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Abstract We compare the space-time correlations calcu-
lated from direct numerical simulation (DNS) and large-eddy
simulation (LES) of turbulent channel flows. It is found from
the comparisons that the LES with an eddy-viscosity sub-
grid scale (SGS) model over-predicts the space-time corre-
lations than the DNS. The overpredictions are further quan-
tified by the integral scales of directional correlations and
convection velocities. A physical argument for the overpre-
diction is provided that the eddy-viscosity SGS model alone
does not includes the backscatter effects although it correctly
represents the energy dissipations of SGS motions. This ar-
gument is confirmed by the recently developed elliptic model
for space-time correlations in turbulent shear flows. It sug-
gests that enstrophy is crucial to the LES prediction of space-
time correlations. The random forcing models and stochastic
SGS models are proposed to overcome the overpredictions
on space-time correlations.

Keywords Large-eddy simulation · Subgrid scale model ·
Space-time correlation · Turbulent shear flows

1 Introduction

Large-eddy simulation (LES) is designed to explicitly cal-
culate the large-scale unsteady motions in turbulent flows
whereas the effects of small-scale motions on large-scale
ones are modeled using sub-grid scale (SGS) models. There-
fore, it is expected that LES could accurately and reliably
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predict the unsteady motions at large scales [1]. The de-
velopment of LES has showed the great potential of LES
to predict the non-equilibrium properties of unsteady mo-
tions, with successful evidences [2]. These non-equilibrium
properties are induced by either turbulence flows or their in-
teraction with other physical processes such as turbulence-
chemistry interaction. Two typical examples are turbulence-
generated noise [3] and turbulent mixing [4]. In the first ex-
ample, the acoustic intensity radiated by a turbulent flow is
dependent on the two-time, two-point correlations of veloc-
ity fluctuations in the Eulerian frame [5–7]; in the second ex-
ample, turbulent transport processes are naturally described
by particle dispersion [8], or at least two-time velocity corre-
lations of two particles in the Lagrangian frame [9]. The two-
time, two-point correlations of velocity fluctuations in either
Eulerian or Lagrangian frame are conventionally called as
space-time correlations. They are the essential requirements
for LES to correctly predict the non-equilibrium properties
of unsteady motions in turbulent flows. Meanwhile, the im-
pact of unsteady motions at large scales to small scale mo-
tions are also very important. The space-time correlations
approach represents the preliminary work on those problems
aligned in this direction.

A sub-grid scale (SGS) model is central to the LES pre-
diction of space-time correlations. The simplest but mostly-
used SGS model is the eddy-viscosity or Smagorinsky SGS
model [10]. This model relates the residual stress to the fil-
tered rate of strain and thus, it plays the role of energy sink
to dissipate the extra energy at large scales. Therefore, the
Smagorinsky model can correctly predict the energy spectra
but it may not be able to correctly predict space-time corre-
lations, since a space-time correlation can not be fully de-
termined by energy spectra alone. In fact, small-scale mo-
tion makes two contributions to large-scale motion in turbu-
lent flows [11]: energy dissipation and random backscatter.
The random backscatter de-correlates large-scale motion and
thus reduces the large-scale correlation length scales in both
space and time. The standard Smagorinsky model represents
the energy dissipation but ignores the random backscatter.
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Therefore, it may not be able to correctly predict the space-
time correlations. Space-time correlation is the simplest two-
time, two-point statistical quantity. It represents the function
of random backscatter from small-scale motions to large-
scale ones. The space-time correlation requires a higher level
closure beyond one-time, two-point (spectral) closure and
one-time, one-point closure in turbulence modeling theory.

The present study focuses on the Eulerian space-time
correlations. Previous work on isotropic turbulence has
found that LES with an eddy-viscosity SGS model could
over-predict decorrelation time scales of space-time correla-
tions and under-predict their magnitudes [6, 7]. These results
are supported by the sweeping hypothesis [7, 12]: the space-
time correlations in isotropic turbulence are mainly deter-
mined by energy spectra. Therefore, the under-predictions
of LES on energy spectra result in larger decorrelation time
scales and smaller correlation magnitudes. Park et al. [13]
find the consistent results that the deterministic SGS mod-
els lead to slower decorrelations of space-time correlations
in isotropic turbulence. They further propose this quantity
to serve as the second requirement for the best determin-
istic SGS model, which is a powerful diagnostics charac-
ter for SGS models. Dong and Sagaut [14] use the lattice
Boltzmann method (LBM) to investigate the effects of SGS
modeling on space-time correlations. Their result shows
that there exist the distinct discrepancies in space-time cor-
relations between the LES with the LBM-SGS models and
the DNS. This implies that space-time correlations remain a
challenge for this numerical method. The similar results are
also observed in compressible boundary layers [15]. Those
researches show that the LES with the standard Smagorinsky
SGS model is not able to accurately predict the space-time
correlations.

The present paper is devoted to study the LES predic-
tion of space-time correlations in turbulent shear flows. The
results on space-time correlations in isotropic turbulence can
not be directly used to turbulent shear flows, since the mean
shear rate in a turbulent shear flow provides another time
scale in addition to the eddy turn-over time scale in isotropic
turbulence. Favier et al. [16, 17] investigate the space-time
correlations in rotating turbulence. The rotation provides one
more time scale different from isotropic turbulence and plays

the role different from the shear rate. In the present study, we
will take turbulent channel flow as our working case, since
it is the typical example of turbulent shear flows with inten-
sive study on their spatial statistics. We will compare the
space-time correlations obtained from DNS and LES of tur-
bulent channel flows. To quantify their disparity, we intro-
duce a new measurement, directional correlation, and calcu-
late its integral scale. The disparity is analyzed by the re-
cently developed elliptic model [18, 19]. The elliptic model
implies that the space-time correlations in turbulent shear
flows are determined by the energy spectra and two charac-
teristic speeds: propagation velocity and sweeping velocity.
A comparison is made between the propagation velocities
from LES and DNS. Finally, we discuss the recently devel-
oped SGS models especially for space-time correlations.

2 DNS and LES of turbulent channel flows

Both DNS and LES of turbulent channel flow are performed
on a staggered mesh using the finite volume method. The
scheme is second order in space, using central differencing
for both the convective and the viscous terms. For time ad-
vancing, a forth-order Runge–Kutta scheme is used for the
convective term; while a third order implicit Runge–Kutta
scheme is used for the viscous term. The Reynolds num-
ber based on the friction velocity and half channel width
is 180. The dimensions of channel are 4πh, 2h and 4πh/3
in the streamwise, wall-normal and spanwise direction, re-
spectively. A periodic boundary condition is applied in the
streamwise and spanwise directions. The grid number is
130 × 130 × 130 in DNS and 66 × 66 × 66 in LES. We
will find that the LES results are distinctly different from the
DNS ones although the grid number in LES is about a half
of the one in DNS. The grids are uniform in the streamwise
and spanwise direction and are clustered in the normal direc-
tion near the solid walls. The governing equations are solved
down to the wall using the Smagorinsky SGS model. The
wall-nearest grid points are located at y+ = 0.29 and y+ = 0.6
for DNS and LES, respectively. A dynamic Smagorinsky
model is used in the present simulation where the Smagorin-
sky coefficient is kept non-negative.

Figure 1 shows the energy spectra of streamwise velo-

Fig. 1 The energy spectra of streamwise velocities. a y+ = 2.08; b y+ = 19.75; c y+ = 96.08; d y+ = 180
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city fluctuations at various wall regions and layers: y+ = 2.08
(viscous sublayer), y+ = 19.75 (buffer layer), y+ = 96.08
(log-law region) and y+ = 180 (outer region). The energy
spectra from DNS decay over several decades without en-
ergy pile-up at higher wavenumbers. The energy spectra in
LES approximately follow the trends of those in DNS but de-
cay faster than DNS especially at higher wavenumbers. That
is because the Smagorinsky SGS model used in the present
study dissipates more energy at higher wavenumbers than
DNS.

3 Space-time correlation in turbulent channel flows

We will consider the space-time correlations of velocity fluc-
tuations in the streamwise direction

R(r, τ; y) =
〈u1(x + r, y, z, t + τ)u1(x, y, z, t)〉

〈u2
1(x, y, z, t)〉 , (1)

where r and τ are the space and time separations, respec-
tively. The ensemble averaging is taken as the averaging
in the streamwise and spanwise directions (x and z, respec-
tively) and time t, since the streamwise component is spa-
tially homogeneous in the directions of x and z and station-
ary in time. The DNS and LES data in Sect. 2 will be used
to evaluate the space-time correlations.

A space-time correlation R(r, τ; y) at a given location y
is the two-dimensional surface dependent on spatial separa-
tion r and temporal delay τ . To facilitate the comparison
of the two-dimensional surfaces, we consider the space-time
correlations taken in the direction of straight line r = τ · tanα
(0 ≤ α ≤ 2π) at the locations y+ = 2.08 (viscous sub-
layer), y+ = 19.75 (buffer layer), y+ = 96.08 (log-law re-
gion) and y+ = 180 (outer region). Figures 2–4 plot the di-
rectional correlations, respectively, along the straight lines
τ = 0 (space correlation), r = 0 (time correlation) and
r = Uτ (convection direction), where U is a convection ve-
locity. Both LES and DNS results are shown on the same
figures for our comparison. The spatial separation is normal-
ized by the viscous length and the time delay normalized by
the viscous time scale. It is observed from those three sets
of figures that the correlation functions in DNS decorrelate
slower in the viscous wall region than those in the outer layer.
The LES approximately predicts the decorrelation proper-
ties of DNS but the correlations in LES decay slower than
those in DNS. This is consistent with the previous observa-
tions in isotropic turbulence [6, 7, 13] and turbulent channel
flows [20, 21]. Moreover, the discrepancies between DNS
and LES are larger in the convection direction than those in
other two directions, especially in the viscous wall region.

Fig. 2 The space correlations of streamwise velocities versus spatial separations. a y+ = 2.08; b y+ = 19.75; c y+ = 96.08; d y+ = 180

Fig. 3 The time correlations of streamwise velocities versus time separations. a y+ = 2.08; b y+ = 19.75; c y+ = 96.08; d y+ = 180

Fig. 4 The directional correlations of streamwise velocities in the propagation direction. The separation distance is
√

r∗2 + τ∗2, where the
convection velocity is defined as U = r∗/τ∗. a y+ = 2.08; b y+ = 19.75; c y+ = 96.08; d y+ = 180
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Figure 5 plots the iso-contours of space-time correla-
tions for y+ = 2.08 (viscous sublayer), y+ = 19.75 (buffer
layer), y+ = 96.08 (log-law region) and y+ = 180 (outer re-
gion). These curves look like elliptic with their preference
directions. Their shapes are elongated with small aspect ra-
tios. To visualize the distinctions between DNS and LES, we
only plot the iso-correlations with the levels 0.5 and 0.9. Ev-
idently, the contours for LES are always outside of the ones
for DNS. It indicates that the correlations from LES decay
slower than those from DNS. Therefore, LES over-predicts
the space-time correlations compared with DNS.

We plot in Fig. 6 the integral scales of directional cor-
relations, R(r, τ) with r = τ · tanα and 0 ≤ α ≤ 2π, in the
different regions. The directional correlation is defined as the
space-time correlation evaluated in a straight line r = τ·tanα.
The integral scales of directional correlations can be calcu-

lated from

L(α) =
∫

r=τ·tanα
R(r, τ)dτ. (2)

It quantifies the decorrelation length scale of a space-time
correlation taken in a given direction and describes how
long a turbulent structure takes to decorrelate in the mov-
ing frame with velocity tanα. The directional correlation in
the convection direction r = Uτ is the so-called integral life
scale [20]. It is observed from Fig. 6 that the curve for inte-
gral scales has one maximum at its peak and one minimum
at the bottom plateau. Evidently, the integral scales in LES
are larger than those in DNS in the viscous wall region but
they are very close in the outer layer. The largest differences
of integral scales between LES and DNS are located at the
maximums, which are corresponding to the convection di-
rections.

Fig. 5 The iso-contours of space-time correlations. The inner curves for level 0.9; The outer curves for level 0.5. a y+ = 2.08; b y+ = 19.75;
c y+ = 96.08; d y+ = 180

Fig. 6 The integral scales of the directional correlations at a y+ = 2.08; b y+ = 19.75; c y+ = 96.08; d y+ = 180

Figure 7 compares the convection velocities obtained
from the DNS and LES. The convection velocities are calcu-
lated in terms of the conventional definition [21,22]

U = −∂
2R(r, τ)/∂r∂τ
∂2R(r, τ)/∂r2

∣∣∣∣∣∣
r=0,τ=0

. (3)

We find that the convection velocities in LES are qualita-
tively consistent with the ones in DNS. However, the con-
vection velocities in LES are larger than those in DNS in
the near-wall region but smaller in the outer region. Re-
cently, the convection velocity has been used to study the
propagation of very long structures in turbulent channel
flows [23]. The very long structures are associated with
the k−1

x scaling of one-dimensional longitudinal spectrum
at lower wavenumbers [24]. This result implies that LES
can consistently predict the propagation velocity of coherent
structures with small discrepancies. Fig. 7 The propagation velocities from DNS and LES
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4 Theoretical analysis and discussions

The overprediction of LES on space-time correlations can be
understood by the following physical arguments: the effects
of unresolved scales on resolved scales can be represented by
energy transfer and random backscatter. The eddy-viscosity-
type SGS models are designed to model the energy trans-
fer from resolved scales to unresolved scales but fail to ac-
count for the random backscatter from unresolved scales to
resolved scales. The absence of random backscatter in LES
leads to that the LES fields are more correlated than the DNS
fields. This implies that space-time correlations in LES ex-
hibit larger decorrelation length scales.

The overprediction of LES on space-time correlations
in turbulent channel flows can be further analyzed using
the recently developed elliptic model [18, 19]. The elliptic
model implies that the space-time correlations in turbulent
shear flows are mainly determined by the space correlations
and two characteristic speeds: propagation velocity U and
sweeping velocity V

R(r, τ) = R
(√

(r − Uτ)2 + V2τ2, 0
)
. (4)

In the case of homogeneous sheared flows, the propagation
velocity and sweeping velocity can be expressed as follows

U = U1, (5)

V2 = (Sλ)2 + 〈v2
i 〉, (6)

where U1 is the mean velocity, S is the mean shear rate, λ is
the Taylor micro-scale in space and 〈v2

i 〉 is the total energy
of fluctuation velocities. In comparison with the classic Tay-
lor frozen flow model, the elliptic model takes into account
the deformation of eddies by introduction of the sweeping
velocity. Therefore, this model is also called as the non-
frozen flow model. In fact, this model is a second approx-
imation to the iso-correlation contours while Taylor’s model
is a first approximation to the contours. The Taylor frozen
flow model and Kraichnan sweeping model are the two ex-
treme cases of the elliptic model at vanishing propagation
velocity or sweeping velocity. The recent experiments on
Rayleigh–Bènard convection investigate the performance of
the elliptic model for space-time correlations [25, 26].

The elliptic model proposes that the space-time correla-
tions in turbulent shear flows are determined by its space cor-
relations and propagation and sweeping velocities. An LES
with the eddy-viscosity SGS model can well-predict the en-
ergy spectra E(k) and thus, it can well-predict the space cor-
relations R(r, 0). In the LES, the propagation velocity can be
correctly estimated (see Fig. 7) but the sweeping velocities
are largely under-estimated (see more discussions below).
As a result, the equivalent separations

√
(r − Uτ)2 + V2τ2 in

the LES are smaller than the ones in the DNS. According to
the elliptic model (4), the space-time correlations in the LES
are larger than the ones in DNS. In fact, the sweeping veloc-
ity V are dependent on the mean shear rates S , total energy
〈v2

i 〉 of velocity fluctuations and Taylor’s micro-scale λ. The

first two parameters can be correctly estimated but the third
one is underestimated in the LES. Noting the definition of

Taylor’s micro-scales λ−2 =

∫ kmax

0
q2E(q)dq

/ ∫ kmax

0
E(q)dq

(kmax is the largest wavenumber resolved in either DNS or
LES), we compare the energy and enstrophy in DNS and
LES∫ kc

0
ELES(q)dq ≈

∫ kmax

0
EDNS(q)dq,

∫ kc

0
q2ELES(q)dq <

∫ kmax

0
q2EDNS(q)dq,

(7)

where kc is the cutoff wavenumber in LES. This implies that
the LES approximately predicts the total energy of DNS but
under-estimate the enstrophy of DNS. Therefore, the LES
overpredicts the Taylor micro scales. This result is consistent
with the previous physical arguments. Meanwhile, it implies
that enstrophy is crucial to the LES prediction of space-time
correlations.

There exist two approaches to model the random
backscatter to overcome the overprediction of LES on space-
time correlations. One way is to introduce a random force to
represent the backscatter effect. He et al. [6] has developed a
constrain for the random force in LES to recover the decor-
relation length scales. Recently, Marstorp et al. [27] pro-
pose a stochastic Smagorinsky SGS model which allows for
backscatter of the energy at unresolved scales. This model
can reduce the overprediction of LES on space-time correla-
tions especially in decaying isotropic turbulence.

5 Conclusions and future work

We find that the LES with the eddy-viscosity SGS models
over-predicts space-time correlations than DNS in turbulent
channel flows. This is qualitatively consistent with previous
observations in isotropic turbulence [6, 7]. Furthermore, we
find that the LES overpredictions in turbulent channel flows,
especially in the near-wall regions, are relatively larger than
those in isotropic turbulence. The reasons for the LES over-
predictions in isotropic turbulence can be provided with the
random sweeping model [12, 28]: the space-time correla-
tions in isotropic turbulence are mainly determined by its
energy spectra. As a result, the LES under-prediction of en-
ergy spectra leads to its overprediction of space-time corre-
lations. However, a space-time correlation in turbulent shear
flows depends on both energy spectra and enstrophy. The
in-accurate predictions of either energy spectra or enstrophy
induce the larger over-estimations of space-time correlations.

We propose the directional correlations to describe the
variation of space-time correlations along a straight line of
slop U. The integral scales of directional correlations char-
acterize the decorrelation length scales of turbulent struc-
tures in the moving frame with a speed U. The moving
speed at which a directional correlation decay most slowly
is the propagation velocity of coherent structures. The nu-



998 L. Guo, et al.

merical comparisons in the present study show that LES ap-
proximately predicts the propagation velocity of the coherent
structures but largely over-predict their integral scales. The
latter implies that turbulent structures in the LES with the
eddy-viscosity SGS models are larger in size than those in
DNS.

The absence of backscatter in the eddy-viscosity SGS
models is the main reason for LES overprediction of space-
time correlations. The eddy-viscosity SGS model could not
represent the backscatter effect and generates a more corre-
lated field. Therefore, the LES field exhibits larger length
scales in both space and time. The deterministic SGS mod-
els are not able to include the backscatter effects and there-
fore, they are not able to correctly predict space-time corre-
lations. Instead, the stochastic SGS models take backscatter
into account and thus, they are able to recover the space-time
correlations in DNS, such as random forcing mode [6, 29],
stochastic Smagorinsky model [27] and stochastic backscat-
ter models [30, 31].
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