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Distinguishing low-dimensional chaos from noise is an important issue in time series anal-
ysis. Among the many methods proposed for this purpose is the noise titration technique,
which quantifies the amount of noise that needs to be added to the signal to fully destroy
its nonlinearity. Two groups of researchers recently have questioned the validity of the
technique. In this paper, we report a broad range of situations where the noise titration
technique fails, and offer solutions to fix the problems identified.
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1. Introduction

Detecting low-dimensional chaos from noisy time series
is a classic issue with tremendous importance in as diverse
fields as life sciences, finance, ecology, physics, fluid
mechanics, and geophysics. Two major difficulties for solv-
ing this issue are (i) chaos can be induced by noise [1–8],
and (ii) standard Brownian motions may have a determinis-
tic origin [8,9]. Although many methods have been proposed
to distinguish chaos from noise [9–27], it is generally diffi-
cult to fully sort out the capabilities and limitations of a
particular method.

Recently, an interesting method, called noise titration
technique, which was introduced in 1996 for detecting
nonlinearity [25], and later for detecting chaos [26], has
been scrutinized [28,29]. The technique consists of detect-
ing nonlinearity in a time series through Volterra series
expansion and gradually adding noise to the signal till
the nonlinearity is fully destroyed [25]. As a measure for
chaos, a quantity, called noise limit (NL), is introduced
[26]. It is defined as NL = 100rn/rs, where rs is the standard
. All rights reserved.
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deviation of the signal and rn is the standard deviation of
the minimal amount of noise that needs to be added to
the signal to fully destroy its nonlinearity. This approach
has been instrumental in inferring chaos in cardiac dynam-
ics [30] and atomic force microscopy [31].

Two groups of researchers recently have questioned the
validity of this noise titration technique by using nonlinear
discrete maps with dynamical noise as counter-examples
[28,29]. It is well-known that in nonlinear dynamical sys-
tems, dynamical noise can induce a number of interesting
phenomena, including stochastic resonance [32] (for a
review, see [33]), noise-induced instability [34,35], noise-
induced order [36], noise-induced multistability [37],
and noise-induced chaos [1–8]. The last is the most rele-
vant to the recent criticisms on the noise titration tech-
nique, as one can ask: are the dynamics of the noisy
maps considered in [28,29] simply stochastic or belong to
noise-induced chaos? Unfortunately, neither group of
researchers has considered this important issue. Conse-
quentially, their criticisms remain inconclusive. More
importantly, it is unclear when the noise titration tech-
nique may fail.

Given a finite time series, one only observes a finite
scale range, (emin,emax) [38,39]. In a noisy dynamical sys-
tem, when chaos (including noise-induced chaos) occurs,
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its signatures usually can only be observed in a subset of
this scale range, say (e1,e2), where emin < e1 < e2 < emax. On
scales smaller than e1, noise dominates, while on scales lar-
ger than e2, fine structures of chaos cannot be resolved. If
the scale spread r = e1/e2 is very close to 1, then it is not
meaningful to classify the motion as chaos [8–11]. There-
fore, when low-dimensional chaos is concerned, one has
to require r P r⁄ > 1, where r⁄ is a threshold of the scale
spread. Note that in order to detect such scale-dependent
chaotic signatures, one has no choice but to use a scale-
dependent complexity measure, since the task is not only
to determine whether the motion is chaotic or not, but also
to specify the scale range where chaos is observed.

There is no golden rule to choose r⁄. The strategy advo-
cated by Cencini et al. [8] is to renounce from the outset
to define the nature of the signal and only speak about its
character on a given range of scales according to certain
scale-dependent indicators in that range of scales. Consid-
ering that some chaotic systems may have very small posi-
tive Lyapunov exponent and that the dimension of an
actual signal may not be very small, here, we choose
r⁄ = 2, meaning that the scale spread is at least twofold.
While our choice of r⁄ is somewhat arbitrary and very
non-conservative, it will suffice to serve our purpose of elu-
cidating the problems with the noise titration technique.

There exist three scale-dependent complexity measures
for tackling the above task. One is the e � s entropy [40].
Another is the finite size Lyapunov exponent (FSLE)
[8,41,42]. The third is the scale-dependent Lyapunov expo-
nent (SDLE) [9–12]. Conceptually, FSLE and SDLE are clo-
sely related. However, there are important differences
between them, one being that FSLE cannot deal with sys-
tems with a negative largest Lyapunov exponent (LLE),
while SDLE can. Since one of the models studied by Freitas
et al. [28] has a negative LLE, therefore, FSLE is not suitable
here. Computationally, e � s entropy is the least conve-
nient, while SDLE is the most convenient. Therefore, in this
study, we use SDLE to determine whether the recent criti-
cisms on the noise titration technique are legitimate, and
more importantly, to find solutions to the problems
identified.

The remainder of the paper is organized as follows. In
Section 2, we first overview the known properties of SDLE,
then further explore the capabilities of SDLE in detecting
chaos by studying high-dimensional and intermittent
chaos. In Section 3, by studying both discrete- and contin-
uous-time dynamical systems, we identify a broad range of
situations where the noise titration technique may fail in
reliably detecting chaos. In Section 4, we make a few con-
cluding remarks.

2. Detecting chaos by SDLE

2.1. SDLE as a multiscale complexity measure

SDLE is defined in a phase space through consideration
of an ensemble of trajectories [9–11]. In the case of a scalar
time series x(1),x(2), . . . ,x(n), a suitable phase space may
be obtained by using time delay embedding [43–45] to
construct vectors of the form:
Vi ¼ ½xðiÞ; xðiþ LÞ; . . . ; xðiþ ðm� 1ÞLÞ�; ð1Þ

where m and L are called the embedding dimension and
the delay time, respectively. For chaotic systems, m and L
have to be chosen according to certain optimization crite-
rion [10,21,38,46–50]. For a stochastic process, which is
infinite-dimensional, the embedding procedure transforms
a self-affine stochastic process to a self-similar process in a
phase space, and often m = 2 is not only sufficient but also
best illustrates a non-chaotic scaling behavior from a finite
dataset [9–11].

SDLE is defined as follows. Denote the initial distance
between two nearby trajectories by e0, and their average
distances at time t and t + Dt respectively, by et and et+Dt,
where Dt is small. Being defined in an average sense, et

and et+Dt can be readily computed from any processes,
even if they are non-differentiable stochastic processes.
The SDLE k(et) is defined by [9–11]

etþDt ¼ etekðetÞDt; or kðetÞ ¼
ln etþDt � ln et

Dt
: ð2Þ

Or equivalently by,

det

dt
¼ kðetÞet ; or

d ln et

dt
¼ kðetÞ: ð3Þ

To compute SDLE, we can start from an arbitrary num-
ber of shells,

ek 6 kVi � Vjk 6 ek þ Dek; k ¼ 1;2;3; . . . ; ð4Þ

where Vi, Vj are reconstructed vectors, ek (the radius of the
shell) and Dek (the width of the shell) are arbitrarily chosen
small distances (Dek is not necessarily a constant). Then we
monitor the evolution of all pairs of points (Vi,Vj) within a
shell and take average. Assuming that the order of averag-
ing and taking logarithm in Eq. (2) can be interchanged,
Eq. (2) can now be written as

kðetÞ ¼
hln kViþtþDt � VjþtþDtk � ln kViþt � Vjþtki

Dt
; ð5Þ

where t and Dt are integers in unit of the sampling time,
and the angle brackets denote average within a shell.

Note that the initial set of shells for computing SDLE
serve as initial values of the scales; through evolution of
the dynamics, they will automatically converge to the
range of inherent scales—which are the scales that define
Eqs. (2) and (3). Also note that when analyzing chaotic
time series, the condition

jj� ijP ðm� 1ÞL ð6Þ

needs to be imposed when finding pairs of vectors within a
shell, to eliminate the effects of tangential motions [21],
and for an initial scale to converge to the inherent scales
[10].

To better understand the notion of ‘‘inherent scales’’, it is
beneficial to discuss the notion ‘‘characteristic scale’’ (or
‘‘limiting scale’’), e1, defined as the scale where SDLE is
close to 0. It is closely related to the total variation or the
energy of the signal (for example, for a chaotic system, e1
defines the size of the chaotic attractor). If one starts from
e0� e1, then, regardless of whether the data is determinis-
tically chaotic or simply random, et will initially increase



J. Gao et al. / Chaos, Solitons & Fractals 45 (2012) 213–223 215
with time and gradually settle around e1. Consequentially,
k(et) will be positive before et reaches e1. On the other hand,
if one starts from e0� e1, then et will simply decrease,
yielding negative k(et), again regardless of whether the data
are chaotic or random. When e0 � e1, then k(et) will stay
around 0—note however, that e1 may not be a single point,
but a function of time, such as a periodic function of time.
These discussions make it clear that chaos can only be ob-
served on scales much smaller than e1.

To better understand SDLE, we now point out a relation
between SDLE and the positive LLE k1 estimated for a true
chaotic signal using, say, the Wolf et al.’s algorithm [14]. It
is given by [10]

k1 ¼
Z e�

0
kðeÞpðeÞde; ð7Þ

where e⁄ is a scale parameter (for example, used for re-nor-
malization when using Wolf et al.’s algorithm [14]), p(e) is
the probability density function for the scale e given by

pðeÞ ¼ Z
dCðeÞ

de
; ð8Þ

where Z is a normalization constant satisfying
R e�

0 pðeÞ
de ¼ 1, and C(e) is the well-known Grassberger–Procaccia’s
correlation integral [13]. Note that the lower-bound for
the integration is set to be zero here. In practice, on scales
smaller than emin, the probability p(e) will be zero. Therefore,
one could replace the lower-bound for the integration
by emin.

We now list three interesting scaling laws of SDLE that
are most relevant to this study:

1. For clean chaos on small scales, and noisy chaos with
weak noise on intermediate scales,
kðeÞ ¼ k1: ð9Þ
Following our general discussion in the Introduction,
we now explicitly define low-dimensional chaos to be
observing scaling of Eq. (9) on a scale range of (e,re),
where r P 2. As we will see in Section 2.2, such a defi-
nition of chaos is able to detect chaos in intermittent
time series with a long laminar phase during which
neighboring trajectories do not diverge, and a rapid
divergence over a small part of the state space, as well
as chaos from time series with multiple positive Lyapu-
nov exponents and very high dimension (say, more than
20). However, it should be noted that when the dimen-
sion of a signal is very high, the scale range for observ-
ing Eq. (9) could be very narrow.

2. For clean chaos on large scales where memory has been
lost and for noisy chaos (including chaos with measure-
ment/dynamical noise and noise-induced chaos [6,7])
on small scales,
kðeÞ � �c ln e; ð10Þ

where c > 0 is a parameter. Note for noisy systems, on
smallest scales, this is the only scaling—more data only
resolves this scaling better. In the case of infinite data,
one can imagine that this scaling extends to e ? 0,
meaning entropy is infinite in noisy systems. Also note
that even for clean chaotic systems, this scaling would
be observed on the smallest scales [38,39], if one does
not impose the condition expressed by inequality (6).

3. For random 1/f2H+1 processes, where 0 < H < 1 is called
the Hurst parameter which characterizes the correla-
tion structure of the process: depending on whether H
is smaller than, equal to, or larger than 1/2, the process
is said to have anti-persistent, short-range, or persistent
long-range correlations [51,10],
kðeÞ � e�1=H: ð11Þ
Note that for white Gaussian noise (whose integration is
the standard Brownian motion), H = 1/2, while for turbu-
lence, H = 1/3.

Before we use an example to illustrate the above scaling
laws, it is important to point out how an estimated positive
LLE cannot be used to indicate existence of low-dimen-
sional chaos. For this purpose, let us consider white noise.
Let D be the average distance between two points. If one
chooses two points whose distance is smaller than D, then
the distance between them will rapidly grow with time, till
their distance is close to D. This means ‘‘LLE’’, as obtained
by, say, the Wolf et al.’s algorithm [14], is positive. Obvi-
ously, associating such positive LLE with chaos is incorrect,
since we are talking about simple noise. In the case of more
complex noisy processes, if one evaluates Eq. (7) using
Eqs. (10) and (11) for SDLE, then one gets positive LLE.
These discussions make it clear that a positive LLE alone
cannot be used as a test for low-dimensional chaos.

To better understand the above discussions, let us say a
few more words about Eq. (7). What distinguishes Eq. (9)
from (10) or (11) is the fact that when e⁄ in Eq. (7) changes,
k1 also changes when one uses Eq. (10) or (11). However, so
long as e⁄ lies in the plateau region, k1 is a fixed value when
one evaluates Eq. (7) using Eq. (9). Noting that different
researchers can choose different e⁄, the above discussions
simply translate to that Eq. (10) or (11) characterizes ran-
dom behavior, since LLE obtained by different researchers
can be different, while Eq. (9) characterizes deterministic
behavior.

We now illustrate the above scaling laws by using the fol-
lowing Lorenz system with dynamical noise as an example:

dx=dt ¼ �10ðx� yÞ þ Dg1ðtÞ;
dy=dt ¼ �xzþ 28x� yþ Dg2ðtÞ;

dz=dt ¼ xy� 8
3

zþ Dg3ðtÞ:
ð12Þ

where Dgi(t), i = 1, 2, 3 are independent Gaussian noise
forcing terms with mean 0 and variance D2. Note that the
system with other parameter values and measurement
noise was studied earlier [9–11]. The system is solved
using the scheme of Exact propagator [52], which involves
solving the deterministic part of the system using a 4-th
order Runge–Kutta method with a time-step of h = 0.002,
then adding a term D

ffiffiffi
h
p

W , where W is a Gaussian noise
of mean 0 and variance 1, to the corresponding equations
to take into account the effect of noise. In order to compute
SDLE, time series of length 10,000, sampled with a time
interval of 0.06, is used, together with m = 4, L = 2.
Fig. 1(a) shows five curves, for the cases of D = 0, 1, 2, 3,
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4. We observe a few interesting features: (i) For the clean
chaotic signal, on small scales, k(e) slightly fluctuates
around 0.9, which is the LLE; on large scales where mem-
ory has been lost, we observe the scaling of Eq. (10). (ii)
When there is stochastic forcing, k(e) is no longer a con-
stant when e is small, but increases as �c lne when the
scale e decreases. The coefficient c does not seem to de-
pend on the strength of the noise. This feature suggests
that entropy generation is infinite when the scale e ap-
proaches to zero. (iii) When the noise is increased, the part
of the curve with k(e) � �c lne shifts to the right, while the
plateau defined by Eq. (9) shrinks. In fact, little chaotic sig-
nature can be identified when D is increased beyond 3. This
simply means that the system has become too noisy to be
classified as chaotic. However, we will show in Section 3
that the noise titration technique will still mis-classify
such dynamics as chaos.

2.2. Detecting high-dimensional and intermittent chaos

In this subsection, we examine two model systems, one
exhibits fairly high dimensions, the other exhibits inter-
mittent chaos. We shall show that SDLE can readily detect
chaos even in such systems.

Our first system is the Lorenz’96 model [53–55]. The
model is supposed to represent some atmospheric quantity
equally spaced around a latitudinal circle. It is described by
the following equations,

dXn=dt ¼ ðXnþ1 � Xn�2ÞXn�1 � Xn þ F; n ¼ 1;2; . . . ;N ð13Þ
with periodic boundary condition, i.e., X�1 = XN � 1,X0 = XN,
and XN+1 = X1. F is a positive constant representing external
forcing. The term �Xn represents dissipation, and the term
(Xn+1 � Xn � 2)Xn � 1 represents advection. When N = 40,
F = 8, the system has 13 positive Lyapunov exponents and
a Kaplan–Yorke dimension of 27.1. In ensemble forecasting
of this system, one chooses many points in a small neigh-
borhood of a reference point, integrates the system starting
from all those points, and monitors divergence between all
those perturbed trajectories and the reference trajectory.
The average of this divergence yields the root mean square
error, which is also called the error growth curve. Since the
system is chaotic, initially the error curve grows exponen-
tially, or linearly in a semi-log plot, as shown by the solid
blue curve in Fig. 2(a). Although the dimension here is very
high, the SDLE shown in Fig. 2(b) still clearly indicate
deterministic chaos, although the scale range for observing
k(e) � constant is fairly narrow. Note that integration of
SDLE gives part of the error growth curve, as shown by
the red solid curve in Fig. 2(a). Upon linear extrapolation
of the solid red curve, one obtains the dashed red curve
shown in Fig. 2(a), and recovers the entire error growth
curve.

Next, we consider intermittent chaos. To illustrate the
idea, we examine the logistic map

xnþ1 ¼ axnð1� xnÞ þ gn: ð14Þ

Here, gn is a white Gaussian noise with mean 0 and stan-
dard deviation r. It is a dynamical noise, since it is in the
governing equation, and thus directly affects the evolution
of the system (in contrast, n(t) in x(t) + n(t) is called mea-
surement noise, since it only affects the value of x(t), but
not x(t + 1)). When r = 0 and a = 3.8284, we have intermit-
tent chaos. An example of the time series is shown in
Fig. 3(a). We observe that time intervals exhibiting chaos
are very short compared with those exhibiting periodic
motions. Traditional methods for computing Lyapunov
exponent, being based on global average, is unable to
quantify chaos in such an intermittent situation, since
the laminar phase dominates. Neither can FSLE, since it re-
quires that divergence dominates most of the time. Inter-
estingly, the SDLE curve shown in Fig. 3(b) clearly
indicates existence of chaotic motions, since the plateau
region extends almost one order of magnitude.

Why can SDLE even detect chaos in such a situation?
The reason is that the oscillatory part of the data only af-
fects the scale range where k(e) � 0. It cannot affect the po-
sitive portion of k(e). This means SDLE has a nice scale
separation property to automatically separate the regular
from chaotic motions.

Before leaving this example, we note that the lne scal-
ing on very small scales is due to the transitions from peri-
odic to chaotic motions. To understand this, consider two
very close trajectories in the laminar region. So far as they
stay in the laminar region, e will remain small. When both
trajectories enter the chaotic region, the distance between
them will become greater—this divergence becomes stron-
ger and stronger when the trajectories get deeper into the
chaotic region, till it stabilizes at the plateau region, when
it is fully within the chaotic tunnel.
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3. Detecting chaos by the noise titration technique

To better appreciate the capabilities and limitations of
the noise titration technique, in this section, we first over-
view some details of the technique, then study discrete and
continuous dynamical systems, to identify a broad range of
situations where the technique may fail.

3.1. The noise titration technique

The key element of the technique is the Volterra autore-
gressive representation:
xðnþ 1Þ ¼ k0 þ
Xk�1

m1¼0

k1ðm1Þxðn�m1Þ

þ
Xk�1

m1¼0

Xk�1

m2¼0

k2ðm1;m2Þxðn�m1Þxðn�m2Þ þ � � �

þ
Xk�1

m1¼0

� � �
Xk�1

md¼0

kdðm1;m2; . . . ;mdÞ
Yd

i¼1

xðn�miÞ ð15Þ
where x(n) is the time series, k is the length of memory
(which may be considered equivalent of the embedding
dimension), d is the order of the polynomial (when d > 1,
it is nonlinear), and {kr(m1,m2, . . . ,mr)} are the coefficients
of the Volterra series. This expansion creates M = (k + d)!/
k!d! nonlinear models, with the order of polynomials rang-
ing from 1 to d and embedding dimension ranging from 1
to k. Such nonlinear models are then compared with linear
models with order 1 and embedding dimension ranging
from 1 to M, in terms of goodness of the fitting. The latter
is quantified by the Akaike cost function, an information
theoretic metric. If nonlinear models are better, then it is
concluded that the time series is nonlinear and chaotic.
To quantify chaos, noise is then added to the signal, till
nonlinearity in the data can no longer be detected through
such Volterra series expansion. Quantitatively, this is mea-
sured by noise limit, a metric we have explained in the
Introduction.

Note that the technique does not involve characteriza-
tion of any chaotic signatures of the time series. Instead,
it tacitly assumes that when a nonlinear model better repre-
sents the data than a linear model, and that if the noise that
needs to be added to the data to destroy nonlinearity is not
zero, then the data is chaotic. Under such an assumption,
clean, transient free periodic and quasi-periodic signals
will be tested as linear and thus non-chaotic, even though
such signals may actually be generated by nonlinear
dynamical systems. Below, we shall identify a broad range
of situations where problems with the noise titration tech-
nique may arise.
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3.2. Detecting chaos in discrete dynamical systems using the
noise titration technique

In order to (1) identify a broader range of problems with
the noise titration technique and (2) show how SDLE can
fix the problems, in this subsection, we examine more sys-
tematically the three discrete maps studied in [28,29]. We
first study the logistic map (Eq. (14)). Note that Freitas
et al. [28] studied the clean map with a = 3.62, while Lei
and Meng [29] studied the noisy map with a = 3.3, 3.84,
3.9 and noise variance r2 = 0.001.

Fig. 4(a) shows the bifurcation diagram for the noisy
logistic map with r = 0.001. We see that the major bifurca-
tion structure of the clean logistic map can still be ob-
served clearly. For each parameter a and a fixed noise
level, we can generate a time series and analyze it using
the noise titration technique. The value of the noise limit
vs. the parameter a (mainly admitting period-4 motions)
is shown in Fig. 4(b). We observe that for r = 0.001, NL is
always positive for the entire interval of a shown in the fig-
ure. Are those motions noise-induced chaos?

The answer is no. An example of SDLE for the case of
a = 3.55 is shown in Fig. 4(c). Clearly, there is no plateau de-
fined by Eq. (9), therefore, it is not chaotic. For comparison
purpose, we have shown in Fig. 4(d) the SDLE curve for the
clean map with a = 3.62, which is a chaotic case studied by
Freitas et al. [28]. We have also shown in Fig. 4(e) the SDLE
curve for the noisy map with a = 3.74, which is a case of
noise-induced chaos [6,9]. Note that the main feature of
Fig. 4(c) remains the same when longer time series with lar-
ger embedding dimensions are used, such as m P 20.
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based on a time series of 20,000 points, with m = 4, L = 1, and correspond to 3 s
To better understand why the time series of the noisy
logistic map with a = 3.55 cannot be classified as noise-
induced chaos, but rather a simple limit cycle driven by
dynamical noise (i.e., a stochastic oscillator), it is instruc-
tive to compare its time series with that of a true noise-
induced chaos. For this purpose, we have shown in Fig. 5
a short segment of the time series for the logistic map with
(a) a = 3.55, r = 0.01 and (b) a = 3.74, r = 0.002. We observe
that for the case of a = 3.55 and r = 0.01, the noisy time
series is still very much like a period-4 oscillation—while
the amplitude of the oscillation changes with time due to
noise, the period is still precisely 4. When r is 10 or 100
times smaller, as shown in Fig. 4(b), surely one would ex-
pect that the effect of noise is even smaller. However, this
is not true in case(b). In fact, the noisy time series of
a = 3.74 bears no resemblance to the clean period-5 oscilla-
tion of the clean system at all. This is the essence of noise-
induced chaos—even though noise is small, its effect is
huge. Note however, the non-chaotic nature of the case
of a = 3.55 and r = 0.01 may not be inferred through exam-
ination of a bifurcation diagram, since the motion is not
represented by 4 points in a bifurcation diagram, due to
the amplitude variations. These discussions make it clear
that there is no mechanism for exponential divergence in
the case of a = 3.55. Therefore, the motion of the noisy lo-
gistic map with a = 3.55 cannot be chaotic.

Next, we consider how the chaotic motions of the clean
logistic map are affected by dynamical noise. The behaviors
are very much like those of the chaotic Lorenz system we
already discussed, and therefore, will not be illustrated by
any plots. We just want to emphasize that when noise is
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tion of NL with the bifurcation parameter a for three different noise levels;
sed on a time series of 10,000 points, with m = 2, L = 1, and a shell size of
calculated based on a time series of 20,000 points, with m = 2, L = 1, and
) for the logistic map with a = 3.74, r = 0.0002, the curves were calculated
hells with size (2�i�1/2,2�i), i = 9, 9.5, and 10.



Fig. 5. Time series for the logistic map with (a) a = 3.55 and (b) a = 3.74. The points designated by open triangles and connected by solid curves are for the
clean system, while the points designated by squares and connected by dashed lines are for the noisy system.
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as large as that used by Lei and Meng [29], the time series
for the case of a = 3.9 is no longer chaotic, but simply sto-
chastic. Therefore, the three cases, with a = 3.3, 3.84 and
3.9, studied by Lei and Meng, which all yield NL > 0, consti-
tute three counter-examples of the noise titration tech-
nique (instead of two, as Lei and Meng originally thought).

Finally, we ask a question: May the noise titration tech-
nique even classify a non-chaotic deterministic time series
as chaotic? To find the answer, we consider the clean logis-
tic map at the accumulation point, a1 = 3.569945672� � �.
When a is slightly smaller or larger than a1, the motion
is periodic or weakly chaotic, respectively [56]. The SDLE
curve for the map at the accumulation point is shown in
Fig. 6(b). Clearly it is not chaotic yet. However, the noise
titration method yields a positive noise limit (NL = 0.41
and 0.71, for a time series of length 1000 and 10,000,
respectively). Note that when there is dynamical noise,
irrespective of whether a is slightly smaller than, equal
to, or slightly larger than a1, the motions are all character-
ized by power-law sensitivity to initial conditions (PSIC)
[56], but not exponential sensitivity to initial conditions
(ESIC). In all these cases, NL are positive, with values rang-
ing from slightly smaller than 3 to about 20, depending on
the data length and the noise level.

We now summarize what we have found from the lo-
gistic map. We have found three types of problems with
the noise titration technique: (1) the technique classifies
a stochastic oscillation as chaos; (2) it also classifies a mo-
tion with its chaotic features completely destroyed by
noise as chaos; and (3) it even classifies the motions near
the accumulation point, which are either deterministic or
characterized by power-law sensitivity to initial condi-
tions, as chaos.

We now study the other two maps studied by Freitas
et al. [28]. One is the sine map with a specially designed
noise, as described below:
xnþ1 ¼ l sinðxnÞ þ Yngn; ð16Þ

where l = 2.4, Yn is a random variable from a Bernoulli pro-
cess (Yn = 1 or �1 with probabilities q = 0.01 and
1 � q = 0.99, respectively), and gn is an independently and
identically distributed (iid) random variable with a uniform
distribution between (�b,b), where b = 2. A noisy time ser-
ies of the map is shown in Fig. 7(a). We observe that the mo-
tion of the map consists of two symmetric period-2
oscillations, and is occasionally disturbed by the noise.
The first return map of the system is shown in Fig. 7(b).
Note that the sine-like shape comes from the term lsin
(xn); the positions of xn where we observe four vertical lines
are the positions of the period-2 motions, while the four
vertical lines are due to noise: had we used more points,
they would have become more uniform, conforming to
the uniform distributions used. Although this system yields
a positive NL value, as reported by Freitas et al. (and also
verified by us), the SDLE plot shown in Fig. 7(c) does not
suggest chaos at all. At this point, it is worth noting that
the SDLE plot indicates a negative plateau, with average va-
lue about �0.6, close to the negative LLE of �0.65 found by
Freitas et al. [28]. However, the map, being disturbed by
this specially designed noise, cannot be fully characterized
by a negative LLE, since the pattern of the SDLE shown in
Fig. 7(c) is quite complicated. Nevertheless, this is surely a
valid counter example of the noise titration technique.

Finally, we examine model 2 studied by Freitas et al.
[28], which is described by

xnþ1 ¼ avn þ bvn�1ð1� vnÞ; ð17Þ

where vn is a uniform iid random variable with values be-
tween 0 and 1. The values of parameters a and b are not given
in [28]. We have tried a number of their combinations. Here,
for illustration purpose, we have chosen a = 3, b = 4, which
yields a very similar phase diagram (i.e., the first return



Fig. 6. (a) A short segment of the time series for the logistic map on the edge of chaos; (b) k(e) for a data set of length 10,000 points, with m = 4, L = 1, and a
shell size of (2�17.5,2�17).
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map) to that shown in [28]. A short segment of the time ser-
ies is shown in Fig. 8(a), while the SDLE curve is shown in
Fig. 8(b). Clearly, the time series is not chaotic. However,
the NL is not only positive, but large, and sensitively depends
on the data length, as shown in Fig. 8(c). Note that even
though the parameters chosen here may not be identical
to those used by Freitas et al., we can safely conclude that
their result is correct, in the sense that the noise titration
technique falsely classifies the stochastic motion as chaotic.
3.3. Detecting chaos in continuous dynamical systems using
the noise titration technique

Many real world data are measured from continuous
time systems. To better understand when the noise titra-
tion technique may fail, it is important to examine contin-
uous time systems. Our analyses of discrete maps suggest
that the more serious problems with the noise titration
technique are to mis-classify stochastic oscillations and
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stochastic motions without any chaotic signatures remain-
ing as chaos. Therefore, here we focus on the stochastic van
der Pol’s oscillator and the noisy Lorenz system.

The stochastic van der Pol’s oscillator is described by

dx=dt ¼ yþ D1g1ðtÞ;
dy=dt ¼ �ðx2 � 1Þy� xþ D2g2ðtÞ;

ð18Þ

where hgi(t)i = 0, hgi(t)gj(t0)i = dijd(t � t0), i, j = 1, 2, and the
parameters Di, i = 1, 2 characterize the strength of noise.
In [9], we studied the system with a very small noise,
D1 = D2 = 0.02. Here, we study the system with a much lar-
ger noise, D1 = D2 = 0.2. Like the stochastic Lorenz system,
it is solved using the scheme of Exact propagator [52].
Fig. 9(a) (dashed curve) shows a noisy time series sampled
with a time interval of 0.2. Its phase diagram, plotted in
Fig. 9(b), shows clearly a diffused limit cycle. To better
appreciate the regularity of the time series, we have also
shown in Fig. 9(a) a time series for the clean van der Pol
oscillator as the solid curve. While the effect of noise is
clearly discernible, the regularity of the noisy data is also
evident: the period of the oscillation remains fairly stable,
just as we have observed with the noisy logistic map with
a = 3.55. Such behavior suggests that short-term prediction
of such stochastic oscillations cannot be exact, because of
noise; however, long-term prediction with certain accu-
racy is possible, since the period is well defined. This argu-
ment suggests that the motion cannot be classified as
chaos. The validity of this conclusion can be readily verified
by the SDLE curve shown in Fig. 9(c).

How will the noise titration technique classify such a
motion? It yields a fairly large NL of about 30. In fact, if
we downsample the data by a factor of 2, 5, 10, or 20,
the value of NL changes, as shown in Fig. 9(d). Therefore,
the stochastic van der Pol oscillator is another counter-
example of the noise titration technique. Not only so, our
analysis has pointed to a further difficulty of the tech-
nique: the quantitative metric for chaos, the noise limit,
varies with the sampling time. In practice, the last feature
makes it difficult for different researchers to compare their
results, since different researchers may choose different
sampling times.

At this point, we wish to emphasize that we have ap-
plied the noise titration technique to some experimental
data, including pathological tremors [57–59] and velocity
signals measured in the near wake of a circular cylinder
of low-Reynolds number [60]. Both types of data have been
found not to be chaotic, but like stochastic oscillations.
However, the noise titration method always classifies them
as chaotic.

Finally, we re-examine the Lorenz system of Eq. (12)
with different noise levels. We first recall that using SDLE,
we have found that when the noise level D increases, the
plateau region where k(e) � constant shrinks; in fact, when
D P 3, little chaotic signature of the system can be found.
How does the noise limit vary with the noise level? It turns
out that irrespective of different noise level, the NL values
are always positive and similar, and vary with the sam-
pling time, as shown in Fig. 1(b). This clearly indicates that
the noise titration technique fails to distinguish true chaos
from noise. At this point, we would like to point out one
more complication in Fig. 1(b): when the sampling time
is very small (such as 0.01), NL = 0, suggesting non-chaotic
dynamics even for the clean Lorenz system. As we already
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commented earlier, the reason for such a behavior is that
locally the signals can be perfectly linearized, and thus
leading to misclassifying chaotic signals as non-chaotic.

In principle, are small sampling times allowed for a
dynamical system? The answer is yes, since small sampling
times do not violate the Nyquist sampling theorem at all. In
fact, for the Lorenz system, when the sampling time is 0.01,
estimation of the correlation dimension and the largest
Lyapunov exponent is as good as with larger sampling
times [61,62]. Note that this issue is closely related to mod-
eling problems. For an interesting review, we refer to [63].
4. Concluding remarks

By studying a number of discrete and continuous time
systems, we have identified a broad range of problems
with the noise titration technique, including two that
could frequently occur in real applications: (1) stochastic
oscillations and (2) chaotic systems with little chaotic sig-
natures remaining due to excessive amount of noise.

What is the fundamental reason that the noise titration
technique fails in so many situations? It is because of the
assumption that nonlinearity implies chaos. Had a system
to be studied is deterministic and dissipative, the noise
titration technique could function very well, so far as the
parameters of the system are not near the edge of chaos.
This is because regular attractors of a deterministic dissi-
pative system, including fixed point solutions, limit cycles,
and torus, will not be detected as nonlinear, if transients
have died out. The remaining major type of attractor, the
chaotic attractor, will then be correctly classified as cha-
otic. However, whenever there is dynamical noise, both
regular and chaotic attractors will be perturbed. Right after
the perturbation, the process of converging to the original
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attractors will be initiated. In a dissipative system, while
this process is necessarily nonlinear, there is no reason to
classify them all as chaotic. This is the fundamental prob-
lem with the noise titration technique. Fortunately, all
the problems identified can be readily solved by SDLE.

Detecting chaos from noisy time series has been and
will remain as a fundamental issue in science and engi-
neering. Therefore, there will be continuing efforts for
developing new methods for this purpose. We wish to
advocate that when one is making an effort to develop a
new method, one better ensures that certain chaotic fea-
tures of the data are characterized. Without such a require-
ment, problems are bound to occur.
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