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ABSTRACT This paper studies the dynamic buckling behavior of multi-walled carbon nanotubes
(MWNTs) subjected to step axial loading. A buckling condition is derived, and numerical results
are presented for MWNTs under fixed boundary conditions. It is shown that the critical buckling
load of MWNTs is of multi-branches and decreases as the time elongates. The associated buckling
modes for different layers of MWNTs can be either in-phase or out of phase, which is related to
the branch that the critical buckling load belongs to. For MWNTs with the same innermost tube
radius, the critical buckling load is decreased when increasing the layers.

KEY WORDS multi-walled carbon nanotubes, dynamic buckling, van der Waals forces, continuum
mechanics model

I. INTRODUCTION
Carbon nanotubes (CNTs) exhibit excellent mechanical properties and wide range of possible

application[1,2]. Many researchers have devoted to the study of mechanical behaviors for single-walled
carbon nanotube (SWNT) or multi-walled carbon nanotubes (MWNTs) by using continuum mechanics
model, molecular dynamic simulations and experiments[3–9]. For example, Yakobson et al.[10] studied
the axial buckling of SWNTs using molecular dynamics simulations and compared the results with a
continuum shell model. Their results showed that the buckling behavior of an SWNT could be well
predicted by a continuum shell model. Ru[11] presented an elastic double-shell model and studied the
axial compressive buckling of a double-walled carbon nanotube (DWNT). In Ru’s analysis, an approx-
imate linearized relation was adopted to model the van der Waals interaction between the outer and
the inner nanotubes. Wang et al.[12] studied the elastic buckling of MWNTs under high pressure based
on a multiple-shell model and showed that the predicted critical pressure using continuum mechanics
model was in reasonably good agreement with the experimental results by Tang et al.[13]. Wang et
al.[14] studied the size dependence of thin shell model for CNTs, and showed that the size dependence
was insignificant for SWNTs with diameter larger than 1.5 nm. While for SWNTs with diameter larger
than 1.5 nm, an isotropic thin shell model with constant thickness and elastic moduli could be used.
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Peng et al.[15] studied the order of error by modeling SWNTs as thin shells via an atomistic-based
finite-deformation shell theory from the point of view of structural response. In their paper, the ratio of
atomic spacing (Δ ≈ 0.14 nm) to the radius of SWNT Δ/R was used to estimate the order of error. It
was shown that, only for the order of error O(Δ/R) (as compared to unity), a universal constant shell
thickness could be defined and an SWNT could be modeled as an elastic isotropic thin shell. Although
CNTs are in nanoscale, many researches have shown that the continuum mechanics model can capture
the main factor affecting the mechanical behavior of CNTs and can be an effective method for studying
the mechanical behaviors of CNTs[16–20].

As is shown in literature, most of previous studies have mainly focused on the static mechanical
behaviors of MWNTs or MWNTs in various surroundings. CNTs can be used as basic elements of
nanoscale devices, such as resonators, chemical and mechanical sensors[1,21,22]. Therefore, it is very
essential to understand the dynamic mechanical property of MWNTs, which may be helpful for the
potential application of CNTs. More recently, Sun and Liu[23] studied the dynamic buckling behavior
of DWNTs under step axial loading with the aid of stress wave propagation theory. It was indicated
that the radii played an important role in dynamic buckling behavior of MWNTs. In this paper, a
further study is performed for dynamic buckling behavior of MWNTs under step axial loading based
on continuum mechanics model. Numerical results are worked out for the critical buckling load and the
associated buckling mode of triple-walled CNTs under fixed boundary conditions. The effect of radii
on the critical buckling load is also examined.

II. MULTIPLE-SHELL MODEL
2.1. Van der Waals Forces

Figure 1 shows the model of an MWNT under step axial loading. Subscripts 1, 2, · · · , N denote
the corresponding quantities related to the outermost tube, its adjacent tube, . . . , and the innermost
tube, respectively. As used in literatures[11,17,18,23,24], an approximate linearized relation is adopted to
model the effect of van der Waals forces between adjacent tubes of MWNTs in this paper:

Fig. 1. A model of an MWNT under step axial loading.

pk(k+1) = c(wk+1 − wk) (k = 1, 2, · · · , N − 1) (1)

where pk(k+1) denotes the (inward) pressure (per unit area) exerted on the kth tube due to the (k+1)th

tube, wk denotes the radial (inward) deflection of the kth tube due to buckling, and the van der Waals
constant c is estimated by

c =
320× erg/cm2

0.16s2
with s = 1.42× 10−8 cm
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Noting that the van der Waals interaction between the kth tube and the (k + 1)th tube is equal and
opposite, we have

p(k+1)k = −
Rk

Rk+1
pk(k+1) (k = 1, 2, · · · , N − 1) (2)

where Rk denotes the radius of the kth tube.

2.2. Buckling Equations

In this paper, a perfect semi-infinite shell model impacted by a step axial load is considered, and
the buckling is caused by the bifurcation of wave propagation. The study is based on the following
assumptions[23,25]. The axisymmetric buckling form occurs first and the buckling corrugations form at
the initial stage. The longitudinal wave dominates and the effect of radial inertia can be negligible at
the beginning of buckling.

For a perfect semi-infinite shell impacted by a step axial load σ(t) = −σxH(t) at its end (x = 0),
where σx is a constant, H(t) = 1 if t ≥ 0, and H(t) = 0 if t < 0, the axial internal force satisfies

Nx =

{
−σxh (x ≤ xe)

0 (x > xe)
(3)

where xe = cet, and ce = [E/(ρ− ρν2)]1/2 is the elastic wave speed.
According to Reissner’s generalized variational principle and the theory of thin shells, the governing

equation for a perfect thin shell with radial pressure can be expressed as[23,25]

D
∂4w

∂x4
+ σxh

∂2w

∂x2
+

Eh

R2
w + ρh

∂2w

∂t2
−

ρh3

12

∂4w

∂x2∂t2
− z = 0 (x ≤ xe) (4)

where w(x, t) denotes the additional radial deflection measured from the initial perturbed deflection,
and z denotes the additional (inward) pressure due to buckling.

Now, the buckling problem on semi-infinite MWNTs is considered to be subjected to step axial
loading. By supposing that each tube of an MWNT can be seen as a perfect elastic shell, the governing
equations for dynamic buckling of an N -layer MWNT are obtained from Eqs.(1) , (2), and (4) as

D1
∂4w1

∂x4
+ σxh1

∂2w1

∂x2
+

(
E1h1

R2
1

+ c

)
w1 + ρ1h1

∂2w1

∂t2
−

ρ1h
3
1

12

∂4w1

∂x2∂t2
− cw2 = 0 (x ≤ xe)

Dk
∂4wk

∂x4
+ σxhk

∂2wk

∂x2
+

(
Ekhk

R2
k

+
cRk−1

Rk
+ c

)
wk

+ρkhk
∂2wk

∂t2
−

ρkh3
k

12

∂4wk

∂x2∂t2
−

cRk−1

Rk
wk−1 − cwk+1 = 0 (x ≤ xe) (5)

DN
∂4wN

∂x4
+ σxhN

∂2wN

∂x2
+

(
ENhN

R2
N

+
cRN−1

RN

)
wN

+ρNhN
∂2wN

∂t2
−

ρNh3
N

12

∂4wN

∂x2∂t2
−

cRN−1

RN
wN − 1 = 0 (x ≤ xe)

where Dk (k = 1, 2, · · · , N) denotes the effective bending stiffness, Ek denotes the Young’s modulus,
ρk denotes the density and hk (k = 1, 2, · · · , N) denotes the thickness of the kth tube.

Here, we take Dk = D = 0.85 eV, Ekhk = Eh = 360 J/m
2
, and ρkhk = ρh = (2.27 g/cm

3
)×0.34 nm

(k = 1, 2, · · · , N)[10,17,18,23,24].

III. SOLUTION AND DISCUSSION
3.1. Buckling Condition

By considering that the effect of radial inertia forces is very small before and at the beginning of the
buckling occurrence, the radial inertia forces are neglected in the analysis for determining the buckling
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condition. Hence, Eq.(5) leads to

D
∂4w1

∂x4
+ Ñ

∂2w1

∂x2
+

(
Eh

R2
1

+ c

)
w1 − cw2 = 0 (x ≤ xe)

D
∂4wk

∂x4
+ Ñ

∂2wk

∂x2
+

(
Eh

R2
k

+
cRk−1

Rk
+ c

)
wk −

cRk−1

Rk
wk−1 − cwk+1 = 0 (x ≤ xe) (6)

D
∂4wN

∂x4
+ Ñ

∂2wN

∂x2
+

(
Eh

R2
N

+
cRN−1

RN

)
wN −

cRN−1

RN
wN−1 = 0 (x ≤ xe)

where Ñ = σxh.
The general solution of Eq.(6) can be expressed as

wk = Ukeλx (k = 1, 2, · · · , N) (7)

where Uk (k = 1, 2, · · · , N) and λ are constants.
Substitution of Eq.(7) into Eq.(6), a set of N homogeneous equations for U1, U2, · · · , UN are obtained

as

a11U1 + a12U2 = 0

ak(k−1)Uk−1 + akkUk + ak(k+1)Uk+1 = 0 (k = 2, 3, · · · , N − 1) (8)

aN(N−1)UN−1 + aNNUN = 0

where

a11 = Dλ4 + Ñλ2 + c +
Eh

R2
1

a12 = −c

ak(k−1) = −c
Rk−1

Rk

akk = Dλ4 + Ñλ2 + c
Rk−1

Rk
+ c +

Eh

R2
k

ak(k+1) = −c

aN(N−1) = −c
RN−1

RN

aNN = Dλ4 + Ñλ2 + c
RN−1

RN
+

Eh

R2
N

The requirement that Eq.(8) has non-zero solutions for Uk (k =1, 2, · · · , N) leads to

detA = 0 (9)

where A denotes the coefficient matrix on U1, U2, · · · , UN .
For an N -layer MWNT, 4×N eigenvalues λj (j = 1, 2, · · · , 4×N) on the axial load Ñ are obtained

from Eq.(9). And the relation for U1, U2, · · · , UN is obtained for a given λj , for example Uk = U j
kU1

(k = 2, 3, · · · , N). Thus, the buckling deflections are solved as

w1 =

4×N∑
j=1

Wje
λjx, wk =

4×N∑
j=1

U j
kWje

λjx (k = 2, 3, · · · , N) (10)

where Wj (j = 1, 2, · · · , 4×N) is constant.
In this paper, the fixed boundary conditions are considered:

wk(0, t) = 0,
∂wk

∂x
(0, t) = 0 (k = 1, 2, · · · , N) (11)
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Since the deflections and internal forces are zero in the non-disturbed region, the continuous conditions
should be satisfied at the elastic wave front x = xe, i.e.

wk(xe, t) = 0,
∂wk

∂x
(xe, t) = 0 (k = 1, 2, · · · , N) (12)

By substituting the solutions for the buckling deflections into Eqs.(11) and (12), 4 ×N equations
are obtained on W1, W2, · · · , W4N :

M ·Q = 0 (13)

where M denotes the coefficient matrix on W1, W2, · · · , W4×N and Q = {W1, W2, · · · , W4×N}
T.

The requirement of Eq.(13) containing non-zero solutions provides the buckling condition, i.e.

detM = 0 (14)

By using Eq.(14), for a given time t that buckling occurs, the critical buckling load is obtained, and
then the associated buckling mode is determined from Eq.(10).

3.2. Effect of Radial Inertia Forces

During buckling, the effect of radial inertia forces begins to dominate and cannot be neglected. In
this case, Eq.(5) has to be investigated. Let wk = BkG(x, t) = BkF (x)eξt (where Bk is constant, and
ξ is a complex number), and take the Fourier sine transform of wk on x, then we have

wk = Bk

∫
∞

0

g(η)eξt sin(xη)dη (k = 1, 2, · · · , N) (15)

where g(η) = 1/π
∫ +∞

−∞
F (ζ) sin(ζη)dζ.

Substitution of Eq.(15) into Eq.(5) leads to

b11B1 + b12B2 = 0

bk(k−1)Bk−1 + bkkBk + bk(k+1)Bk+1 = 0 (k = 2, 3, · · · , N − 1) (16)

bN(N−1)BN−1 + bNNBN = 0

where

b11 = Dη4 − Ñη2 + ρhξ2 +
ρh3η2ξ2

12
+ c +

Eh

R2
1

b12 = −c

bk(k−1) = −c
Rk−1

Rk

bkk = Dη4 − Ñη2 + ρhξ2 +
ρh3η2ξ2

12
+ c

Rk−1

Rk
+ c +

Eh

R2
k

bk(k+1) = −c

bN(N−1) = −c
RN−1

RN

bNN = Dη4 − Ñη2 + ρhξ2 +
ρh3η2ξ2

12
+ c

RN−1

RN
+

Eh

R2
N

The requirement of Eq.(16) containing non-zero solutions on Bk (k = 1, 2, · · · , N) leads to

detB = 0 (17)

where B denotes the coefficient matrix on B1, B2, . . . , BN .
From Eq.(17), we have

ξ2 =
−Dη4 + Ñη2 + Xi

ρh + ρh3η2/12
(18)
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where X1, X2, . . . , XN denote the roots of Eq.(17) on Dη4 − Ñη2 +
(
ρh + ρh3η2/12

)
ξ2.

Now, see the roots of ξ2 =
−Dη4 + Ñη2 + X1

ρh + ρh3η2/12
on ξ first.

Case (a): Ñ2 + 4DX1 > 0. Equation −Dη4 + Ñη2 + X1 = 0 has two distinct real roots η2
1 =

(Ñ −
√

Ñ2 + 4DX1)/(2D) and η2
2 = (Ñ +

√
Ñ2 + 4DX1)/(2D) on η2. When η2

1 < η2 < η2
2 , ξ takes a

positive root, and G(x, t) increases with t. Thus, the MWNT may buckle. And the associated buckling
wave length L satisfies 2π/η2 < L < 2π/η1, i.e., the buckling wave length will be neither too long
nor too short. When η2 = η2

1 or η2 = η2
2 , ξ2 = 0, the solution G(x, t) is described as (a0 + a1t)F (x)

(where a0 and a1 are constants), and the buckling may occur. When η2 < η2
1 or η2 > η2

2 , equation

ξ2 =
−Dη4 + Ñη2 + X1

ρh + ρh3η2/12
has only pure imaginary roots on ξ. Noting that ξ = ±ξ0i (where ξ0 is real

number, and ξ0 > 0), the solution G(x, t) can be expressed as the linear combination of sin(xη ± ξ0t)
and cos(xη ± ξ0t), which represents the form of vibration but not buckling.

Case (b): Ñ2 + 4DX1 = 0. Equation −Dη4 + Ñη2 + X1 = 0 has double root η2 = Ñ/(2D) on
η2. Similar to the analysis in Case (a), the buckling can only occur when η2 = Ñ/(2D). The critical
buckling load determined by Ñ2 + 4DX1 = 0 represents the corresponding one for static buckling.

Case (c): Ñ2 + 4DX1 < 0. In this case, −Dη4 + Ñη2 + X1 < 0. Equation −Dη4 + Ñη2 + X1 = 0
has only pure imaginary roots on ξ. Hence, the buckling cannot take place.

Completely analogous analysis can be used to deal with the roots of ξ2 =
−Dη4 + Ñη2 + Xi

ρh + ρh3η2/12
(i =2,

3, · · · , N) on ξ, and similar results are obtained.

3.3. Buckling Condition

In the following, numerical results are worked
out for MWNTs with dimensionless number T =
cet/h.

Figure 2 shows the variation of critical buckling
load versus T for a triple-walled CNT with inner-
most tube radius R3 = 2 nm. It is seen that the
critical buckling load versus T is of multi-branches.
We call them the first branch, the second branch
and so on from the lowest one. Figure 2 indicates
that the critical buckling load decreases as the time
elongates, and the higher critical buckling load cor-
responds to the shorter time buckling occurs for
each branch. This result is similar to that of the
critical buckling load for a DWNT versus the di-

Fig. 2 Variation of critical buckling load versus T for a triple-
walled CNT with innermost tube radius R3 = 2 nm.

mensionless number T = cet/h given by Sun and Liu[23].

Figure 3 shows sketches of some buckling modes associated with the first, second and third branch
of critical buckling load for a triple-walled CNT with innermost tube radius R3 = 2 nm. It is seen from
Fig.3 that the associated buckling modes for different layers of the triple-walled CNT can be either
in-phase (see Figs.3(a)-3(c)) or out of phase (see Figs.3(d) and 3(e)), which is related to the branch that
the critical buckling load belongs to. This phenomenon can also be found for dynamic buckling behavior
of DWNTs under step axial loading[23] indicating that, for dynamic buckling behavior of MWNTs, the
associated buckling form is not only dependent on the magnitude of the critical buckling load, but also
on the branch the critical buckling load belongs to. Figure 3 also indicates that, for the first branch of
critical buckling load (see Figs.3(a)-3(c)), the buckling wave length increases gradually with the increase
of time. Once the buckling wave length reaches to a certain value, the buckling wave number begins to
increase. This result is consistent with the analysis that the buckling wave length is neither too long nor
too short in §3.2. In addition, a comparison of the buckling form with that for DWNTs[23] shows that,
there is one form for the out-of-phase mode of DWNTs and two forms for the out-of-phase modes of
triple-walled CNTs (see Figs.3(d) and 3(e)), indicating that the variety of out-of-phase modes increases
with increasing the layers of MWNTs.
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Fig. 3. Sketches of some buckling modes associated with the first, second and third branch of critical buckling load for a
triple-walled CNT with innermost tube radius R3 = 2 nm. (a) First branch at T = 2, (b) First branch at T = 3, (c) First
branch at T = 4, (d) Second branch at T = 2, (e) Third branch at T = 2.

Figure 4 shows the variation of the first, second
and third branch of critical buckling load versus
innermost tube radius at T = 11 for triple-walled
CNTs. It is observed that the first three branches
of critical buckling load have very similar variation
trends with regard to innermost tube radius. They
all decrease with increasing innermost tube radius,
especially for smaller innermost tube radius.

Figure 5 plots the static and first branch of crit-
ical buckling load for DWNTs, triple-walled CNTs
and quadruple-walled CNTs with the same inner-
most tube radius at T = 11, showing that, for
MWNTs with the same innermost tube radius, the
critical buckling load is decreased when increasing
the layers of MWNTs. Moreover, the variation of

Fig. 4 Variation of the first, second and third branch of crit-
ical buckling load with innermost tube radius at T = 11 for
triple-walled CNTs.

critical buckling load versus the layers of MWNTs is related to the radii of MWNTs. For MWNTs with
innermost tube radius about several nanometers, the variation of critical buckling load versus the layers
of MWNTs is obvious. While for MWNTs with large innermost tube radius, the critical buckling load
is almost independent of the variation of the layers of MWNTs.

Fig. 5. Static and first branch of critical buckling load for DWNTs, triple-walled CNTs and quadruple-walled CNTs with
the same innermost tube radius at T = 11.
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Fig. 6. Static critical buckling load of triple-walled CNTs by the presented model with comparison to the one obtained
by the model in Ref.[17] for axisymmetric compressive buckling at length-to-outermost tube radius ratio l/R1 = 12.

Figure 6 shows the result of the static critical buckling load of triple-walled CNTs by the presented
model with comparison to the one obtained by the model in Ref.[17] for axisymmetric compressive
buckling at length-to-outermost tube radius ratio l/R1 = 12. It is seen that the static critical buckling
load by the presented model is in well agreement with the one by the model in literature (the relative
variation is less than 0.02% with the scale of the innermost tube radius ranging from 2 nm to 14 nm),
which indicates the validity of the present model.

IV. CONCLUSIONS
With the aid of stress wave propagation theory, a study is performed for dynamic buckling behavior

of MWNTs under step axial loading based on continuum mechanics model, which takes into account
the van der Waals forces between adjacent layers. A buckling condition is derived, and the effect of
radial inertia forces is discussed. Numerical results are illustrated for dynamic buckling behavior of
MWNTs under fixed boundary conditions. It is indicated that the critical buckling load of MWNTs is
of multi-branches and decreases as time variable elongates. The associated buckling modes for different
layers of MWNTs can be either in-phase or out of phase, which is related to the branch the critical
buckling load belongs to. Moreover, the variety of out-of-phase modes increases with the increase of the
layers of MWNTs. Additionally, the static critical buckling load of triple-walled CNTs by the presented
model is compared with the one by the model in literature, which shows well agreement. It is noted
that, the MWNTs are actually in finite length, and the reflection of stress wave would have influences
on the buckling behavior of MWNTs. The present model has its approximation on modeling each tube
of MWNTs as a perfect semi-infinite elastic shell.
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