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THE INFLUENCES OF RESIDUAL SURFACE STRESS ON
THE THERMO-ELASTIC BENDING OF
SIMPLY SUPPORTED NANOPLATES

Z.Q. Wang, and Y.P. Zhao*

ABSTRACT

When thickness of plates is in nanoscale. the surface energy effect will become
prominent, which renders the effective mechanical behaviors of plates to be
size-dependent. In this paper, the classical plate theory is modified, by taking the
surface energy effect into account. to investigate the size-dependent thermal
bending of simply supported nanoplates. Results show that not only the surface
elasticity but also the surface residuai stress has significant effects on the thermal
bending deformations.
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INTRODUCTION

Nanoplates have been widely used as the building blocks for ultra-sensitive
and ultrafine resolution applications in the field of nanoelectromechanical systems
(NEMS), due to their potentially remarkable thermal-mechanical properties at nano
scales, which deviatc from macroscopic counterparts and depend on their
characteristic size [1]. By taking into account surface effects, the size-dependent
elastic properties of nanopiates are investigated [2-4]: however, few of theoretical
studies investigated the mechanical responses of nanoplates with temperature effect
[5]. Recently. in the framework of continuum thermodynamics, the
thermo-hyperelastic models for both the surface and the bulk of nanostructured
materials are developed, in which the residual stresses are taken into account [6, 7].

In this paper, analytical model is developed for the size-dependent thermal
bending of simply supported nanoplates by modifying Kirchhoff plate theory, in
which surface e¢lasticity and surface residual stresses are taking into account. First,
the linear thermo-elastic constitutive relations for both the surface and the bulk are
presented in the component forms. Then, based on the variational method of energy
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functional, the governing equations and the boundary conditions for thermal
pending of nanoplates are obtained. [t can be found that not only the surface
elasticity but also the surface residual stress can modify the corresponding
equations for the classical plate thermal bending deformation.

CONSTITUTIVE EQUATIONS

Under the Kirchhoff hypothesis. the linear filaments of the plate in the
reference configuration perpendicular to the middle surface remain straight and
perpendicular to the deformed middle surface during stretching and bending. The

displacement components of a point with coordinates (x,5%,,x;) in the reference
configuration can be denoted by

ur( = Ll: - x}“fw.a‘ u} = u:’ ( [)
where #'(x,.x,) (i=12,3) is the displacement components of a point on the

middle neutral surface S, . Then, strains for stretching and bending of plates are

ny
Eop = Eup — KUy 4y (2)
where
1
1 © [
Eyp = 5(1(,“,,. + u/m) 3

are the strain components of the midd!e surface.
The stress-strain relations for the surface and the bulk of the nano plates are
given in the following.

Surface thermoelasticity

Assuming the surface to be linear isotropic thermo-elastic, the component form
of surface stress can be written as (4, 7]

St = Vidu + (a4 71 )0t vatty + (1 - 200) € POy Sa = Fitse (4)
where S, is the first kind Piola-Kirchhoff stress of the surface, d,, designates the
Kronecker delta; the constants y,, 7, and y, are the surface residual stress and the
surface Lame moduli; 4, is the surface thermal expansion coefficient, and 6, is the
change of the surface temperature; &, is surface strain, and a subscript preceded by a

comma indicates differentiation with respect to the corresponding coordinate, a, [
and x range over the integers 1 and 2, summation convention is used.

Thermoelasticity with Residual Stresses for Bulk Materials
In the absence of external mechanical or thermal loading, surface residual
stress will induce residual stresses in the bulk of nano plates [4]
T (5)
1 2 ll

where # is the thickness of nanoplates. Thus, the bulk materials will deform
elastically from a residual stressed state. According to the plate theory, we
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formulate the thermoelastic stress-strain relations for the bulk materials with
in-plane residual stress, as [4.7]

S

. N Y . . .
aft = 7:1/1 + U(I,A’l»\'ﬂ + l _ l'z [(l - V)glzﬂ + Vgu'o«tﬂ] + ﬂbghouﬂ’ S}:I = 243_1\'7171' (6)
in which S, is the first Piola-Kirchhoft stress. f,,/, is the residual stress induced
by surface residual stress in the reference configuration. £,, are the strain

components, } and v designate the Young's modulus and the Poisson’s ratio of
the bulk. p, is the bulk thermal expansion coefficient, 6, is the change of bulk

temperature.

THERMAL BENDING OF NANOPLATES

Under the action of thermal loadings, nanoplates will deform. In the fo'lowing,
we investigate the thermal bending of simply supported nanoplates.

Governing Equations

Assume that there is no external lateral load acting on the simply supported
nancplates during thermal deformation process. Then, the governing equations for
thermal bending of nanoplates can be obtained from the principle of potential
energy, which is written for the present problem as follows [4]

oU = J'J-[ ['}:3 s o'u,y,,d\}]dx:d": + ”S,:,du,":“dr,dxz, (7)
S, s

,2 e
where s denote the upper and the lower surfaces of nanoplates, which are detined
h .
by x; = J_rE, respectively.

Substituting Egs. (1). (4) and (6) into (7). we can find that 6U includes the
stretching part oU and the bending part oU In the present paper, we

sreching hemding *

pay attention to the latter one. For simplicity, assume that 6, =7(x,y)z and

0h|*£ =0 . Through the use of integrations by parts and the Gaussian theorem, we
2

can get the minimum condition of the bending part potential energy

. 1 N\A | n -
J:H{D“'(}’] X "5% ]'_2-_:|“3’.«111///f -p. 57_.1., }‘)”;dxld"': +
N 5 4 W B B(é'u?)
Dv+(y. +y )— |u? D(1~v —=y = - £ — : =
cf{!: 1 (}4, 7 ) 3 :lu,,m, *{ (1~ )+(yI 3}1,) > :];71 2. B r} pw ds =0,

&

(8)

. N\ . . 6
where D = )/13/[12(1 - lr")] is flexural stiftness, g, = f, +% is the effective thermal
1

expansion coefticient and
n, =uy,, cos’ @ +2u,,sinfcos +1u,,,sin’ 6. 9

Since Ju; are arbitrarily on surface S, . we obtain the equilibrium equation for
thermal bending
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De‘u;],uu/f/i - ﬂu E T.mz = 0’ (IO)
t 1.t
in which D, = D[l+6(l—vl)2/l_+%l__ﬂJ_
1

For simply supported nanoplates, JSu; =Oand6(()‘u§')/6n # 0 on the boundary

¢ . Therefore, the coeflicient of the contour integral in Eq. (8) must be zero. For the
cases that x,=ta and # =0, it becomes
) "
Deuz(u—ﬂe’lsrzo- (11)
Fq.(10) together with boundary condition (11) can be solved.

From.Eqs. (10) and (11), it can bc found that the surface residual stress is
included in the governing equations and boundary conditions. Furthermore, when
surface parameters vanish or the thickness becomes large, the corresponding
equations will reduce to the classical ones.

CONCLUSIONS

By taking the surface effects into accounts, the size-dependent thermal bending
of simply supported nanoplates is discussed in the present paper. Results show that
not only the surface elasticity but also the surface residual stress will effect the
thermal bending of nanoplates.
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