p1, �p2, and �p3 are the dimensionless lengths of three crack levels from numerical simulations.
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overcome the difficulties in measuring high tempera-
ture material properties, i.e. to estimate a physical
quantity that is difficult to measure using physical
quantities which are easy to measure.

(3) The numerical simulations and experiments comple-
ment each other. The numerical simulations reveal
the periodical and hierarchical characteristics of
thermal shock cracks. Considering the random effects
of crack length with a Gaussian distribution function,
each crack level in the specimens can be distinctly
separated. The numerical simulations can conve-
niently reproduce the evolution of thermal shock
cracks, which is difficult to observe experimentally.
It was found that with an increase in the thermal
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shock temperature the initiating crack level appears
between the developed crack levels; the length of
the longest crack level continues to increase, whereas
the other crack levels become shorter. These interest-
ing phenomena were experimentally confirmed. The
present theoretical–numerical–experimental study
has led to a much improved understanding of the for-
mation and evolution of thermal shock crack patterns
in ceramics.
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