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Abstract. Molecular dynamics simulations have show that nanocrystalline (NC) materials can be 

treated as composite materials consisting of two phases of grain and grain boundary. In this paper, the 

incremental stress-strain relation is derived based on deformation mechanism of NC materials and 

internal variable theory from micromechanics point of view. The developed model is exemplified by 

the pure copper subjected to uniaxial tension. Implicated iteration algorithm is then employed to 

obtain the stress-strain relation. Moreover, the effects of grain shape and statistical distribution of 

grain sizes are also discussed, and predicted results are compared with experimental values to verify 

the model. 

Introduction 

Nanostructured materials refer to those whose microstructure characteristic length or its geometrical 

size, at least one dimension, is in the nanometer range 
[1]
. They have been the subject of considerable 

research in recent years due to their unique microstructure and appealing property.  

Extensive experimental investigations 
[2-3] 

and molecular dynamics simulation 
[4-9]

 have show that 

NC materials can be considered as composite materials consisting of two phases of equiaxed grain 

and grain boundary. Due to smaller grains, the volume of grain boundary phase is comparable to the 

grain phase, so the role of grain boundary phase is not neglected regarding the mechanical properties 

compared with coarse grain materials. As we all know that the dislocation motion will ceased as the 

grain size decreases. So in this case, the dominant deformation mechanism is governed by grain 

boundary phase. 

   In this current investigation, NC materials are modeled as composites two phases of with grain 

and grain boundary. In order to calculate conveniently, we assume that both phases are isotropic, and 

the variation of temperature is neglected. The incremental stress-strain relation has been developed 

based on deformation mechanism of NC and internal variable theory. Then, the developed model was 

applied to pure copper subjected to uniaxial tension. The stress-strain relation predicted by the model 

and experimental data were also compared.  

 Micromechanical Model 

It is assumed that the grains in NC materials are all spherical or spheroidal. When the grains are all 

spheroidal,  we define the ellipsoidal domain as follows:  
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where ( )1,2,3ia i =  is one of the three semi-axes of the ellipsoid. Further, the grain shape is considered 

to be spheroidal when the condition 2 3 1a a a a= = ≠  is satisfied. The volume fraction of grains can be 
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given by
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= , where 1a aβ = , 32a d β= , d  is grain size, andw is grain boundary 

thickness. 

Consider a unit volume element subjected to plastic deformation, we can describe the state of 

material using strain tensor ijε , absolute temperatureT and internal variable p

ijε . From the point of 

thermodynamics 
[10,11]

, the constitutive equation of the material and the evolution equation of internal 

variable are written as follows, respectively: 
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In which Ξ is total Gibbs free energy, and Φ is the dissipation function.  
In comparison with coarse grain materials, the deformation mechanism of grain boundary phase 

can not be ignored. The yield function can be described as: 

( )0.5

2

2
0

3
y yf J k dσ −= − + = .                                                                                                                                (4) 

where 0 ,kσ  are material constants, and 2J  is second invariant of the stress deviator. 

   The grains with the plastic strain p

ijε  are randomly distributed in the grain boundary phase. The strain 

filed caused by the applied force in the absence of plastic strain is denoted as 0

ijε . According to 

Colonnett theory
 [12]

, the total energy (Gibbs free energy) for the case of p

ijε  and 0

ijε  coexistence is the 

sum of energies for the conditions when the applied force and the plastic strain exist alone, 

respectively. So, the total Gibbs free energy can be written: 

( )( ) ( )0 0 0 0 0 *1 1 1 1

2 2 2 2

p p

ij ij ij ij f ij ij ij ij f ij ij f ij ij

D

dv v v vσ σ ε ε σ ε σ ε σ ε σ ε′ ′Ξ = + + − = Ξ = − −∫ .                                               (5) 

where 0

ijε  is applied strain, 0

ijσ is the corresponding stress field if the elastic modulus of two phase are 

equal, ijσ ′ , ijε ′ are perturbations of the stress and strain fields, ijσ is the stress filed in the grain induced 

by plastic deformation, and *

ijε is the fictitious eigenstrain introduced by the equivalent inclusion 

theory 
[12]
. The expression of *

ijε  is as follows: 

( )( ) ( )
1

* * * 01ij ijmn f ijab ijab abmn mnkl mnkl klC v C C S C Cε ε
−

 = + − − −  .                                                                                   (6) 

where ijklC is elastic modulus tensor, and ijklS is Eshelby’s tensor
 [12]

.  

For isotropic materials, Eq. (5) can be rewritten as: 
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with * *, , ,µ λ µ λ  being Lame coefficients of grain boundary and grain phases, respectively, and ν  
being  Poisson’s ratio of grain boundary. 

The total strain of the element can be expressed: 

0 D

ij ij ijε ε ε= + .                                                                                                                                       (14) 

where D

ijε  is volume average strain created by plastic deformation, and can be determined by 

equivalent inclusion theory 
[12]
: 
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 By taking equivalent inclusion theory 
[12]
, the stress field inside the grain induced by plastic 

deformation is derived as:  

p

ij ijkl klDσ ε= .                                                                                                                                         (21) 

where: 

1 2
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( ) ( ) ( ) ( ){2 2 1 1 2 2 1 21 2 1 3 2 1 3fD v B S B B S S Sµ µ λ λ= − − + +  + − +   .                                                                          (24) 

Substitution of Eqs.(14), (15),(21) into Eq.(7), we have: 
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The energy dissipation in unit volume can be expressed as: 

774 New Materials and Advanced Materials



 

( )1 c p

f ij ijv σ εΦ = − � .                                                                                                                                                          (26) 

where c

ijσ satisfies the yield condition of Eq.(4). 

Substitution of Eqs.(25), (26)into Eqs.(2), (3)respectively gives: 
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The criterion for loading can be written in the form: 
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Substitution of Eq.(28) into Eq.(27)，and using Eq.(29), then we have: 
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Using Prandtl-Reuss flow rule 
[13]
, the plastic strain rate can be written as: 
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Substitution of Eq. (31) into Eq. (30) gives: 

mn

m

mnλ ε= Λ� � .                                                                                                                                                                     (32) 

where: 

( )

( ) ( )

1

1 1
mn

ijkl f ijkl klmnc

ijm

ijkl f ijkl klab abmn f abmn f ijmnc c

ij mn

f
I v B C

f f
I v B C I v B v D

σ

σ σ

∂
−

∂
Λ =

∂ ∂ − − − ∂ ∂

.                                                             (33) 

Accordingly, Substitution of Eq. (32) into Eq.(27), and the incremental stress-strain relation can be 

described as: 
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m
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Results 

The developed model was applied to pure copper subjected to uniaxial tension. The stress-strain 

relation of pure Copper was investigated. The calculated parameters 
[2]
 are: * *42.1GPa, 0.3,µ ν= =  

25.26GPa, 0.33µ ν= = .The applied macro strain rate is 0 10.001sε −=� . The comparison between the 

predicted results and experimental data 
[14, 15]

 is shown in Fig. 1. It is seen that they are in good 

agreement with each other. 

The experiment results show that the stress-strain relation will take on a different phenomenon 

when the average grain size is the same. It may be provoked by the grain size distribution 
[16]
. So we 

will discuss the influence of grain distribution. The grain distributions 
[17] 

are shown in Fig. 2. The 

effects of grain distribution on the stress strain relation are shown in Fig. 3. It is seen that the stress 

values are overestimated if grain distribution is not considered. 
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     The effects of parameter considering grain distribution are shown in Fig. 4 and 5. The same 

conclusions are taken on as without considering grain size distribution. The results show that the 

stress increases with the increasing parameter as 1.0β ≤ , and it increases to the maximum at 1.0β = , 

when parameter β satisfies 1.0β > , the stress increases with the increasing parameter β . 

 

Fig. 4 Stress-strain relation for average 

grain size of 75d nm= 1.0β ≤  

Fig. 5 Stress-strain relation for average 

grain size of 75d nm= 1.0β ≥  
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Fig. 1 Stress-strain relation predicted by present model in comparison with experimental data 
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Fig. 2 Statistical distribution of grain size for Cu 

with average grain size of 75d nm= [17]
 

Fig.3 Stress-strain relation for average 

grain size of 75d nm= .  
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Conclusions 

The constitutive relation of NC materials is developed from the micromechanics point of view. Then, 

the developed model is applied in pure copper subjected to uniaxial tension. Taking into account grain 

shape and statistical distribution of grain sizes, the stress-strain relation has been obtained. The results 

derived from the model are compared with the experimental data in literature, and show that they are 

in good agreement with each other. The stress is relative small considering grain distribution. The 

grain shape has influence on the stress-strain relation without considering gain size distribution. 

Stress increases with the increasing parameter as 1.0β ≤ , but decreases as 1.0β > . When grain sizes 

distribution are considered, stress increases with parameter β , and arrives at the maximum as β  is 
1.0. 
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