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A comprehensive model on the dynamics of a tilted tapping mode atomic force

microscopy (AFM) is presented, which includes the multimodal analysis, mode coupling

mechanisms, adhesion, contact and friction forces induced by the tilting angle. A

displacement criterion of contact/impact is proposed to eliminate the assumptions of

makes the model presented here suitable for more general AFM application scenario,

especially for the soft sample case. The AFM tip mass, tip–sample damping, contact

forces and intermittent contact can all induce the higher modes participation into the

system motion. One degree of freedom or one mode study on the AFM contact dynamics

of tapping mode is shown to be inaccurate. The Hertz and Derjaguin–Muller–Toporov

models are used for the comparison study of the non-adhesive and adhesive contacts.

The intermittent contact and the contact forces are the two major sources of the system

nonlinearity. The rich dynamic responses of the system and its sensitivity to the initial

conditions are demonstrated by presenting various subharmonic and nonperiodic

motions.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Atomic force microscope (AFM) [1] is a powerful tool for surface characterizations. When an AFM is used to obtain the
force–distance curve, the so-called ‘‘jump-to-contact’’ instability [2–5] often occurs. The ‘‘jump-to-contact’’ instability is
also termed as the pull-in instability, which indicates that the structure elastic restoring force due to deformation can no
longer balance the nonlinear attractive forces such as van der Waals (vdW) [6], electrostatic [7] and Casimir forces [8]. The
‘‘jump-to-contact’’ instability causes the AFM tip to snap into contact with the sample surface. As a result, the most
interesting range (a few nanometers above the sample surface) is left out [4] and the determination of the full tip–sample
potential becomes impossible [3]. Therefore, the static measurement of the force–distance curve mainly serves to
determine adhesion forces [4]. On the other hand, the AFM tip must get very close to the surface in order to achieve atomic
resolution [2,9]. Dürig showed that the atomic-scale imaging can only be achieved when the tip–sample distance is less
than 0.5 nm [9]. The ‘‘jump-to-contact’’ instability can be avoided by using a stiffer cantilever with the trade-off of a loss of
sensitivity [3,5]. In comparison, tapping mode (TM) [10] can be used to avoid such instability with good sensitivity being
reserved [2,3,9]. At the same time, TM can also dramatically reduce the sample damage during the scanning process [3,11].
Therefore, TM-AFM has been used to image and characterize various delicate biological samples such as antibody [12],
protein [13], purple membrane [14,15] and virion [15]. Furthermore, the higher harmonics generated by the tip–sample
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intermittent contact in TM-AFM can be used to enhance the signals [11,14,16,17], which leads to the high resolution
images and better mechanical characterization of the samples.

Understanding the tip–sample interaction is vital to the interpretation of the TM-AFM experimental data in terms of the
topography and material property variations. The response displacement (together with time) of TM-AFM is recorded
during the experiment and the tip–sample interaction is unknown. Finding the tip–sample interaction is thus an inverse
problem [5,18–22]. In the theory aspect, there are two main sources making this inverse problem very difficult: (1) the
AFM cantilever is a continuous system which has infinite degrees of freedom (DOF) and higher modes can participate in
the motion; (2) the intermittent contact makes the system highly nonlinear, which manifests as the rich patterns of
subharmonic motions and chaos [23–27]. Additionally, the noise contribution to the measurement and the large range of
frequencies (bandwidth) needed to measure to recover the force also complicate this inverse problem [18]. It is impossible
to solve this inverse problem without some assumptions [5]. By modeling the tip–sample interaction as an external force
sensored by the AFM cantilever motion, this inverse problem can be greatly simplified and the nonlinear tip–sample
interaction force can be directly given [28,29]. However, the tip–sample interaction as described by the Lennard-Jones (L-J)
potential is displacement-dependent. The amplitude and frequency of an external force are by definition displacement-
independent. Therefore, modeling the tip–sample interaction as an external force is inappropriate, especially when the tip
is in contact with the sample [29]. Treating the AFM cantilever as one DOF point-mass–spring oscillator also greatly
simplifies the problem [5,14,22,28,29]. The repulsive tip–sample interaction has much shorter acting range and time to
AFM than those of the attractive ones such as vdW and Casimir forces. The repulsive tip–sample interaction acts as an
impulse to excite the higher modes [30]. The excitation of higher modes upon impact is a characteristics of the continuous
system, which is demonstrated in an impacting cantilever experiment [24]. The higher modes excited by the tip–sample
interaction are also visible in the corresponding Fourier spectra [31]. When the tip–sample interaction is strong,
multimodal analysis is needed to capture the AFM dynamics [32]. Of course, the excitation of higher modes can be
inhibited or dramatically reduced in non-contact TM-AFM. However, short-ranged repulsive forces play a decisive role in
high-resolution imaging: there pulsive forces acting on the tip apex are the major contribution to the gradient change (i.e.,
the contrast) while the attractive forces acting on the rest of tip form a background [3,9,33]. When TM-AFM is used to
image biological samples in liquids, the response of AFM is intrinsically multimodal: the energy propagation between the
modes even has more important contribution to the phase contrast image than the dissipated energy [15]. The multimodal
analysis is a must for bimodal imaging [12,13,15], in which two driving frequencies around the two lowest
eigenfrequencies of the AFM cantilever are deliberately applied to excite the two corresponding modes. The amplitude
and phase shift of the first mode is to track the surface topography and those of the second mode are to detect the surface
mechanical interaction [12,13]. In some previous multimodal analysis, modes are either de-coupled [29] or coupled only
by the contact force [15]. Attard et al. [34] noticed that the AFM tip mass can significantly contribute to the whole system
inertia. The influence of the concentrated mass on the system frequency can be very significant depending on the ratio of
the concentrated mass to the whole system mass and its location [35], which has been utilized by Li et al. [11] to enhance
the higher harmonics performance. The concentrated mass, contact damping and force as described by the Dirac delta
function [11,27,35] can all contribute to the mode coupling as shown in the multimodal analysis of this study.

The impact oscillator model [23–25,36] has been applied to study the intermittent contact dynamics of TM-AFM. In
modeling aspect, the impact oscillator model requires the sample stiffness to be infinite to have an instantaneous impact
[27]. The coefficient of restitution, which also contains the information of energy loss, relates the reflection velocity to the
velocity just before the impact [23–25,36]. Obviously, the validity of the impact oscillator model depends on whether the
impact and energy loss are instantaneous [25]. The tip–sample contact time of the TM-AFM in general is a considerable
fraction of the cycle time [30], especially for a soft sample [27]. The impact oscillator model cannot be applied to the
‘‘tip-stuck-to-sample’’ motion [36], either. The grazing impact [37] study on TM-AFM is shown to have the characteristic
features of an impact oscillator [25]. One outstanding feature in the grazing impact is that rather than integrating
differential equations, the Poincaré mapping of algebraic equations can be derived to characterize the TM-AFM dynamics
[24,25], which greatly simplifies the problem. However, the grazing impact is the zero velocity impact [37]. The viscous
damping of the liquid bridge formed between the tip and sample may offer a mechanism for the zero velocity impact [25].
In general, the grazing impact cannot be used to study the AFM intermittent contact dynamics because of the nonzero
impact velocity [27]. Hu and Raman [26] showed that the grazing impact model cannot capture their experimental results.
In this study, a more general criterion of using the AFM tip displacement termed as switching condition [4,9,38,39] is
adopted to tell whether the contact occurs. The Hertz and Derjaguin–Muller–Toporov (DMT) contact models here are used
to model the tip–sample (repulsive) interaction instead of the Kelvin–Voigt model of a linearized spring [27,40]. The
nonlinear force–displacement relation of the Hertz and DMT models leads to an asymmetric phase portrait of the ‘‘tip-
stuck-to-sample’’ motion as shown in this study, which cannot be captured by the Kelvin–Voigt model. All the models
mentioned above only include the normal forces of the tip–sample interaction. The lateral friction can have significant
even major contribution to the image [40]. The presence of friction may also lead to the wrong interpretation on the
experimental data of the tip–sample interaction [41]. Mazeran and Loubet [42] showed the model deficiency of not
considering the lateral friction by a comparison with the experimental data; they also concluded that the contrast of their
force modulation microscope is mainly due to friction. Friction is also an important source of energy dissipation in TM-
AFM [43]. The AFM tip cannot be exactly perpendicular to the sample [44,45]. Furthermore, the AFM cantilever is often
mounted with a tilting angle of 10–151 relative to sample [17,41] and the tilting angle dramatically increases the friction
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effect [41,42]. Kalinin et al. [46,47] modeled the friction as if the tip hits a linear spring. This study shows that the lateral
friction acts as a pulsing axial force and bending moment on the AFM cantilever and its influence increases with the tilting
angle. By assuming that the TM-AFM of intermittent contact is a weak nonlinear system and the AFM steady state is
harmonic, Wang used Krylov–Bogolubov–Mitropolsky asymptotic method to show that the AFM steady-state response is a
bistable one [48]. However, the intermittent contact can be highly nonlinear, which generates subharmonic motions and
chaos [23–27]. Usually stronger tip–sample interaction makes larger distortion of harmonic and eventually destroys the
harmonic motion. By shrinking the gap distance and keeping the driving force amplitude and frequency unchanged, which
increases the tip–sample interaction, Stark [32] showed how the TM-AFM steady state evolves from a distorted harmonic
motion, to subharmonic motion and finally to a nonperiodic motion. By using the displacement as the switching condition,
there is no need for us to assume things such as instantaneous impact, zero velocity impact or weak nonlinearity and more
general study on the TM-AFM intermittent contact dynamics can be done. Two types of TM-AFM motions: the intermittent
contact and ‘‘tip-stuck-to-sample’’ motions are studied. Besides the inaccuracy of the harmonic motion assumption, we
show that there are multiple steady states in intermittent contact due to different initial conditions, which makes the
inverse problem solving much more difficult.

2. Model development

Fig. 1(a) shows the coordinate system and the AFM cantilever dimensions. The cantilever is with a length of L and a
tilting angle of y. In our coordinate system, the AFM cantilever and its tip at x¼ x0 are separated from the sample with the
distances of d and d=cos y, respectively. g0 is the tip length. AFM is driven with a forced motion of y0(t) (t is time) at its
fixed end. wðx,tÞ is the beam deflection measured from the fixed end. The beam displacement vðx,tÞ has the following
expression:

vðx,tÞ ¼wðx,tÞþy0ðtÞþd: (1)
y
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Fig. 1. Schematic diagrams of the AFM cantilever and sample. (a) The coordinate system and the beam dimensions. The cantilever length is L and the

tilting angle is y. The tip with a length of d is located at x¼ x0; d is the tip–sample separation distance. y0ðtÞ is the oscillation at the cantilever fixed end;

wðx,tÞ is the beam deflection from the fixed end. (b) The tip end is modeled as a sphere with the radius of R and the contact angle is y1; FN and FH are the

normal and tangential forces due to the tip–sample contact, respectively; F1 and F2 are the transverse and axial component forces acting on the

cantilever.
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Because d¼ g0þd=cos y, the beam tip displacement vT ðtÞ ¼ vðx0,tÞ�g0 is expressed as follows:

vT ðtÞ ¼wðx0,tÞþy0ðtÞþ
d

cos y
: (2)

As seen in Fig. 1(b) the tip end is modeled as a sphere with the radius of R. The contact angle, y1, is readily derived as the
following:

y1 ¼
p
2
�y�arctan

qw

qx

����
����
x ¼ x0

 !
: (3)

For both the Hertz and Derjaguin–Muller–Toporov (DMT) models, the contact radius of a is related with the normal
indentation displacement of vT sin y1 as follows [45,49]:

a2

R
¼�vT sin y1: (4)

FN is the normal contact force acting on the AFM tip, which is given as follows in conjunction with Eq. (4) [50,51]

FN ¼

4Ena3

3R
¼

4En
ð�vT sin y1RÞ3=2

3R
ðHertzÞ,

4Ena3

3R
�2pgR¼

4En
ð�vT sin y1RÞ3=2

3R
�2pgR ðDMTÞ,

8>>><
>>>:

(5)

where En is the reduced Young’s modulus and 1=En
¼ ð1�n2

1Þ=E1þð1�n2
2Þ=E2 (E1, n1 and E2, n2 are Young’s moduli and

Poisson’s ratios of the tip and sample, respectively). g is the adhesion energy. FH is the tangential friction force acting on
the AFM tip and is given as follows [52]:

FH ¼�8GnaðvT cos y1Þ ¼�8Gn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�vT sin y1R

p
ðvT cos y1Þ, (6)

where vT cos y1 is the tangential indentation displacement. Gn is the reduced shear modulus and 1=Gn
¼ ð2�n1Þ=G1þ

ð2�n2Þ=G2; G1 ¼ E1=2ð1þn1Þ and G2 ¼ E2=2ð1þn2Þ are the shear moduli of the tip and sample, respectively.
F1 and F2 are the two component forces acting transversely and axially on the AFM cantilever, which are readily given

as follows:

F1 ¼ FN sin y1þFH cos y1,

F2 ¼�FN cos y1þFH sin y1:

(
(7)

For brevity, the governing equations derived by applying the Hamilton principle are given as follows:

½MdDðx�x0Þþm�
q2v

qt2
þC

qv

qt
þE1I

q4v

qx4
¼ 0, vT 40,

½MdDðx�x0Þþm�
q2v

qt2
þC

qv

qt
þE1I

q4v

qx4
�F2dDðx�x0Þ

q2v

qx2

�Mb
q2

qx2
½dDðx�x0Þ��F1dDðx�x0ÞþC1dDðx�x0Þ

qv

qt
¼ 0, vT r0,

8>>>>>>>><
>>>>>>>>:

(8)

where M is the tip mass and m is the mass per unit length of the beam. I is the area moment of inertia and I¼ bh3=12
(b: beam width, h: beam thickness) for a rectangular beam. C is the viscous damping of the beam. Mb is the bending
moment due to the contact and Mb ¼ F2d¼ ð�FN cos y1þFH sin y1Þd. C1 is the viscous damping due to the tip–sample
contact, which is a damper in Kelvin–Voigt model [27,40,42]. dD is the Dirac delta function, which indicates that the tip
mass is modeled as a concentrated mass [11,27] and tip–sample interaction is modeled as concentrated force and moment.
vT defines the switching condition [4,9,38,39]. vT is a function of time t. vT¼0 is the criteria to tell whether the AFM tip is in
contact with the sample or not for both the Hertz and DMT models. However, keep in mind that the contact/impact time is
unknown. Even when the analytical solutions before and after impact are available to a piecewise linear impact oscillator,
the unknown property of impact time still makes the system nonlinear [39,44]. It is also worth mentioning that the
tip–sample interaction forces derived by the two contact models are the short-range repulsive forces, which play a decisive
role in the AFM imaging [3,9,33]. Furthermore, because the long-rang attractive vdW force does not contribute to the
energy loss of the TM-AFM, its influence on the AFM dynamics is ignored [25,27].

y(t) is a sinusoidal oscillation given as follows:

yðtÞ ¼ f sinðotÞ, (9)

where f and o are the driving amplitude and frequency, respectively. The following dimensionless quantities are
introduced to nondimensionalize equation (8)

x¼
x

L
, t¼

ffiffiffiffiffiffiffiffiffi
E1I

mL4

s
t, W ¼

w

d
, V ¼

v

d
, VT ¼

vT

d
, O¼

ffiffiffiffiffiffiffiffiffi
mL4

E1I

s
o: (10)
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1I=mL4

q
is with the unit of Hertz and it is the same order of the first natural frequency of a uniform and undamped

cantilever beam [27,53]. In conjunction with Eqs. (5)–(7) and (9), Eq. (8) now becomes the following dimensionless ones:

½a1dDðx�x0Þþ1�
q2W

qt2
þa3

qW

qt þ
q4W

qx4
¼ ½a1dDðx�x0Þþ1�a2O

2 sinðOtÞ�a2a3O cosðOtÞ, VT 40,

½a1dDðx�x0Þþ1�
q2W

qt2
þa3

qW

qt
þa4dDðx�x0Þ

qW

qt
þ
q4W

qx4
�½�a5f c cos y1þa6Að�VT cos y1Þ sin y1�

q2W

qx2

¼ ½a1dDðx�x0Þþ1�a2O
2 sinðOtÞ�a2a3O cosðOtÞ�a2a4dDðx�x0ÞO cosðOtÞ

þ
L

d
½a5f c sin y1þa6Að�VT cos y1Þ cos y1�dDðx�x0Þþ

g0

d
½�a5f c cos y1þa6Að�VT cos y1Þ sin y1�

q2dDðx�x0Þ

qx2
, VT r0,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(11)

where A¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�VT sin y1=b

p
is the dimensionless contact radius; b is a dimensionless parameter defined as b¼

ðð9p=8Þg=EndÞ2=3
� ðR=dÞ1=3; f c ¼ A3 for the Hertz model and f c ¼ A3

�4=3 for the DMT model. Here dimensionless ai’s
(i¼1 to 6) are defined as

a1 ¼
M

mL
, a2 ¼

f

d
, a3 ¼ C

ffiffiffiffiffiffiffiffiffiffiffi
L4

E1Im

s
, a4 ¼

C1

L

ffiffiffiffiffiffiffiffiffi
L4

E1m

s
, a5 ¼

3pgRL2

E1I
, a6 ¼

8GndRL2

E1I

9pg
EnR

� �1=3

: (12)

Physically a1 indicates the ratio of the tip mass to the whole beam mass and a2 indicates the ratio of the driving amplitude
to the cantilever separation distance. a4 and a3 indicate the damping influence with and without the contact with the
sample, respectively. pgR and Rð9pg=EnRÞ1=3 are the same order of the pull-off force and contact radius [51,52], therefore,
a5 and a6 indicate the influence of normal and shear force due to adhesion compared with the elastic one (E1I=L2). In
Eq. (11), ½a1dDðx�x0Þþ1�a2O

2 sinðOtÞ�a2a3O cosðOtÞ is the de facto driving force. Physically the dither piezo supplies a
sinusoidal motion at the cantilever end as described by Eq. (9) [4]. However, many theories model that the dither piezo
applies a sinusoidal driving force of a2O

2 sinðOtÞ to the system and the deficiency of such modeling, especially when a3 is
large, has already been pointed out by Hölscher and Schwarz [4].

The switching condition of Eq. (2) is now nondimensionalized as follows:

VT ðtÞ ¼Wðx0,tÞþa2 sinðOtÞþ d
d cos y

: (13)

Here the Galerkin method is used for the computation of Eq. (11) and Wðx,tÞ is discretized as

Wðx,tÞ ¼
XN

j ¼ 1

ajðtÞfjðxÞ: (14)

ajðtÞ is the unknown modal amplitude to be determined and N is the mode number. fjðxÞ is the modal shape, or say, mode
of a uniform cantilever beam [53], which mathematically is the eigenvector associated with the jth eigenfrequency.
Substitute Eq. (14) into Eq. (11), time fiðxÞ and integrate from 0 to 1, the following governing equations are derived:

MI €XþCI _XþKIX¼ FI, VT 40,

MII €XþCII _XþKIIX¼ FII, VT r0:

(
(15)

Here _ð Þ ¼ q=qt, X¼ ða1,a2, . . . ,aNÞ
T , FI
¼ ðFI

1,FI
2, . . . ,FI

NÞ
T and FII

¼ ðFII
1 ,FII

2 , . . . ,FII
NÞ

T. During the integration, the orthogonality
property of the mode shapes and integration property of the Dirac delta function are used [35]. Matrices MI, CI and KI are
derived as follows:

MI
ij ¼

a1fið1Þfið1Þþ
R 1

0 fiðxÞfiðxÞ dx, i¼ j,

a1fið1Þfjð1Þ, iaj,

(
(16)

CI
ij ¼

a3

R 1
0 fiðxÞfiðxÞ dx, i¼ j,

0, iaj,

(
(17)

and

KI
ij ¼

R 1
0 fiðxÞ

q4fiðxÞ
qx4

dx, i¼ j,

0, iaj:

8><
>: (18)

Due to the integration property of the Dirac delta function, MI is not diagonal, which couples the modes even for small
linear vibration. Vector FI is given as the following:

FI
i ¼ a2O

2 a1fið1Þþ

Z 1

0
fiðxÞ dx

" #
sinðOtÞ�a2a3O

Z 1

0
fiðxÞ dx cosðOtÞ: (19)
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MII, CII and KII are

MII
¼MI, (20)

CII
ij ¼

a3

R 1
0 fiðxÞfiðxÞ dxþa4fiðx0Þfiðx0Þ, i¼ j,

a4fiðx0Þfjðx0Þ, iaj,

(
(21)

and

KII
ij ¼

R 1
0 fiðxÞ

q4fiðxÞ
qx4

dx�½�a5f c cos y1þa6Að�VT cos y1Þ sin y1�
R 1

0 fiðxÞ
q2fiðxÞ
qx2

dx, i¼ j,

�½�a5f c cos y1þa6Að�VT cos y1Þ sin y1�
R 1

0 fiðxÞ
q2fiðxÞ
qx2

dx, iaj,

8>>>><
>>>>:

(22)

Keep in mind that fiðxÞ and q2fiðxÞ=qx
2 are not orthogonal to each other. As seen in Eqs. (21) and (22), the contact

damping couples the modes because of the Dirac delta function and the contact force couples the modes because of its
axial component. FII is given as follows:

FII
i ¼ FI

i�a2a4fiðx0ÞsinðOtÞþL

d
½a5f c sin y1þa6Að�VT cos y1Þ cos y1�fiðx0Þþ

g0

d
½�a5f c cos y1þa6Að�VT cos y1Þ sin y1�

q2fi

qx2
ðx0Þ:

(23)

The tip–sample interaction further couples the modes as FII
i is a function of VT. A Fortran program of the fourth-order

Runge–Kutta integration [54] is used for the time integration of Eq. (15). It is also worth pointing out that because VT ðtÞ
and y1 are the functions of time, KII needs to be updated in each time step during the contact. The system can have
significant difference in stiffness before and after contact, which changes the system eigenfrequencies [27,42,46,47]. To
achieve the same accuracy for the system before and after contact, the time step is different. It is well possible that the
integration routine with large time step can overshoot the discontinuity to cause the computational inaccuracy [27]. To
avoid such scenario is either to construct the time grid which reduces dramatically as the AFM tip approaches the sample
and keeps small during contact [27] or just to take very small time step for both contact and non-contact regions. In our
computation the time step before contact is taken as dt¼ 2� 10�3 and the time step during contact is taken as dt=16.

3. Results and discussion

The following dimensions for a typical AFM are taken as L¼ 300 mm, h¼ 3 mm, b¼ 30 mm, R¼20 nm [55,56]. The AFM is
made of single crystal silicon with E1 ¼ 130 GPa and n1 ¼ 0:27 [55,56]; the sample is polystyrene with E2¼1.2 GPa, n2 ¼ 0:3
and g¼ 3:5� 10�2 J=m2 [56]. Notice that g here does not account for the surface energy hysteresis. The surface energy
hysteresis physically indicates that the energy obtained by combining two surfaces into one interface is less than that
required to separate one interface into two surfaces, which is also an energy dissipating mechanism [43]. We also set
the following parameters as y¼ p=12 [17,41] and d¼ g0 ¼ 5 mm (therefore d¼ 0 mm). The corresponding dimensionless
parameters are thus computed as

a5 ¼ 6:7665� 10�5, a6 ¼ 0:7413, b¼ 1:128� 10�4,
L

d
¼ 60,

g0

d
¼ 1 (24)

a1, a3, a4 and O are set as a1 ¼ 0:05, a3 ¼ a4 ¼ 0:4 and O¼ 2. The vibration of AFM in air has high Q factor, or say small
damping [27]. As indicated in Eq. (12), the system is an underdamped system by setting a3 ¼ a4 ¼ 0:4. The above
parameters apply to all the figures presented here. The tip–sample interaction is modulated by changing a2, which is the
ratio of the driving amplitude to the cantilever separation distance defined as f/d in Eq. (12). a2 ¼ 5� 10�4 for Figs. 2–6 and
a2 ¼ 1� 10�3 for Fig. 7. Eqs. (5) and (6) are derived from the elasticity theory which assumes that the contact radius is very
small compared with R [52]. The reason to take those small a2s is to make sure that the indentation depth is very small
(so is the contact radius), Eqs. (5) and (6) can thus hold. It is worth pointing out that Eqs. (5) and (6) are the contact statics,
which may not be valid when Z2 ¼ fo=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2=r2

p
Z0:1 (r2 is the mass density of sample) and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2=r2

p
is the shear wave

velocity inside the sample) [57]. In our case Z2 � 10�8, it is thus reasonable to have this quasi-static model.
The first three dimensionless eigenfrequencies of a uniform cantilever are [27,53]

Oo1 ¼ 1:8752
¼ 3:52, Oo2 ¼ 4:6942

¼ 22:03, Oo3 ¼ 7:8552
¼ 61:7: (25)

The driving frequency is O¼ 2, which is below the first eigenfrequency and the first mode shape is supposed to dominate.
However, the convergence study of Fig. 2 on the steady-state motion shows that it is not true. As the mode number N

increases from 1 to 4, the significant difference between N¼1 and the others is clearly seen. There is little difference
between N¼2 and N¼3 and there is almost no difference between N¼3 and N¼4. VT is the dimensionless beam tip
displacement and VT r0 is the contact state. As seen in Fig. 2, the contact time constitutes a significant portion of the
driving period. Physically the motion difference computed by different mode number is caused by the participation of the
higher modes into the motion. The one DOF model which obtains the AFM stiffness by statics in essence can only be
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accurate when there is no higher modes participation in the motion. When the driving frequency is much higher than the
first eigenfrequency [23], the equivalent stiffnesses for higher modes are obtained by a rather complex statics approach
[58]. Here the multimodal analysis presents a simple and more importantly, a systematic way of generating the stiffness
matrix. As seen in Fig. 2, because the intermittent contact induces the higher modes in the motion even when the driving
frequency is well below the first eigenfrequency, the multimodal analysis and its convergence study are needed in the
TM-AFM dynamics. Compared with the fast Fourier transform (FFT) analyses which only study the power spectrum of
overall motion (including both contact and non-contact motions) [23,32], the multimodal analysis here allows us to
differentiate the modal amplitudes before and after contact as presented in Fig. 3 with N¼4. In the contact state the
amplitude of the second mode is even larger than that of the first mode; the third and fourth modes, though small, are
clearly excited, which is the reason why the results in Fig. 2 converge when NZ3. In the non-contact state, the first mode,
as expected, dominates with some minor participation of the second mode. The participation of the second mode in the



Fig. 4. The time series and phase portraits of two period-1 motions with a2 ¼ 5� 10�4; (a) and (c) are the time series; (a) is the motion presented in

Fig. 2. (b) and (d) are the phase portraits.

Fig. 5. The time series and phase portraits of two period-2 motions with a2 ¼ 5� 10�4. (a) and (c) are the time series; (b) and (d) are the phase portraits.
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non-contact state is due to the two reasons: (1) the tip mass gives the non-diagonal element in the mass matrix of Eq. (16)
and thus couple the modes; (2) the higher modes excited in the contact state does not die out in a forcing period because of
the underdamped property of the system. As for the contact state, the tip mass, the tip–sample damping and the contact
forces are all the sources for coupling the modes as seen in Eqs. (20)–(23). Because of the elastic restoring force due to
contact, the system stiffens significantly, which is reflected by the fact that a1 of non-contact state is almost 10 times larger
than a1 and a2 of contact state.

Subharmonic is the period-n oscillation that takes n forcing periods to complete a full cycle [27]. Figs. 4 and 5 present
the time series and phase portraits of two different period-1 and period-2 steady-state motions, respectively. The motions
are computed with N¼3 and _VT is the dimensionless velocity of beam tip. As for initial conditions, all the initial modal
amplitude and velocity are set zero except a1. In Figs. 4(a), (c), 5(a) and (c), the initial a1 is set as 0, 3�10�4, 7�10�4 and
8�10�4, respectively. There are other subharmonic motions which are due to different initial conditions and not
presented here. The period-2 motions presented in Fig. 5 are also called period-doubling [28,30]. Figs. 4 and 5 clearly
demonstrate that due to different initial conditions, different motion patterns can appear under the same governing
equations. As an AFM scans from one area to another, the initial conditions vary, which may generate different steady-
state motions. There are two main sources contributing to the system nonlinearity: (1) The contact forces of Eqs. (5)
and (6) are the nonlinear functions of VT; furthermore, the axial force due to contact acts as a pulsing force which
constantly changes the system stiffness during the contact. (2) The intermittent contact itself [39,44]. The driving
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frequency here is quite low. With the increase of driving frequency, both experiment [23] and simulation [27] show that
the period-n subharmonic motion with larger n appears.

The non-adhesive Hertz contact model is used in Figs. 2–5. Now let us examine the adhesion influence and here the
DMT model is used. All the parameters and initial conditions in Fig. 6 are the same as those in Fig. 2. As seen in Fig. 6, after
one bouncing off the sample, the AFM tip is in contact with sample all the time, i.e., VT is always a negative value and thus
no intermittent contact occurs. Compared with Fig. 2, the motion of adhesive contact in Fig. 6 is a quite different one. This
is the case of ‘‘tip-stuck-to-sample’’ by adhesion [36], in which the ‘‘coefficient-of-restitution’’ rule [36] and the mapping
study [25] of the impact oscillator model become invalid. Compared with the Hertz model with VT¼0 as the equilibrium,
the DMT equilibrium is a negative one because of adhesion. As seen in Eq. (6), the force due to adhesion, �2pgR, acts as an
external attractive force to drag the AFM tip into contact [50,51]. �2pgR is also called pull-off force, which is the external
tensile force required to separate the sphere tip from contact [51]. a2 ¼ 5� 10�4 is a small vibration amplitude, which is
not large enough to separate the tip from the sample to make the intermittent contact. The insets provide a closer look at
its steady-state motion, which is a period-1 motion and its phase portrait is an asymmetric one. The reason for the
asymmetric phase portrait is that the restoring elastic contact forces are nonlinear functions of VT as if the tip hits a
nonlinear spring. This asymmetry cannot be captured if a linearized spring model is applied to model the contact [27,40].
Besides the pulsing axial force, the nonlinear relation of the tip–sample relation can introduce displacement-dependent
eigenfrequency, which is also found by Jesse et al. [46] that the tip position can significantly affect the resonance spectrum.
Before we have any further discussion, it is worthwhile for us to differentiate the higher harmonics and higher modes. The
higher harmonics referred in this paper are the integer multiples of the forcing frequency O. Except for a hinged–hinged
beam, the eigenfrequencies of a beam are not consecutive integer multiple, or harmonics, of each other. As a result, the
cantilever beam modes associated with the eigenfrequencies are not harmonics. For example, in Eq. (25), O02=O01 � 6:26
and O03=O01 � 17:53 for a uniform cantilever beam. By manipulating the tip mass and its location, Li et al. [11] made
O02=O01 ¼ 5 and O03=O01 ¼ 15; or by cutting a hole in the beam, Sahin et al. [16] made O03=O01 ¼ 16. Therefore, the signals
of those higher harmonics which coincide with the higher eigenfrequencies can be significantly enhanced due to
resonance when driving frequency is around the first eigenfrequency [11,16]. Balantekin and Atalar [17] used a more
direct approach to make the first eigenfrequency the higher harmonics by driving the AFM cantilever around 1/3 and 1/2 of
the first eigenfrequency. Keep in mind the above enhancing mechanisms of making the eigenfrequency a higher harmonics
of the driving frequency implicitly assume the tip–sample interaction as an external force, which does not change
the system eigenfrequencies. The tip–sample interaction is displacement-dependent, or say, surface-coupled [47], which
can significantly change the system eigenfrequencies [27,42,46,47]. As seen in Fig. 2 the one mode computation has
qualitatively captured the motions. The two peaks in one driving period of 2p=O is mainly due to the participation of
higher harmonics not the higher modes. The higher harmonics result from the nonlinear tip–sample interactions and as
pointed out by Crittenden et al. [59], the nonlinearity is manifested not in the mode shape but rather in the temporal
dynamics of the mode shape. Our system is an underdamped one, the small damping, or say, high quality factor, prevents
the energy transfer between modes [15], which allows us to catch the basic temporal dynamics in one mode. When
TM-AFM is placed in an overdamped environment of liquid, one mode analysis breaks down [15]. The higher harmonics
participation further stands out in the period-2 motions as presented in Fig. 5, in which there are several peaks in one
driving period. Without intermittent contact, Fig. 6 has only one peak in one driving period, which means that much less
higher harmonics participate in the motion. Unlike that in Fig. 2, the contribution of the second mode and other higher
modes in Fig. 6 is negligible in both the contact and non-contact states. Also unlike the intermittent contact which is
sensitive to the initial conditions as presented in Figs. 4 and 5, the steady state of the ‘‘tip-stuck-to-sample’’ motion seems
unique with different initial conditions. The dominance of the first mode, much less higher harmonics participation and in
sensitiveness to the initial conditions of the ‘‘tip-stuck-to sample’’ motion should be of a great help to solving the inverse
problem.

Now a2 is increased to a2 ¼ 1� 10�3 to have intermittent contact and stronger tip–sample interaction. Again, a2 is the
ratio of the driving amplitude to the cantilever separation distance defined as f/d in Eq. (12). The two motions described by
the Hertz and DMT models share the same parameters and initial conditions. Both motions are nonperiodic as plotted in
Fig. 7. Although chaos is frequently encountered in the AFM intermittent contact dynamics [24–26], we should be cautious
not to conclude that those nonperiodic motions are chaos. Because several period-n motions can coexist at one driving
frequency [27], the nonperiodic motion can be the transitional results that the motion of period-m evolves to the motion of
period-n, or the motion itself oscillates between the orbits even the time lasts long enough (tZ100). Actually the motion
of the Hertz model seems on the way of evolving to a period-4 motion. One pattern observed in these two nonperiodic
motions is that the DMT motion always has larger indentation, i.e., VDMT

T rVHERTZ
T r0. Again, this is due to the adhesion

force which always makes the contact radius (so is the indentation) of adhesive contact larger than that of non-adhesive
Hertz contact. Again, because of the intermittent contact, there are two peaks in one driving period, which indicates the
participation of higher harmonics. As mentioned above there are two major sources causing the nonlinearity and it seems
that the intermittent contact plays a much more important role than the nonlinearity of the contact force–displacement
relation. A vital assumption used in solving the inverse problem in Refs. [19–22] is that the cantilever steady state is
harmonic, i.e., vT ðtÞ ¼ dþBþB sinðotþcÞ [21], which is more specifically called by Stark et al. [28] as the assumption of a
disturbed harmonic oscillation. Here B and c are the mean amplitude and phase shift, in which the information on the tip–
sample interaction is contained. The assumption of harmonic motion can only be valid when the tip–sample interaction
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is(very) weak [19]. However, the participation of higher harmonics and modes often makes the motion anharmonic [29,31]
because the repulsive tip–sample interaction (i.e., the force due to the tip–sample elastic deformation) is usually strong,
which leads to that the theory based on the assumption of harmonic motion deviates significantly from the experimental
observation [20]. As also seen in Figs. 4, 5 and 7, the AFM steady-state motion cannot be approximated by a harmonic
motion.

4. Conclusions

A comprehensive dynamics model on a tilted AFM is presented. In the TM-AFM dynamics, the tip mass, nonlinear
contact forces, damping and intermittent contact can all excite higher modes and higher harmonics into the system
motion through the mode coupling mechanism. The higher modes participation in the motion and the necessity of the
convergence study are demonstrated even when the driving frequency is well below the first eigenfrequency. The
multimodal analysis should be taken, which offers a more general and accurate approach of studying the AFM intermittent
contact dynamics. The displacement switching condition allows us to have a more general study on the TM-AFM
dynamics. Various subharmonic motions arise due to the intermittent contact. The nonperiodic motion also appears
because of relatively large forcing amplitude, or say, large tip–sample interaction. The presence of adhesion is an
important factor which may significantly change the system response to a ‘‘tip-stuck-to-sample’’ motion. The response of
TM-AFM in the intermittent contact can be so distorted that the assumption of harmonic motion cannot be accurate. When
TM-AFM is used to image the sample and measure its related mechanical properties, the extreme care should be taken
to interpret the data because of the rich AFM dynamic behaviors and their sensitivity to the initial conditions in the
intermittent contact as demonstrated in this study. The ‘‘tip-stuck-to-sample’’ motion, which is insensitive to the initial
conditions and the dominance of one mode, should be the type of motion adopted for the inverse problem solving.
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