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In view of the continued disputes on the fundamental question of whether the surface tension of a vapour bubble

in liquid argon increases, or decreases, or remains unchanged with the increase of curvature radius, a cylindrical vapour

bubble of argon is studied by molecular dynamics simulation in this paper instead of spherical vapour bubble so as to

reduce the statistical error. So far, the surface tension of the cylindrical vapour bubble has not been studied by molecular

dynamics simulation in the literature. Our results show that the surface tension decreases with radius increasing. By

fitting the Tolman equation with our data, the Tolman length δ = −0.6225 sigma is given under cut-off radius 2.5σ,

where σ = 0.3405 nm is the diameter of an argon atom. The Tolman length of Ar being negative is affirmed and the

Tolman length of Ar being approximately zero given in the literature is negated, and it is pointed out that this error is

attributed to the application of the inapplicable empirical equation of state and the neglect of the difference between

surface tension and an equimolar surface.
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1. Introduction

The theoretical and practical significance of

nanobubble study is remarkable. It has a profound in-

fluence on surface science, fluid dynamics, MEMS, bio-

science, and some application areas.[1,2] In the phase

transition processes occurring in many kinds of heat

and mass transfers, many vapour bubbles are formed

including macroscopic and nanoscopic ones, and all

the macroscopic vapour bubbles must pass through

the nanobubble stage in the early stages of the nu-

cleation process. Therefore nanobubble research is of

great significance for increasing the basic understand-

ing of transfer processes and their application to en-

gineering. The relations between surface tension and

curvature radius have a decisive effect on the action

of nanobubbles.[3,4]

Tolman’s[5,6] thermodynamic theory indicated

that the surface tension γ(Rs) of a spherical interface

is dependent on the radius of surface of tension Rs.

Tolman obtained an equation, subsequently named

the Gibbs–Tolman–Koening–Buff equation, as follows:

1

γs

dγs
dRs

=
(2δ/R2

s )
[
1 + δ/Rs + (δ/Rs)

2
/3
]

1 + (2δ/Rs)
[
1 + δ/Rs + (δ/Rs)

2
/3
] , (1)

where Tolman length δ is defined as

δ(Rs) = Re −Rs, (2)

with Re being the radius of the equimolar surface.

Equation (1) is not self-consistent, for it has two un-

known functions γ(Rs) and δ(Rs), but only one equa-

tion exists. Tolman pointed out that if we neglect

higher order terms and treat δ as a constant δ∞ for

the big radius in Eq. (1), it has an approximate solu-

tion

γs
γ∞

=
1

1 + 2δ∞/Rs
+ · · · = 1− 2δ∞

Rs
+ · · · , (3)

which is called the Tolman equation. Equation (3)

shows that whether γ(Rs) increases or decreases with

Rs increasing under the first approximation depends

on whether δ∞ is positive or negative, and the signif-

icant level degree is indicated by δ∞.
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The investigated objects on the relation between

γ(Rs) and Rs at nanosize are mainly liquid drops, next

gas bubbles,[7] and the research on vapour bubbles is

fewest. This is because the number of molecules in

bubbles is so small, especially in vapour bubbles, that

the accuracy of experimental and MD studies cannot

be satisfied.[8] In the literature about δ∞, some re-

sults are unsatisfied or even wrong. For example, in

Ref. [9], the treatment is wrong in both mathematical

and physical aspects. We have corrected it.[10] This

shows the difficulty of studying δ∞.

Our attention in the present paper is concentrated

on the relation between the surface tension and the ra-

dius for nano vapour bubbles in liquid Ar. Park et al.’s

work[11] in 2001 is the first molecular dynamics (MD)

study on the surface tension of bubbles. They found

that the surface tension of vapour bubbles of liquid

argon decreases with radius increasing and from their

data, we can obtain Tolman length δ∞ to be about

−0.75. However, strong disagreement about this still

exists. In 2008, in order to overcome the difficulty

that the vapour density is so low that the statistics

is too poor to calculate pressure directly, Matsumoto

and Tanaka[1] used the vapour pressure determined by

the vapour density through the empirical equation of

state given by their MD simulation for the bulk vapour

phase. Their MD study results of vapour bubbles of

liquid argon showed that the surface tensions of nano

vapour bubbles are nearly the same as that of a planar

interface,[1] which means that Tolman length is nearly

zero. How to solve this contradiction is an intractable

problem.

One of the causes of above difference may lie in

the fact that the system size is so tiny that the sta-

tistical error is too large. The quantity of vapour in a

cylindrical vapour bubble is much bigger than that in a

spherical bubble with the same radius so that the sta-

tistical error is less for the former than for the latter.

Therefore in the present paper we take a cylindrical

nano vapour bubble instead of a spherical nano vapour

bubble as an object to be investigated. Besides, so far

the surface tension of cylindrical nano vapour bubbles

has not been reported in the literature.

The rest of the present paper is organized as fol-

lows. In Section 2, we propose the theoretical basis

and calculation scheme. In Section 3 we describe the

simulation, results, and discussion. In Section 4 we

give an explanation of the origin of the difference in

Tolman length between our results and the data given

in the literature. The conclusion is given in Section 5.

2. Theoretical basis and calcula-

tion scheme

For cylindrical vapour bubbles, the Tolman equa-

tion (3) should be replaced by Tolman equation[12]

γs
γ∞

=
1

1 + δ∞/Rs
. (4)

To fit this equation, we need to calculate the tension

of planar interface γ∞ and those of cylindrical vapour

bubbles with different values of radius γs by MD sim-

ulations. To this end we must have some equations

for cylindrical vapour bubbles and a planar interface.

2.1. Some equations for cylindrical

vapour bubbles

Now, we consider a single-component cylindrical

vapour bubble. In cylindrical coordinates the pressure

tensor is written in the form of

P = pN (r) erer + pT (r) [eθeθ + ezez] , (5)

where er, eθ, and ez are orthogonal unit vectors, and

pN (r) and pT (r) are the normal and transverse com-

ponent of the pressure tensor, respectively.

In Ref. [13] the expressions of the radius and sur-

face tension for surface tension in terms of pressure

distribution are given for cylindrical liquid drops. Ex-

changing the positions of vapour and liquid in these

expressions, we can obtain the expressions for cylin-

drical vapour bubbles as follows:

γ2
s = −

(
pv − pl

) ∫ Rl

Rv

r2
dpN (r)

dr
dr, (6)

where Rv and Rl denote the radii of cylindrical sur-

faces inside a homogeneous vapour phase and inside a

homogeneous liquid phase with the z axis being their

symmetrical axis, respectively, and pv and pl are the

pressures pN(R
v) and pN(R

l), respectively. Because of

the isotropy of the pressure tensor in the bulk phase,

Eq. (6) gives the same result for any pair of Rl and

Rv in the bulk phase. Besides, Laplace equation[12]

pv − pl =
γs
Rs

(7)

gives

Rs =
γs

pv − pl
. (8)

To be suitable for MD simulation, Eq. (6) can be

transformed into the following form:

γ2
s = −(pv − pl)

[
(pv)2 − (pl)2 − 2

∫ Rl

Rv

pN(r)rdr

]
. (9)
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Having obtained the pressure distribution of pN(r) by

MD simulation, we can substitute pN(r) into Eq. (9)

to obtain γs. Then by substituting γs, p
v, and pl into

Eq. (8), the radius of the surface tension Rs is given.

2.2. Some equations for planar interface

We know that the tension of a planar interface is

independent of the selection of dividing surface. For

the planar interface parallel to the xy plane, the ten-

sion is determined by[6]

γ∞ =

∫ zv

zl

dz {pN (z)− pT (z)}, (10)

where pN (z) and pT (z) are the normal and tangential

component of the pressure tensor, respectively, and zl
and zv are coordinates of an arbitrary position in the

bulk liquid and in the bulk vapour outside the transi-

tion layer, respectively.

If the particle number of a system is insufficient

when the planar interface is simulated, interface fluc-

tuation is liable to be caused. A double-interface sys-

tem as shown in Fig. 1, is generally chosen to reduce

errors. Then the expression of surface tension is

γ∞ =
1

2

∫ zv2

zv1

dz {pN (z)− pT (z)}, (11)

where zv1 and zv2 are the coordinates in the different

vapour phases, respectively.

Fig. 1. A double planar vapour–liquid interface system

at T ∗ = 0.75.

2.3. Line for realization of general goal

After the values of radius Rs and the surface ten-

sion γs of several cylindrical vapour bubbles with dif-

ferent sizes and the surface tension γ∞ of planar in-

terface are calculated according to the foregoing route,

we use Tolman Eq. (4) for the cylindrical interface to

calculate the Tolman lengths δ∞ for our simulated sys-

tems one by one, and then obtain their average Tol-

man length δ̄∞. Of course, we can also fit the values of

four different bubble systems and the planar interface

system to Eq. (4) to obtain a more reliable Tolman

length δ̄∞, however, the difference is slight.

3. MD simulation, results, and

discussion

A double-interface system of liquid argon and its

vapour at T = 90 K is shown in Fig. 1 and several

cylindrical nano vapour bubbles formed in liquid ar-

gon at T = 90 K, as shown in Fig. 2, are simulated.

We use canonical ensemble (N , V , T constant) MD

simulation.

Fig. 2. A cylindrical vapour bubble of particle number

N = 19656 at T ∗ = 0.75.

The intermolecular interactions between argon

atoms are described by the Lennard–Jones potential

U (r) = 4ε

{(σ
r

)12

−
(σ
r

)6
}

(12)

with cut-off distance rc = 2.5σ, where r, ε, and σ are

the interparticle distance, energy scale, and length

scale, respectively. All quantities used in the simu-

lation are dimensionless and are expressed by adding

superscript *. According to the basic parameters of

an argon atom, m = 6.63382 × 10−26 g, ε = 120KkB
(kB = 1.38× 10−23 J/K), σ = 0.3405 nm, the dimen-

sionless quantities are as follows:

r∗ = r/σ for length,

T ∗ = kBT/ε for temperature,

t∗ = t
√
(ε/mσ2) for time,

ρ∗ = ρσ3/m for density,

f∗ = fσ/ε for force, and E∗ = E/ε for energy.

The simulated temperature is T ∗ = 0.75. For the

cylindrical vapour bubble systems and planar inter-

face system, at the initial time all the particles are

given velocities according to the Maxwell–Boltzmann

distribution. The velocity–Verlet algorithm is used in

MD.[14] The canonical ensemble (NVT ensemble) of

temperature 90 K and the time step δt = 5 fs are used

before equilibrium.

On calculating the mean value of a physical quan-

tity, we change the time step into δt = 2 fs. In order to

find the step number N that is needed for a physical
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quantity, say, g (t) to reach its steady value, we use an

accumulative average method[15] for the statistics

g(iδt)
N

=
1

N

N∑
i=1

g(iδt). (13)

The typical behaviour of g(iδt)
N

is shown in Fig. 3,

from which the step number N needed for the accu-

mulative average to reach the steady value is easily

found to be 4× 105.

The simulations of the planar interface system

and the cylindrical vapour bubble system are de-

scribed respectively as follows.

Fig. 3. Relation between the accumulative average of γs

and the time step for the planar vapour–liquid interface.

3.1. Simulation of the planar vapour–

liquid interface system

The box size of simulation system is x∗×y∗×z∗ =

30.0 × 30.0 × 60.0. Because the vapour density is far

smaller than liquid density, the total number of par-

ticles of liquid is approximately equal to the sum of

particle numbers of liquid and vapour. Therefore the

total number of particles can be estimated according

to the density of liquid Ar at T = 90 K, the box

size and the approximate thickness of liquid. In this

way, the initial configuration is constructed by putting

24 × 24 × 22 = 12672 particles on a finite cubic lat-

tice located at the central part of the box, and so

the atomic separation is a bit larger than 1σ. The

periodic boundary condition is used in all directions.

The double planar vapour–liquid interface system is

formed when the system is in equilibrium after relax-

ation process. A double planar vapour–liquid interface

system at T ∗ = 0.75 is shown in Fig. 1.

To calculate the normal and tangential compo-

nents of the pressure tensor of the double planar

vapour–liquid interface system, we divide the simu-

lation domain of L∗
x × L∗

y × L∗
z = 30.0 × 30.0 × 60.0

equally into 30 slabs perpendicular to the interface.

The thickness of each slab is ∆z = 2.0. Slabs are

specified with k = 1, . . .. The statistical expressions

of the normal and tangential components of the pres-

sure tensor are[11]

p∗N (k) = ⟨n∗ (k)⟩T ∗ − 1

L∗
xL

∗
y∆z

×

⟨∑
i,j

z∗2ij
r∗ij

U∗′ (
r∗ij

)
fk,ij

⟩
, (14)

and

p∗T (k) = ⟨n∗ (k)⟩T ∗ − 1

L∗
xL

∗
y∆z∗

×

⟨∑
i,j

(
x∗2
ij + y∗2ij

)
/2

r∗ij
U ′∗ (r∗ij) fk,ij

⟩
,

(15)

where the symbol ⟨ ⟩ denotes the time average. On the

right-hand side of each of the above two equations, the

first term is a kinetic term and the second is a con-

figuration term, n∗ (z) is the particle density, U∗ (r∗ij)
is the interparticle potential function, x∗

ij , y
∗
ij , and r∗ij

are the relative coordinates and distance between par-

ticles i and j with effective interaction, respectively,

and fk,ij is the length fraction of the link between i

and j in slab k. Substituting Eqs. (14) and (15) into

Eq. (11), we have

γ∗
∞

=
1

2L∗
xL

∗
y

⟨∑
i,j

(
x∗2
ij + y∗2ij

)
/2− z∗2ij

r∗ij
U∗′ (

r∗ij
)
fij

⟩
,

(16)

where fij is the length fraction of the link between

particles i and j in the simulation domain of L∗
x ×

L∗
y × L∗

z = 30.0 × 30.0 × 60.0. Figure 3 shows the

change of the accumulative average of the surface ten-

sion of the planar vapour–liquid interface with time

step according to our simulation for Eq. (16). We see

that when the time step is equal to 4× 105, the accu-

mulative average reaches a stable value. The average

surface tension of the planar vapour–liquid interface

is γ∗
∞ = 0.5896. This is close to the results given in

Refs. [11] and [16], where the surface tensions γ∗′

∞ are

0.545 for r∗c = 3 and T ∗ = 0.818, and 0.55 for r∗c = 2.5

and T ∗ = 0.72.
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3.2. Simulation of cylindrical vapour

bubbles and the calculation of Tol-

man length

The selected four box sizes and numbers of parti-

cles (liquid+vapour) of simulation systems are shown

in Table 1.

Table 1. Numbers of particles and the simulation do-

mains in simulations of cylindrical vapour bubbles.

Particle numbers (N) L∗
x × L∗

y × L∗
z

16848 15.0× 40.0× 40.0

19656 15.0× 45.0× 45.0

24204 15.0× 50.0× 50.0

29952 15.0× 55.0× 55.0

Some details of the establishment of vapour bub-

bles are indicated as follows.

(i) In the simulation domains introduced in Ta-

ble 1, the particles are distributed uniformly. Then

by running MD the system tends towards a sub-stable

equilibrium liquid state with pressure smaller than the

saturation pressure at T ∗ = 0.75.

(ii) A short-range repulsive force in radial direc-

tion, which is independent of z direction and direction

angle, is applied near z axis, which leads to a cylin-

drical vapour bubble.

(iii) When the cylindrical vapour bubble is formed

and the equilibrium is reached, the force field is re-

moved, and then a new equilibrium is reached quite

quickly. An example of a cylindrical vapour bubble is

shown in Fig. 2.

Then we perform statistics on the physical quan-

tities of the systems. For example the normal compo-

nent of the pressure tensor of a cylindrical vapour bub-

ble is calculated according to Eq. (17) shown below,

and then the surface tension is calculated according

to Eq. (9).

To calculate the normal components of the pres-

sure tensor of the cylindrical vapour bubble, we insert

36 cylinders with the same central axis z and different

radius r∗k (k = 1, 2, . . . , 36), spaced evenly by separa-

tion ∆r∗ in the simulation domain except the region

next to the box wall. In a way similar to that to de-

duce the normal components of the pressure tensor of

spherical liquid in Ref. [17], it is easy to prove that

the normal component of the pressure tensor for our

k-th cylinder layer p∗N (r∗k) is

P ∗
N (r∗k) = ⟨n∗ (r∗k)⟩[r∗k±(1/2)∆r∗] T

∗

− 1

2πr∗2k L∗
z

⟨∑
i,j

r∗k · r∗ij
r∗ij

U∗′ (
r∗ij

)
gk,ij

⟩
.

(17)

The first term on the right-hand side of Eq. (17)

is the kinetic term of the k-th cylinder shell pk (r).

⟨n∗ (r∗k)⟩[r∗k±(1/2)∆r∗] denotes the time average of the

particle number density n∗ (r∗k) in the cylindrical layer

with thickness being ∆r∗ and the middle surface being

the k-th cylinder (with radius r∗k). The second term is

configurational term p∗U (r). U∗ (r∗ij) is the interpar-

ticle potential function. r∗ij and r∗ij are the relative

vector and distance between two particles (i, j). r∗k
is the position vector of the intersection or one of the

two position vectors of the intersections between the

link of (i, j) and the k-th cylinder. gk,ij is the number

of intersections between the link of (i, j) and the k-th

cylinder. Figure 4 gives the results of the configura-

tional term p∗U (r), the kinetic term p∗K (r), and their

sum p∗N (r) in radial direction of the cylindrical vapour

bubble for 24024 particles at T ∗ = 0.75.

Fig. 4. (colour online) Pressure distribution of N = 24024

system.

Substituting the result of p∗N (r∗k) from Eq. (17)

into Eq. (9) gives the surface tension γ∗
s . Then by

substituting this γ∗
s and pressures inside vapour and

liquid bulks respectively given by Eq. (17), pv∗ and

pl∗ into Eq. (8), the radius of surface of tension R∗
s

is obtained. Substituting the results R∗
s and γ∗

s into

Eq. (4) with γ∗
∞ = 0.5896, we obtain four approxi-

mate values for the Tolman length for four different

systems, respectively. Besides, we fit the values of

four different bubble systems and the planar interface

system into Eq. (4), and obtain a more reliable Tol-

man length δ̄∗∞ = −0.6225. These results are shown

in Table 2, from which we can see that our result of

δ̄∗∞ = −0.6225 is close to the result ∼ −0.75 shown

in Fig. 8 of Ref. [11] and obviously different from the

result (nearly zero) of Ref. [1]. Besides, our result of

Tolman length being negative for an Ar vapour bubble

is also consistent with that of Block et al.’s[18] treat-

ment by surface free energy: “present evidence that

for R → ∞ the leading order (Tolman) correction for

droplets has sign opposite to the case of bubbles”.
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Table 2. Results of four cylindrical bubbles and the planar vapour–liquid interface system.

N ρ∗l ρ∗v (pv)∗ − (pl)∗ γ∗
s R∗

s δ∗∞

16848 0.7355 0.0001 0.064 0.631 9.859 –0.6921

19656 0.7369 0.0001 0.059 0.629 10.661 –0.7036

24024 0.7408 0.0001 0.056 0.623 11.125 –0.6293

29952 0.7412 0.0001 0.051 0.615 12.058 –0.5185

12672 0.7556 0.0111 0 0.5896 ∞ δ̄∗∞ = −0.6225

4. Explanation of the origin of the

Tolman length difference in the

literature

In Ref. [1], the liquid pressure was evaluated with

the virial expression, which was negative in general

and was found to be strongly dependent on Rs. The

vapour pressure was estimated from the vapour den-

sity via an empirical equation of state given by their

MD simulation for the bulk vapour phase. The vapour

pressure thus obtained was found to be independent

of Rs and very close to the vapour pressure in bulk

liquid–vapour equilibrium. Then they used the Y–L

equation (7) to calculate the surface tension of the

bubble γs, which turned out to be also independent

of Rs. This means that the Tolman length is nearly

zero. This contradicts the results of Ref. [11] and ours.

It seems to us that this contradiction is probably at-

tributed to the empirical equation of state used in the

calculation of vapour in Ref. [1]. The empirical equa-

tion of state obtained from their MD simulation for

bulk vapour can be applied only to the case where the

boundary effect can be neglected, while the bubbles

in Ref. [1] are so small that the effect of the vapour–

liquid boundary on the internal vapour in the bubble

cannot be neglected. Therefore the empirical equation

of state is invalid for the bubbles discussed there. The

second cause may lie in the fact that the difference

between the surface tension and an equimolar surface

was ignored in Ref. [1].

5. Conclusions

Since disputes continue as to whether and how the

surface tension of nanobubbles varies with curvature

radius, we carry out MD study on cylindrical vapour

bubbles of argon instead of the spherical bubbles used

in the other literature to reduce the statistical error.

We report on the values of radius of surface tension

Rs and surface tension γs of four different systems,

respectively, with numbers of molecules 16848, 19656,

24024, and 29952 at temperature T = 90 K. Besides,

we obtain the surface tension for planar surface γ∞

by MD simulation. These data show that the surface

tension decreases with radius increasing. By fitting

the Tolman equation γs/γ∞ = 1/(1 + δ∞/Rs) for a

cylindrical surface with our data, the Tolman length

δ̄∞ = −0.6225σ is given, where σ = 0.3405 nm is

the diameter of argon atom. The zero Tolman length

given by Ref. [1] is negated and it is pointed out that

this error is attributed to the application of the inap-

plicable empirical equation of state and the neglect of

the difference between surface of tension and equimo-

lar surface in Ref. [1].
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