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a b s t r a c t

A trans-scale mechanics model considering both strain gradient and interface energy effects is presented
for describing size effects in nanocrystalline and ultra-fine polycrystalline metals accompanying by inter-
granular fracture. A finite element method is developed which is suitable for describing the strain gradi-
ent and interface energy effects. Moreover, cohesive interface model is used to study the intergranular
damage and fracture in polycrystalline metals with nanoscale and ultra-fine grains. A systematical study
on the overall strength and ductility of polycrystalline aggregates which depend on both grain interiors
and grain boundaries for different grain sizes and different interface properties is performed. The results
show that the overall strength and ductility of polycrystalline aggregates with nanoscale and ultra-fine
grains strongly depend on the grain size and grain hardening, interface energy density, grain boundary
strength and toughness.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Mechanical behaviors of polycrystalline materials with grain
sizes typically less than 100 nm (nanocrystalline (nc) metals) or
within 100–1000 nm (ultra-fine crystalline (ufc) metals) have
undergone intensely worldwide attention over the past two dec-
ades. The nc/ufc metals exhibit the higher yield strength, tensile
strength, and hardness, but the lower tensile ductility relative to
bulk case. Although some micromechanisms have been presented
for governing the mechanical behavior of polycrystalline aggre-
gates [1–3], very few direct experimental evidences exist to show
the fracture and failure processes in nc and ufc metals, especially
inelastic deformation competition of grain interior and grain
boundary. Shan et al. [4] reported that grain boundary–mediated
processes of nc nickel film dominate its deformation through
transmission electron microscope (TEM) observation. Moreover,
many molecular dynamics (MD) simulations have shown that
grain boundary related slip and separation phenomena plays an
important role in the overall inelastic response of a polycrystalline
materials with grain-size decrease [5–9]. Due to the limitations of
time and dimensional scales in MD simulations for simulating the
mechanical behaviors of the nc/ufc metals with realistic experi-
ment sample sizes and strain rates, several continuum constitutive
models have been used to describe the grain boundary effect and
the failure response for the nc materials [3,10–16]. Studies using
ll rights reserved.
the high-resolution transmission electronic microscopy (HRTEM)
have shown that the feature of intercrystalline grain boundary re-
gions strongly depends on how the material is processed. Many
grain boundaries appear sharp, well-defined and no distinct grain
boundary phases, the others have shown considerable disorder in
grain boundary regions [2,17]. Considering the inherently charac-
teristic of grain boundaries in the nc/ufc metals, both the grain
boundary affected zone (GBAZ) model [3,11–13] and the trac-
tion–separation cohesive interface model [14,15] were proposed
to characterize the grain boundary response in polycrystalline
aggregates.

Despite that the comprehensive computational analyses of
mechanical behavior for the nc/ufc materials by using above men-
tioned continuum models were carried out recently, it is still diffi-
cult to unambiguously define the interfacial properties of grain
boundaries. The conventional elastic–plastic theory is also impos-
sible to characterize the size effects of mechanical behavior for
the nc/ufc materials. In the present research, a trans-scale model
considering both strain gradient effect and interface energy effect
is presented for describing size effects of mechanical behavior for
the nc/ufc metals accompanying by intergranular damage and frac-
ture. A finite element method is developed which is suitable for
describing both strain gradient effect and interface energy effect.
Moreover, cohesive interface model is used to study the intergran-
ular damage and fracture in polycrystalline metals with nanoscale
and ultra-fine grains. Particular attention is focused on the influ-
ence of both grain interiors and grain boundary properties on the
overall strength and ductility of the nc/ufc metals.

http://dx.doi.org/10.1016/j.commatsci.2011.03.045
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2. A trans-scale mechanics model for nano-structured materials

For the ufc metals (grain size is within the region: 100–
10000 nm), in order to describe the size effects of mechanical
behavior, one can use the strain gradient theory. However, for
the nanocrystalline metals (nc, grain size is within the region:
10–1000 nm), besides the strain gradient effect, interface energy
effect is also important. Therefore, it is necessary to develop a
mechanics model to describe the size effects of mechanical behav-
ior for the nanocrystalline metals and the ultra-fine polycrystalline
metals (nc/ufc).

2.1. General descriptions of mechanics model

Referring to Fig. 1, total energy stored in material can be de-
scribed as

P ¼
Z

V
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for a bulk material or macroscopic polycrystalline material, and
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for a nano- or micro-structured material when grain size is within
nano- or micro-scale. In Eq. (2), material size considered is much
larger than that of nano-structure, so both

R
S C dS and

R
Sc C dS are

much smaller than other terms and they can be neglected. w is
strain energy density. C is interface energy density. c is surface en-
ergy density. Both N and M are grain number and grain boundary
number, respectively. Vi and Si are the volume and surface of the
ith grain. For bulk or macroscopic case, the interface energy should
be much smaller than strain energy and can be neglected,Z

Vi
w dV � 1

2

Z
Si

C dS ð3Þ

It should be an important question that in what condition the inter-
face energy is comparable with the strain energy in magnitude, i.e.Z

Vi
w dV � 1

2

Z
Si

C dS ð4Þ

The above equivalence of scalar integrations can be further ex-
pressed as

w � Vi � 1=2C � Si or
w

1=2C
� Si

Vi
ð5Þ

For a typical metal material, rY = 200 MPa, E/rY = 300, 1=2C � 0:3 �
1:0 N m=m2; we have w � r2

Y=2E ¼ 105 � 106 N m= m3, so that the
Fig. 1. Mechanics problem of nano-structured materials.
above equivalence is transferred to the following magnitude of the
specific interface surface,

w
1=2C

� Si

Vi
� 106 m�1 ð6Þ

Clearly, the comparison of the strain energy and interface energy
depends on the magnitude of the ratio of interface surface to
volume of grain. From Eq. (6), when grain size is at micron scale,
interface energy is comparable to the strain energy in magnitude.
When grain size is smaller than micron scale, interface energy is
dominant.

Recently, many researches have been performed to consider
surface energy effect and interface energy effect based on the clas-
sical mechanics theory for homogenous materials, for example see
Refs. [18,19]. For the nanocrystalline materials considering strain
gradient effect without considering the interface energy effect,
some researches have been done, for example see Refs. [3,20]. In
order to characterize the size effects and mechanical behaviors of
nanocrystalline and ultra-fine polycrystalline metals, in the pres-
ent research we shall present a trans-scale mechanics model which
considers both strain gradient effect and interface energy effect.
The strain gradient effect is considered in total strain energy, while
the interface energy effect is considered as an additional term in
total potential, referring to Eq. (2).

2.2. For the case of higher-order strain gradient theory

Considering a general version of strain gradient theory [21,22]
and referring to Eq. (2), the trans-scale mechanics model can be de-
scribed by the following variational equation,Z

V
ðrijdeij þ sijkdgijkÞdV þ d
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Comparing with the strain gradient theory scheme (see [22]), here
an additional term (the second integration term) is added, where
S0 is current interface area. When interface energy density C is con-
sidered as a material parameter, i.e. it is unchangeable with inter-
face stress, Eq. (7) can be further simplified and written byZ

V
ðrijdeij þ sijkdgijkÞdV þ

Z
SInt
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�
Z

V
fkduk dV �

Z
S

tkduk dS�
Z

S
rkðDdukÞdS ¼ 0 ð8Þ

where ðêij; ~eijÞ ¼ ðeþij � e�ij Þ=2 are the equivalent interface strains,
superscriptions ‘‘positive’’ and ‘‘negative’’ express two side values
along the interface, and

Rij ¼ lilj þmimj

Tijpq ¼ liljmpmq þmimjlplq � limjlpmq

ð9Þ

(li, mi)(i = 1, 3) are directional cosines along interface at initial con-
figuration [23], and the unit vectors l and m are normal each other
on the interface. Sint is interface area. From Eq. (8), the interface
integration term provides the displacement derivative terms (strain
components), for this kind of variational problem, a rigorous finite
element method was presented, see [24]. Similarly, we can derive
the similar expression with Eq. (8) for micropolar theory [25].

2.3. For the case of lower-order strain gradient theory

For a lower-order version of strain gradient theory, such as the
CMSG theory (conventional theory of mechanism-based strain gra-
dient theory) [26], variational equation can be written as



Fig. 2. A representative cell model for nano- or ultra-fine polycrystalline metal with
periodic boundary conditions of y1y2 plane and y3 direction.
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and written in increment form as,Z
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Constitutive equations of the CMSG theory in increment form
can be expressed as

_rij ¼ K _ekkdij þ 2l _e0ij �
3 _e

2re

re

rY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ðePÞ þ lgP

p
" #m

r0ij

( )
ð12Þ

where length parameter

l � 18a2 l
rY

� �2

b ð13Þ

is the intrinsic material length in strain gradient plasticity, rY is the
initial yield stress, l is the shear modulus, b is the magnitude of the
Burgers vector, a is an empirical coefficient around 0.3 depending
on the material structures and characteristic, f is a non-dimensional
function of plastic strain ep, which takes the form

f ðepÞ ¼ 1þ EeP

rY

	 
N

ð14Þ

for a power-law hardening solid, E is the Young’s modulus, and N is
strain hardening exponent (0 6 N < 1). About m, Huang et al. [26]
demonstrated that power law visco-plastic model [27,28] incorpo-
rating the strain gradient effects can be applicable to conventional
power-law hardening if the rate-sensitivity exponent m is large

(m P 20), so in the present research, we take m = 20. _e ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2
3

_e0ij _e0ij
q

is the effective strain rate and _e0ij is the deviatoric strain rate. K is

the volume modulus of elasticity, re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2r0ijr0ij

q
is the Von Mises

effective stress, _ekk is the volume strain rate, and dij is the Kronecker
delta. The effective plastic strain gradient gp has a definition as
same as that in the higher-order MSG theory [29], and is given by
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where _ep
ij is the tensor of plastic strain rate.

Since the CMSG theory does not involve the higher-order stress,
equilibrium equations and traction boundary conditions remain
the same as the conventional theories. Therefore, for simplicity in
the present research we shall adopt the CMSG theory in developing
our computational method.

3. Computational methods

Generally speaking, when either strain gradient effects or inter-
face energy effects are considered, the conventional finite element
method fails to be used because boundary conditions include the
conditions of displacement derivatives, this can be observed from
Eqs. (8), (10), and (11). For this case, An effective finite element
method has been presented by Wei [24], in which nodal variables
are pure displacement derivatives. If the strain gradient effect is
only considered and the CMSG theory is used to describe the effect,
one can use the conventional displacement-based finite element
method, because the lower-order theory does not involve the high-
er-order stresses such that the governing equations are essentially
the same as those in the classical theory. When interface energy ef-
fect must be considered, the interface conditions with displace-
ment derivatives should be presented (see Eqs. (10) or (11)).
However, in the computation scheme of present research, the
interface conditions will be satisfied by using another method,
solution iteration.

In the present research, we shall use the CMSG theory. We can
modify the existing finite element program to incorporate the plas-
tic strain gradient effect approximately [30]. We have imple-
mented a C0 three-dimensional solid element incorporating the
CMSG theory in the ABAQUS finite element program via its User-
Material subroutine UMAT.
3.1. Finite element method (FEM) and boundary conditions

To particularly study the mechanical behaviors of the nc/ufc
materials, and to investigate how the competition of grain-bound-
ary deformation with that in the grain interiors determines the ob-
served overall stress–strain response and the overall ductility of
polycrystalline aggregates by various properties of grain
boundaries and grain interiors. A regular quasi-three-dimensional
representative volume element with taking into account of three
dimensional effects is presented here. Fig. 2 shows the schematic
drawing of representative calculation model. The calculation mod-
el is consisted of seven idealized hexagon grains, and the diameter
of grain d is the diameter of circumcircle of hexagon.

As displayed in Fig. 2, periodic boundary conditions are en-
forced along the four sides in y1y2 coordinate plane [31]:

�u12 � �um4 ¼ �u11 � �um1 ð16Þ
�u22 � �um1 ¼ �u21 � �um2 ð17Þ
�um3 � �um2 ¼ �um4 � �um1 ð18Þ

Here �uij is the displacement vector for any material point on the
corresponding boundary Cij, and �uv i

is the displacement vector for
each vertex vi. Rigid body motions can be eliminated by requiring
that �uvk

¼ 0, for either k 2 {1, 2, 4}. Otherwise, a displacement
boundary condition �uZ which considers the third dimensional effect
is enforced in the y3 coordinate direction perpendicular to y1y2

coordinate plane, assuming that the material geometry in z direc-
tion is also a periodic structure which has a finite-thickness.

In the finite element calculation, the interface energy effect, i.e.
the second integration term in Eq. (11), can be calculated through
iteration: in the first step, to solve the Eq. (11) by neglecting the
interface energy effect; in the second step, to solve the Eq. (11)
based on the previous solution which is used to calculate the inter-
face energy effect; and so on.



Fig. 3. (a) Illustration of mixed-mode cohesive interface model and (b) a simple
total traction–separation relation.

Fig. 4. Dependence of overall stress–strain curves on strain hardening exponent (N)
of grain material and grain size and interface energy density (aC = C/ryd).
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3.2. Cohesive interface model used in describing grain boundary
damage and fracture

The intergranular damage and fracture processes are described
by using the cohesive interface model. Cohesive interface model
was presented early in the literature Barenblatt [32] and Dugdale
[33] to model fracture of solids more than 40 years ago. In recent
years, numerous cohesive interface model formulations have been
widely presented and used to simulate fracture initiation and
propagation [34–36], and the traction–separation relations of
cohesive interface are extended to represent the damage and frac-
ture process of grain boundaries [14,15,37]. In the current numer-
ical study, a mixed-mode cohesive interface model developed by
Turon et al. [38] will be used to describe the initiation and evolu-
tion of intergranular cracks without arbitrarily introducing initial
cracks. The normal and shear components of traction or displace-
ment across the interface are combined based on a certain
mixed-mode behavior. The schematic representation of the depen-
dence of damage initiation and evolution on the mode mixes, for a
traction–separation response with isotropic shear behavior is
shown in Fig. 3a. The figure shows the traction on the vertical axis
and the magnitudes of the normal and the shear separations along
the two horizontal axes. The unshaded triangles in the two vertical
coordinate planes represent the response under pure normal and
pure shear deformation, respectively. All intermediate vertical
planes (that contain the vertical axis) represent the damage re-
sponse under mixed-mode conditions with different mode mixes.
To describe the evolution of damage under a combination of nor-
mal and shear deformation across the interface, it is useful to intro-
duce an effective displacement defined as

dm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hdni2 þ d2

s þ d2
t

q
: ð19Þ

where symbol hi represents the Macaulay bracket, is used to signify
that a pure compressive deformation does not initiate damage. dn, ds
and dt represent the relative displacements when the deformation is
either purely normal to the interface or purely in the first or the sec-
ond shear direction respectively. The mixed-mode traction–separa-
tion relations with a linear damage evolution are illustrated in
Fig. 3b. Here T is traction, d0

m is the critical separation effective dis-
placement at damage initiation, T1 corresponds to critical traction
and df

m is separation effective displacement at complete failure
and K 0c ¼ T1=d

0
m is the initial slope of linear interface separation rela-

tion, the initial separation stiffness of cohesive element, referring to
Fig. 3b. Referring to Fig. 2, the separation process of grain boundary
between two hexagon grains is modeled by using the cohesive
interface layers with zero thickness.
4. Results and discussions

A comparative parameter study for overall strength and ductil-
ity of polycrystalline aggregates affected by the material parame-
ters of grain boundaries and grain interiors with different grain
sizes is performed. The overall stress–strain relation of the nano-
structured materials with parameter dependence normalized by
the initial yield stress ry and intrinsic material length l as well as
grain size d can be expressed as follows

r
ry
¼ F e;

E
ry
; m;N;

d
l
;

C
ryd

;
T
ry
;
Kc

ry
;
df
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m

l

 !
ð20Þ

where the intragranular material parameters are Young’s modulus
E, Poisson’s ratio m, initial yield stress ry, strain hardening exponent
N, respectively. The interfacial parameters of grain boundary are
interface energy density C, separation traction T, effective initial
separation modulus Kc ¼ K 0cl ¼ T1=ðd0

m=lÞ, and the effective damage
evolution displacement df

m � d0
m

� �
. The geometrical parameter is

the grain size d. In the analysis of present paper, we take Kc value
as Young’s modulus of crystal grain for no influence on solution fea-
ture, referring to rY/E � 0.6% for most alloys.

Fig. 4 shows the dependence of the overall stress–strain rela-
tions on the intragranular strain hardening exponent N for differ-
ent grain sizes d = 0.1l and d = l and different interface energy
densities aC = C/ryd = 0.01 and 1.0. In the analysis, we take
N = 0.1 and 0.2, respectively. From Fig. 4, the overall ductility of
nanocrystalline materials are sensitive to strain hardening expo-
nent N, while the overall strength of the nanocrystalline materials
are not sensitive to the parameter N. There exists an obvious differ-
ence on ductility for N = 0.1 and 0.2. The effect of composite
parameter, aC = C/ryd, of the either interface energy density or
grain size, is obvious. In Fig. 4, the maximum separation strength
T1 and the cohesive zone energy density Gc keep unchangeable,



(a)

(b)
Fig. 6. Overall stress–strain curves related to the cohesive zone ductility df

m � d0
m

� �
and grain sizes (d/l) as well as the interface energy density (aC = C/ryd).

(a)

(b)
Fig. 5. Dependence of overall stress–strain curves on separation strength (T1/ry)
and grain sizes (d/l) and interface energy density (aC = C/ryd).

(a)

(b)
Fig. 7. Overall stress–strain curves relate to the effective elastic modulus of
cohesive relation (KC), keeping other effects unchangeable.
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and the differences among overall stress–strain curves are come
from material parameters, interface energy density and grain size.

Fig. 5a shows the dependence of overall stress–strain relations
on the maximum separation strength T1/ry, composite parameter
aC = C/ryd, as well as the grain sizes (d = 0.1l, l and 10l). For results
in this figure, we consider two cases of T1/ry = 0.5 and 1.5, for
aC = C/ryd = 0.01, 0.1 and 1.0, respectively. The results show that
the overall strength and ductility of nanocrystalline materials are
very sensitive to the ratio T1/ry and the dimensionless parameter
aC = C/ryd. The tensile strength and ductility of nanocrystalline
materials increase greatly for the ratio T1/ry = 1.5 respect to T1/
ry = 0.5. The grain size effects or interface energy effects in inelas-
tic deformation are much big with increasing the value of T1/ry.
Furthermore, for grain diameter d P l, the dependence of inter-
granular fracture on the grain size is gradually diminished. For d/
l = 0.1, the grain size effects in plastic flow are much big. From
Fig. 5a, both T1/ry and aC = C/ryd are the critical control parame-
ters for the competition of grain-boundary deformation with that
in the grain interiors to define the global strength and ductility
of nano-structured materials. The intragranular elastic–plastic
deformation would be dominant and the nano- or polycrystalline
materials display good ductility and high strength when T1 P ry

and aC = C/ryd > 0.1. Otherwise the grain boundaries related slip
and separation phenomena maybe begun to play an important role
in the overall inelastic response of nano- or polycrystalline materi-
als and a brittle fracture would be appearance for T1 < ry and
aC = C/ryd < 0.1. In the nc/ufc metals, the dislocation-based slip
processes in the grain interiors are restrained gradually while the
intragranular initial yield stresses are getting higher with decreas-
ing grain sizes. So improving the resistance of grain boundaries to
intergranular fracture may be an effective method to improve the
bulk properties.

In Fig. 5a, two sets of the maximum separation strength T1 and
the cohesive energy density Gc are considered, see the case A and
case C in Fig. 5b, which correspond to two sets of results and com-
pare with each other. The case A corresponds to larger values of T1

and Gc, while case C corresponds to smaller values of them. From
the results shown in Fig. 5a, both T1 and Gc are dominant parame-
ters at interface. On the other hand, from Fig. 5a, additional domi-
nant parameter is the interface energy density at nanoscale.

Fig. 6a shows how the variation of damage evolution range

df
m � d0

m

� �
of cohesive interfacial model influences the overall
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stress–strain relations for two grain size (d) values and for two
composite parameter (aC) values. From Fig. 6a, both the ductility
and strength of materials undergo an obvious increase, specifically,
the ductility undergoes a huge increase with increase in damage
evolution range. In this case, the composite parameter aC is also
a dominant parameter.

In the results shown in Fig. 6a, we keep the maximum separa-
tion strength T1 to be unchangeable, and increase Gc by increasing
df

m � d0
m, see Fig. 6b. Obviously, the ductility of materials is very

sensitive to Gc value increase.
In Fig. 7a, the overall stress–strain relations are shown for the

cases when T1, Gc, as well as aC values keep unchangeable (see
Fig. 7b). From Fig. 7a, very small differences among the computa-
tional results for different elastic slopes of cohesive model are ob-
served. These further delineate that there exist three and only
three parameters which are important interface parameters.

5. Conclusion remarks

A trans-scale mechanics model for describing the mechanical
behavior and size effect for nanostructured materials has been
developed in the present research. For the mechanics model, both
strain gradient effect and interface energy effect are considered.
Based on the trans-scale mechanics model, a finite element meth-
od has been developed, which considers not only the trans-scale
characteristics of materials, but also the damage and fracture pro-
cesses by using the cohesive zone model. By using the above theo-
retical and computational model, we have displayed the overall
stress–strain relations for the nc/ufc materials systematically,
and we have also displayed the micro-scale plastic deformation
characteristics in polycrystalline aggregates with nc/ufc grains.
Through the systematical studies on the overall strength and duc-
tility of polycrystalline aggregates, we conclude that the overall
strength and ductility of polycrystalline aggregates with nc/ufc
grains have been dominated by four important parameters, (aC,
T1, Gc, N), in which aC = C/ryd relates either the interface energy
density or grain size, N is strain hardening exponent, and other
two parameters relate to the interface adhesion strength, ductility
and damage.

It is worth noting that in the present research, several assump-
tions and simplifications are adopted, which should cause the devi-
ation between modeling results and experimental measurements.
Firstly, the calculation model is a quasi-three-dimensional cell
model and is assumed periodic structures in both y1y2 plane and
normal direction (z direction). Secondly, the distributions of the
real grain sizes are very complicated, while in the present calcula-
tion model the distributions are assumed regularly. Thirdly, in the
present model, the selections of the input parameters for the grain
boundary cohesive model and interiors are difficult to be defined
correctly due to lacking of experimental data. Moreover, in order
to further understand the grain boundary fracture behaviors which
are usually characterized by the cohesive zone model, more efforts
are still needed.
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