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Rapid developments of nano-and micro technology such as 
computer chips, powerful microscopy tools, nano- and mi-
cro- electromechanical systems (NEMS and MEMS) have 
shifted the research of materials sciences, physics and me-
chanics to the nano- and micro- scale. Classical continuum 
methods encounter great challenge, since they cannot cap-
ture the essential features of many effects in the nanoscale 
[1]. In this case, several modeling methods including ab 
initial calculation, molecular dynamics (MD) and Monte 
Carlo (MC) simulations are quickly developed. But the 
computation cost is quite large for several hundred electrons 
(in ab initial calculations) and several million atoms (in MD 
and MC simulations). Hence one scale methods are imprac-
tical for engineering application.  

Many multi-scale modeling methods to link atomic 
physics with continuum theories have been proposed. The 
quasi-continuum method was originally proposed by Tad-

mor, Ortiz and Phillips in 1996 [2,3]. The QC method em-
ploys the continuum framework to reduce the degrees of 
freedom without losing the atomistic features in the critical 
regions. QC method is developed and used to study many 
interesting problems, including defects in materials [2], in-
terfacial deformation [4], fracture and plasticity [5,6], mul-
tiscale plasticity behavior [7] and carbon nano-tube me-
chanical properties [8]. Gao and Klein [9] and Klein and 
Gao [10] proposed a virtual-internal-bond model which 
incorporates the atomistic interaction into continuum simu-
lation to study the crack nucleation and growth. But the 
original QC method is limited to zero temperature, and  
now it has been developed to take into account the effect of 
finite temperature [11–13] within the framework of local    
quasi-harmonic approximation. Dupuy et al. [14] developed 
a coarse-grained alternative for molecular dynamics of sol-
ids.  

The local quasi-harmonic method (LQHM) is simple and 
efficient, but the results given by LQHM can be inaccurate 
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due to its neglecting completely the interaction of different 
atoms.  

The harmonic model (HM) has been proposed by Born 
and Huang [15]. The HM model directly computes all the 
vibration frequencies of the crystal. But the vibration fre-
quencies are the eigenvalues of a 3N×3N force constant 
matrix.  

According to the harmonic model, the total potential en-
ergy and the vibration frequencies are evaluated at the equi-
librium position of the system. In a quasi-harmonic model 
(QHM), the quasi equilibrium position of the system is 
characterized by the lattice constant, which is a function of 
temperature. Therefore the total potential energy and the 
vibration frequencies are also functions of temperature 
[16,17].  

Tang et al. [17] proposed a quasi-harmonic method in the 
reciprocal space (k-space), namely the QHMK model, to 
calculate the Helmholtz free energy based on the quan-
tum-mechanical principle of lattice dynamics and the in-
ter-atomic potential. Zhao et al. [18] employed the QMMK 
model to investigate the thermo properties of silicon under 
different strains. QHMK model is accurate and efficient.  

In this paper, first, the exact dynamics equation for each 
individual atom is established directly around the equilib-
rium state of the system of N atoms in terms of the inter- 
atomic forces which can be expressed as the first derivative 
of inter-atomic potential. Second, by using the theory of 
lattice dynamics [15] and periodical boundary condition, the 
3N×3N stiffness matrix in the frequency equations of the 
parallelepiped crystal is reduced to a 3n×3n stiffness matrix 
in the frequency equations of a unit cell, with n being the 
number of atoms in the unit cell. 

Along this line, the 3N frequencies of the parallelepiped 
crystal are completely obtained. The constitutive relation of 
crystal at finite temperature is extracted based on the quan-
tum-mechanical principle. Finally the present method is 
extended to include the effect of plastic deformation.  

The paper is divided into 5 sections. Sect. 2 introduces 
the basic principles of the present method. Thermodynamic 
properties of crystal of Cu are given in sect. 3. The thermal 
stress of crystal Copper is given in sect. 4. Sect. 5 presents 
the conclusion and discussion.  

1  Basic principles 

A parallelepiped crystal (rectangular or inclined) which is 
made up by repetitions of the Bravais’s lattice is taken to be 
a representative volume element. The parallelepiped crystal 
is subjected to a homogeneous deformation.  

1.1  Lattice dynamics  

Let us consider a system of N-atoms of perfect crystal. The 
total energy function of the system can be expressed as the 

sum of each atom individually, 

 tot
1

,
N

i
i

U U


  (1) 

where iU  is the potential energy of atom i. 

Within the atomistic model of Embedded Atom Method 
(EAM), the potential energy iU  is given by Daw and 

Baskes [19]: 
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where ( )i iF   is the embedded energy, which depends on 

the spherical averaged electric density i , and it can be 

expressed as:  
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  (3) 

where ( )j ijr  is the electric density distribution on the 

position of atom i from the neighbor atom j. Obviously the 
pair potential ( )ij ijr  depends only on the bond length. 

The force acting on atom i equals  
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The static equilibrium equation of atom k can be written as:  
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where  kjf r
 

is the interaction force between atom k and 

atom j, which takes the form: 
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At finite temperature, atoms vibrate thermodynamically 
around their equilibrium positions with high frequencies 
and small amplitudes as shown in Figure 1.  

The force acting on atom k becomes 
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The radius vector kj
r  from k to atom j takes the form: 

 .kj kj j k
   r r u u   

The dynamics equation of atom k can be expressed as: 
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Figure 1  Schematic diagram of atom positions (solid circles) surrounding 
their equilibrium positions (dashed circles), rkj is the radius vector from 
atom k to atom j in the equilibrium position, uj and uk are the displacements 
of atom j, k due to thermo vibration, and rk′j is the radius vector from atom k 
to atom j out of equilibrium position. 

where k  represents a set of all atoms which have inter-

action with atom k, 0,  1,  2, k    are the numbers of the 
atoms within the unit cell, j=1, 2, 3,   are the numbers of 
the atoms within the set k , and nR

 
is the position vector 

of the origin of the unit cell. The kj
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where /kj kj kjre r  is the unit vector along the vector kjr  

direction.  
Eq. (6) is the exact dynamic equation of atom k without 

any approximation.  
If the term | ( ) / |j k kjru u  is small enough, then eq. (6) 

becomes 
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Eq. (8) is the harmonic approximation of the dynamic 
equation (6) of atom k that has been proposed by Tang and 
Wang [20]. Eq. (8) can be rewritten as follows: 
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where I is the second-order unit tensor. 
The solution to dynamic equation (9) can be expressed as 

[21,22]: 

 i( ( ) )e ,n kjt
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   R +r qu A  (11) 

where q is the wave vector. Substituting eq. (11) into eq. (9), 
one obtains 
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If per unit cell contains only one atom, eq. (12) becomes 
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Eq. (13) is the eigen-equation of three-dimensional mona-
tomic crystal.  

1.2  The solution of molecular dynamics  

The solution of dynamic equations of N atom system takes 
the form: 
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where R are the position vector of the atom in real space. 
The corresponding velocity is  
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The conjugate of the velocity becomes 
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We have 
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The kinetic energy is 
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It is easy to verify [15] 
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Hence the kinetic energy of the parallelepiped crystal equals 
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Eq. (20) can be rewritten as: 
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Let us consider the initial vector 

3
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can put in throw statistic distribution. The vector (0)qC  

can be assimilated as velocity vector. The Maxwells distri-
bution law can be used in simulations. 

The Cauchy stress is given by Diao et al. [23], 

 
1 1

V V ,
2i i i ij ij

i i j i

m f r
V    



 
   

 
   (21) 

where V  is the volume of the crystal, im  and Vi  are 

the mass and velocity of atom i. ijf   is the force between 

atom i and atom j. Subscriptions ,  denote the compo-
nents in rectangular coordinate. 

1.3  Effect of boundary condition 

The solution (11) to dynamics equation (9) does not satisfy 
the real boundary condition for the parallelepiped crystal. 

For monatomic crystal, the solution (11) can be rewritten 
as:   
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where the Rj is the position vector of atom j.  
Now we discuss a possible solution with the following 

form: 
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Substituting eq. (22) into eq. (9) one obtains  
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We note that 
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Eq. (25) becomes 
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In order to explain the contents more clearly, let us 
consider a crystal with face-centered cubic lattice and take 
into account only the interaction from the nearest neighbor 
atoms as shown in Figure 2. According to the Cauchy-Born 
law, all atoms within the face-centered cubic crystal are in 
the static equilibrim positions after homogeous deformation. 
We have 

01 03 02 04 05 07 06 08 09 011 010 012, ,  , ,  , .r r r r r r r r r r r r       

Now eq. (25) is reduced to 
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It is easy to verify that the term 1 2sin( )sin( )kj kj r q r q  in 

the above equation equals zero for each 0j  . Then the 

above equation becomes 
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Figure 2  Three-dimensional crystal of face cetraled cubic Cu. 
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Eq. (28) can be rewritten as follows: 
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Eq. (28) is identical to eigen equation (13). This means that 
the solution (23) is really the solution to dynamic equation 
(9).  

The position vector R of atoms can be expressed as: 
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The rectangular parallelepiped occupies the space 
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The solution for different boundary conditions at 0x   

1( 0)l   and 1 1 1 1 ( )x N a l N   can be listed as follows: 

Periodic boundary condition: 

 

2

2

i( )
1 1

i( )
1 1 1 1

1
1 1 1

1

( ) [ sin( )+ cos( )]e

[ sin(2π ) cos(2π )]e ,

, 1,  2,  3,  ..., .

t

t

A B

A l B l

k
k N

N



 



 

 

  

 

 

R q

R q

u R R q R q

 

(32)

 

Fixed boundary condition: 
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Free boundary condition: 
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From the above equations, one can clearly see that the 
different boundary conditions at 10 ( 0)x l   and x   

1 1N a 1 1( )l N  have no effects on the eigen-equation (13) 

and the frequency spectrum of the parallelepiped crystal. 
But the distribution interval of the wave numbers is differ-
ent for different boundary conditions  

Similarly one can prove that the different boundary con-
ditions at 20 ( 0)y l   and 2 2 2 2( )y N a l N   and at 

z=0 and 3 3 3 3( )z N a l N   have no effects on the eig-

en-equation (13) and the frequency spectrum of the paral-
lelepiped crystal. 

2  Thermodynamic properties of crystal 

2.1  Specific heat  

The specific heat VC  is defined as the heat energy re-

quired per unit volume of solid per degree of temperature 
change at constant volume. We have the following formula 
[21,22]: 

 tot
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V

E
C

T

    
 (35) 

where the totE  is the total thermal energy of the system of 

N atoms, which is the sum of contribution from all harmon-
ic oscillators.  
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We have 
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 (37) 

where   is the reduced Planck’s constant, Bk  is the 

Boltzmann constant, N is the atom number of underlying 
crystal, and the vibration frequency j  of the jth normal 

mode of the crystal lattice depends only on the lattice de-
formation for the harmonic approximation.  

The modified L-J inter-atomic potential for single crystal 
Cu takes the form: 

 

12 6

1

12 6

1 1 0

4 ( ) ,

( ) .

r
r r

r
r r

   

   

                    
         
     

 (38a) 
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The parameter 0  is determined from the requirement 

1 ( ) 0,r Rr 
   and 0

2

2
R a , 0a  is the crystal constant 

of Cu. Therefore the parameter   can be determined from 
the elastic volume modulus 0 ,K  0 137 GPaK   [24]. The 

parameter 1  is used to adjust the first-order derivative of 

the potential function ( )r . We have  
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The vibration frequencies are calculated based on eq. (13) 
and only the inter-atomic potential from the nearest neigh-
bor atoms is taken into account. Figure 3 shows the com-
parison between the calculation results and experimental 
data. The rhombus with blue color is the experimental data 
given by Billings and Gray [25]; the black square is the 
present calculation result, in which the average frequency is 
taken to be the Einstein’s frequency 0 ; the small circle 

with red color is the present calculation result in which the 
average thermo energy is taken to be the thermo energy of 
Einstein’s single frequency model, and the triangle with 
green color is the present calculation result given by eq. 
(37).  

One can clearly see that the three calculation results are 
consistent with each other and agree well with the experi-
mental data. When the temperature is higher than the room 
temperature, the present calculation results deviate gradual-
ly from the experimental data. This means that the an-har-                   
monic effect needs to be considered at a high temperature.  

2.2  Coefficient of thermal expansion  

According to the Grüneisen’s law [21,22], the coefficient of 
thermal expansion  can be expressed as:  

 
Figure 3  Temperature dependence of specific heat for single crystal Cu. 
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where the   is the Grüneisen’s constant, 0K  is the elas-

tic volume modulus of the crystal and CV is the specific heat 
at constant volume.  

Figure 4 shows the comparison of present calculation re-
sults with the experimental data [25] for crystal Cu. The 
Grüneisen’s constant  is taken to be 2.0. 

3  Quantum theory of thermal stress of crystal 

3.1  Helmholtz free energy 

The Helmholtz free energy is given by Ziman [22] 
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The second Piola-Kirchhoff stress is determined by 
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where   is the Green strain, U is the potential energy, 

i  is the frequency, and iE  is the thermo energy of the 

ith normal mode of the lattice vibration. The Cauchy stress 
takes the form 
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where F is the deformation gradient.  

 
Figure 4  Thermal expansion versus temperature for crystal Cu. Three 
calculation results (due to three calculation results of CV) based on eq. (40) 
are included and compared with experimental data [25]. The Grüneisen’s 
constant  is taken to be 2.0. 



924 Tang Q H, et al.   Sci China-Phys Mech Astron   June (2012)  Vol. 55  No. 6 

If the plastic deformation is taken into account, the Cau-
chy stress can be expressed as:  
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where eF  is the elastic deformation gradient from the 
intermediate configuration to the current configuration, and 

eε  is the elastic strain. Since the plastic slip has no effect 
on the crystal lattice and the elastic distortion of the crystal 
lattice is quite small, eq. (43) is reduced to  
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For uniaxial tension, eq. (45) becomes  
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3.2  The modified inter-atomic potential  

As pointed by Jiang and Huang [11], the coefficient of 
thermal expansion is proportional to the third-order deriva-
tive of the potential energy. Hence the Cauchy stress also 
depends on the third-order derivative of the potential energy. 
Therefore the inter-atomic potential needs to be modified to 
include the effect of the third-order derivative of the poten-
tial energy. The detailed procedure is given in Appendix. 

3.3  Thermal stress of copper 

The experiment study for the influence of temperature on 
the stress-strain relationship of copper and copper alloy was 
carried out by McAdam [26]. A typical experimental result 
of flow stress curves with Copper was shown in Figure 3 of 
his paper. Five experimental curves of the flow stresses 
corresponding to different temperatures were obtained. 
Each curve represents the incipient-flow stress at the indi-
cated temperature, which was derived from the standard 
stress-strain curve at room temperature under the same true 
strain when the temperature was raised (or dropped down) 
to the indicated temperature. 

The standard stress-strain curve at room temperature for 
Copper given by McAdam [26] can be described by the 
following formula:  
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where E is the elastic modulus, ys  is the yield stress, 

ys ys / E  , *
ys ys p/ E    , the parameters p ,  ,E  m 

are determined by the fitting procedure from the standard 
stress-strain curve at room temperature for Copper. Only the 
second part of the standard stress-strain curve for *

true ys   

is used in the fitting procedure. According to the experi-
mental data [26], the elastic modulus and the yield stress are 
chosen to be 102 GPa,  69.79 MPaysE   . The fitting 

parameters are: 

     6
p 2.923 GPa,  2.653 10 ,  7.5E m . 

From eq. (46) one gets 

 ys true( ),A    (47) 

where the function true( )A   is the inverse function of the 

function ys( / )B   . 

Comparing eqs. (45) and (47) , one obtains 
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Based on the above equation, eq. (46) can be rewritten as 
follows: 
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(49)

 

Since the potential U is independent of temperature, eq. 
(49) becomes  
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The calculation results of eq. (50) are shown in Figures 
5–7. 

The flow stress at room temperature is shown in Figure 5, 
where the black square is the experimental data [26], and 
the red circle is the fitting curve of eq. (46). The fitting 
curve matches the experimental data very well. 

The flow stresses at temperatures  100 CT and 
  128 CT  are shown in Figures 6(a) and (b), respective-

ly. The black square is the experimental data [26], and the 
red circle is the present calculation result of eq. (50). The 
calculation results agree well with the experimental data. 

Figures 7(a) and (b) show the flow stresses at tempera-
tures  165 CT  and   188 C,T  respectively. 



 Tang Q H, et al.   Sci China-Phys Mech Astron   June (2012)  Vol. 55  No. 6 925 

 

Figure 5  The comparison between the fitting curve and the experimental 
data [26] of flow stress for copper at room temperature. 

 

Figure 6  (a) Flow stress versus true strain for copper at temperature 
T=100°C. The black square is the experimental data [26], and the red circle 
is the present calculation result of eq. (50). (b) The comparison of the flow 
stress for copper between the calculation result of eq. (55) and the experi-
mental data [26] at temperature T=128°C. 

From these figures one can see that the present calcula-
tion results based on eq. (50) are in good agreement with the 
experimental data [26]. 

 

Figure 7  (a) Flow stress versus true strain for copper at temperature 
T=165°C. (b) Variation of the flow stress for copper at temperature T= 
188°C. 

The deviation from the experimental data is less than 8% 
for  165 CT  and 7% for   188 C.T  

4  Conclusion 

In this paper, we propose an effective method to study the 
thermodynamic properties and constitutive relations of 
crystals at finite temperature based on the theory of lattice 
dynamics [15] and interatomic potential of EAM model [19]. 
The exact dynamics equation for each individual atom is 
established directly around the equilibrium state of the sys-
tem of N atoms. Using harmonic approximation and period-
ical boundary condition, the 3N×3N force constant matrix of 
the parallelepiped crystal is reduced to a 3n×3n force con-
stant matrix for the unit cell.  

By the present method, the thermodynamic properties for 
Cu are calculated, and found in very good agreement with 
the experimental data. 

Finally the present theory is extended to include the ef-
fect of plastic deformation. The stress-strain relationships of 
copper with large plastic deformation at different tempera-
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tures are calculated. The predictions of the preset theory 
agree well with experimental data. 

Appendix 

The modified L-J potential can be expressed as: 
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The potential energy 1( )r  has been given in eq. (39), 

which takes the form: 
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The potential energy 2 ( )r  is assumed to be equal to  
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where R is the first nearest,  02 / 2.R a  

The parameters 1  and 2  are determined from the 

following equations: 

 2 2( ) ( ) 0.r R r Rr r      (a4) 

The parameters 1 8 / 3    and 2 2  . And 2  is used 

to adjust the third-order derivative of the potential function 
( )r . After adjustment, parameter 2  is taken to be equal 

to be 0.1. 
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