
A CUDA Pseudo-spectral Solver for Two-dimensional Navier-Stokes
Equation*

Kaiyuan LOU, Zhaohua YIN

 Institute of mechanics, Chinese Academy of Sciences, Beijing, China, 100190
Email: zhaohua.yin@imech.ac.cn Tel: 010-82544100

ABSTRACT

In this paper, the two dimension incompressible Navier-Stokes
equations with pseudo-spectral method are solved using the
related subroutines in FFTW and CUFFT. Compared with the
codes on CPU, the performance of the codes on GPU is much
better, especially when the resolution increases. For the
resolution of 2048 2048, the acceleration reaches 14.45
times. We also try to combine MPI (Message Passing Interface)
and CUDA (Compute Unified Device Architecture) in our
solver. Due to the inevitable frequent data transfers between
Host and Device, the speedup is not so ideal compared with
that of the single node, and 1.82 times acceleration is obtained
in double precision for the resolution of 4096 4096.

Keywords: CUDA, spectral method, N-S equation.

1. INTRODUCTION

In recent years, the Graphics Processor Unit (GPU) has
tremendously developed. Though the purpose of these advances
is to calculate the complex visual effects in computer games, it
has been found that the same technology can be applied in
scientific computing. In 2006, NVIDIA developed a Compute
Unified Device Architecture (CUDA) on the extended set of C
language. CUDA is a very convenient architecture because
programmers do not need to master the graphical knowledge.
Hence, CUDA provides a low entry level for the learning of
many-core programming, so the general-purpose scientific
computing on the GPU develops rapidly.

Legyel first used GPU in scientific computing about the robot
first [1], and it was then applied in various areas including fluid
dynamics. In the past few years many researchers have studied
how to use GPU to optimize the CFD (Computational Fluid
Dynamics) codes, and found GPU can really improve the
code's performance for one or two grades compared with that
on CPU (Central Processing Unit). For example, Antoniou
found that finite difference method WENO obtained 53 times
acceleration for single-precision float when CUDA was
adopted. Cohen and Molemaker found similar performance
improvements in the solution of three-dimensional
incompressible Navier-Stokes (N-S) equations (double
precision) [2]. Dong Tingxing et al. simulated two-dimensional
RAE2822 wing flow around in the scale of 1024 × 128, and
obtained 2.33 times acceleration [3]. When calculating
two-dimensional diffusion equation in the size of 1024 × 1024,
Dong Tingxing et al achieved a 34 times speedup [4].

According to the above information, CUDA is successfully
applied in solving N-S equation with finite difference method,
but few studies about spectral method have been done. For a

 * This project is supported by the NSF of China (Contract No.

G11172308).

comparable error on the uniform mesh, spectral method
requires a much finer mesh than finite difference or finite
element methods. Unlike finite difference methods, most
computation of spectral method is in DFT (Discrete Fourier
Transform). FFTW is the widely adopted open-source DFT
package in CPU, while CUFFT is mostly used on GPU [5]. In
this paper, we use both FFTW and CUFFT to solve
two-dimension incompressible N-S equations and focus on the
performance improvement when replacing FFTW with CUFFT.

Sometimes, due to memory limitations, a large-scale problem
cannot be computed in a single GPU, so we also use the
multi-node parallel computing with MPI (Message Passing
Interface). Some tests in combination of MPI and CUDA are
also performed.

2. GOVERNING EQUATIONS & NUMERICAL

METHODS

2.1. Governing Equations
Two dimension incompressible N-S equations:

2

0,

1
.p

t
�

�

� � � �������� 	 � � �
 � 	 � 	�� ���

v
v
v v v f

�
� �� � � (1)

Here, (,)u v�v
�

 is the velocity, f
�

 the external force, �
the density, p the pressure, and � the kinetic viscosity
coefficient. There is no external force in our problem,

so 0�f
�

.

The computing domain is(,) [0,2] [0,2]x y � ��
 , and the
periodic boundary conditions are adopted. The initial condition
is 0(, 0) ()�v x v x

� �
.

2.2. Numerical Method
Spectral method is applied to discrete space. p , v

�
 is mapped

from physical space to Fourier space as the following:
ˆ(,) ,

ˆ(,) ,

i

i

t e

p t p e

�

�

�� ������ �����

�
�

k x
k

k
k x

k
k

v x V

x

�

 (2)

where (,)x y�x is the position in physical space, and

1 2(,)k k�k represents different wave numbers.

Applying the Fourier-Galerkin method to the N-S equations Eq.
(1) and with the approximation Eq. (2), we get a set of
differential equations for determining the Fourier coefficients
ˆ
kV and p̂k :

2
2

ˆ
ˆˆ ˆkdt

k
�

�
	 �
 	 k

kk k
k A

V AV k . (3)

2012 11th International Symposium on Distributed Computing and Applications to Business, Engineering & Science

978-0-7695-4818-0/12 $26.00 © 2012 IEEE

DOI 10.1109/DCABES.2012.93

62

When 2 0k � , no matter what the value of 0V̂ is, the

original equation is automatically satisfied. We set 0̂ 0p �
at that time, which means value of pressure is zero.

2
2

ˆ
ˆ ˆˆd k

k
t �

�
�

 	 k

kk k
k A

V AV k . (4)

In Eq. (4), 2 ˆk�
 kV is linear term (viscous term) and

2

ˆ
ˆ

k

�

 	 k

k
k A

A k nonlinear term (convection term).

To carry out the time integration, the third order Runge-Kutta
method is adopted.

() ()L N
t

�
� 	

�
v

v v . (5)

Here, ()L v is the linear term 2 ˆk�
 kV and ()N v the

nonlinear term
2

ˆ
ˆ

k

�

 	 k

k
k A

A k .

We define nv as the speed at time t and 1n	v the speed

at time t t	 � . The following equations show how the

calculation of 1n	v from nv is conducted in three steps
[6]:

1 1 1

2 2 2 1

1 3 3 1 3 2

[() ()],

[() () ()],

[() () ()],

n n n

n

n n

t L N

t L N N

t L N N

� � �
� � � �

� � � �	 	

� �� 	 � 	 	
�� � � �� �� 	 � 	 	 	

�� �� �� �� 	 � 	 	 	

v v v v v
v v v v v v
v v v v v v

 (6)
where

1 2 3

1 2

1 2 3

1 2 3

8 / 15, 5 / 12, 3 / 4,

17 / 60, 5 / 12,

29 / 96, 3 / 40, 1 / 6,

37 / 160, 5 / 24, 1 / 6.

� � �
� �
� � �
� � �

� � �

�
 �

� �
 �

� � �

The linear term ()L v can be easily computed in Fourier space,

but the calculation of the nonlinear term ()N v is a bit
involved. So the nonlinear term is obtained by being transferred
back and from the physical space with FFTs; in the meantime,
the de-aliasing procedure has to be adopted to remove the
aliasing errors. There are two kinds of de-aliasing techniques
available: padding-truncation and phase-shifts. In this paper,
we use phase-shifts, which reserves more high wave numbers
information than that for padding-truncation. In summary, the
calculation process is shown in Figure. 1:

3. INTRODUCTION TO GPU COMPUTING

3.1. The Structure of CUDA
The CUDA code is divided into two parts: one part is on the
CPU, known as the Host section, and another part in the GPU,
which is called the Device portion. Host part completes a call
to the GPU through Kernel function. As a highly parallel
programming model, CUDA divides the tasks in the Kernel
into the threads. The structure of the threads is indicated in
Figure 2. Threads are organized by blocks, and each block is
the same in size. A kernel function can be performed by
multiple blocks, and each block is organized as a

one-dimensional or two-dimensional grid [7]. This model
guides the programmer to partition the problem into coarse
sub-problems which can be solved independently in parallel by
blocks of threads, and each sub-problem into finer pieces that
can be solved cooperatively in parallel by all threads within the
block. Indeed, each block of threads can be scheduled on any of
the available processor cores, in any order. That is, blocks can
be executed in parallel if there are available units; otherwise,
they will be executed sequentially [7].

Figure 1. Computing process

Yes

No

Compute vorticity
field and output it

Step++

Whether it is
time to output

Compute nonlinear terms
from velocity field

Compute velocity field of
t t	 � from ()tv

�
 with

RK3 method

Start

Input initial conditions, such
as 	 , t� , and initial
vorticity field

Compute velocity field
from vorticity field

Whether it is
the last step

End
Yes

No

63

Figure 2. Structure of threads in CUDA

3.2. The Advantage of GPU over CPU in Computing
There exist differences between the CPU and GPU in scientific
computing capability, and the reason is that GPU is designed
for compute-intensive, highly parallel computing. Thus, the
design of GPU adopts more transistors in data processing rather
than in the data cache or flow control. Many lines parallel
collaboration is GPU internal design, and each computing
pipeline is equal to a computing unit in CPU internal core (core)
which can compute a set of data independently. Therefore,
GPU can be considered as hundreds of simple CPU doing data
calculations at the same time, or we can say that a GPU is a
small MPI parallel cluster. The floating-point computing
capability of GPU is much higher than that of the CPU in the
same level. Of course, the development of computing ability is
accompanied by some sacrifice. The GPU does not have the
flow control unit, so it is only suitable for the program of order
processing with a large amount of data.

In CUDA, the thread structure is like matrix, so it is suitable for
grid computing. The equations in this paper need to disperse
the computational region into grids. This is naturally in line
with the CUDA thread structure. In CFD, similar computation
is often required again and again. The amount of computation
is great but logical judgment is few. So CFD is suitable for
GPU to perform its great computing capability.

4. OPTIMAZATION STRATEGIES

4.1. Reduce the Time in Host and Device Communication
PCI-E bandwidth is relatively small, only the 8GB / s, and lags
far behind the bandwidth of the GPU (the GPU adopted in this
article uses is C1060, and its memory bandwidth is 102GB / s).
Data transmission between CPU and GPU will inevitablely
cause bottleneck. So the best strategy is to minimize the
amount of data transferred between the CPU and GPU.
Therefore, unnecessary transmission should be avoided. In
order to achieve the purpose of reducing transmission quantity,
we reduce the times of transmissions. We put all process into
GPU, and the exchange of data between the GPU and CPU
only occurs in data I/O.

In a test of a 2048 × 2048 simulation, when data exchange 3
times at each time step, each 1000 steps takes about 20 minutes,
while only 16 minutes is needed without these exchanges.

No direct communication between the GPU exists in a

multi-node computing. There is no good way to avoid the
exchange between CPU and GPU. In the low resolution case,
data exchange has become the most time-consuming part in the
whole program.

4.2. Shared Memory
The latency accessing to shared memory is 1 to 2 clock cycles
(in the situation with non-Bank Conflict), much smaller than to
the global memory (about 500 clock cycles). According to the
information provided by the NVIDIA SDK, the program of
matrix transpose speeds up 10 times compared with the case in
which shared memory is not used. NVIDIA offers an idea to
avoid bank conflict by padding an empty row. In this program,
the little teaser is also applied in other sub program. Because
the data in shared memory is visible to the threads in the same
block, we use shared memory to avoid every thread getting its
data from global memory one by one in the program of matrix
adding.

4.3. Memory Coalescing
In C language, memory storage is arranged by line. 16
continuous threads' visit to continuous data period in global
memory can be combined into a storage affair. In our program,
besides FFT, memory operation to matrix fits this condition
naturally.

Warp is organized by the SM automatically in a continuous
way. For example, if there are 128 threads in a block, they will
be divided into four warps: 0-31 threads will be warp 1, 32-63
warp 2, 64-95 warp 3, and 96-127 warp 4. So the best amount
of threads per block is a multiple of 32. Otherwise, it will cause
a warp less than 32 threads to use the same resources as a warp
full of 32 threads. In this paper, each block contains 16 × 16 =
256 threads in a single node case. In multi-node computing, we
just call CUFFT functions, and the left computation is on CPU,
so we needn't take it into consideration.

4.4. Others
Some constants are calculated in the CPU, and then copied
them to GPU for repeated calls.

When we have to operate with a small number of threads, we
use “if threadID<N” to avoid multiple threads running at the
same time which takes more time or even produce incorrect
results.

Because synchronization in our program is relatively few, it is
difficult to have a big performance improvement at this point.

5. RESULTS AND COMPARISON

5.1. Computing Environment
Our programs run at tesla.sccas.cn, a server of Supercomputing
Center of Chinese Academy of Science. Its environment is
shown as the following.

Single node: CPU Intel Xeon E5410, 2GHz CPU Clock Speed,
2 6MB second-level cache; GPU tesla C1060 2; memory
8GB; hard disk SATA 500GB.

Compiler: FFTW program uses “g++” to compile and CUFFT
program employs “nvcc”.

Multi-node uses 4 nodes with the same configuration as above.

64

5.2. Result in Single Node
Two codes are programmed with CUFFT and FFTW. We test
our codes with different resolution (128 × 128, 512 × 512, 2048
× 2048). The performance is shown in Table 1. To confirm
whether our result is right, three different times are chosen to
output. After comparison of each resolution, the results of
FFTW and CUFFT are found the same (Figure 3, Figure 4).

In 128 × 128 resolution, we calculate 6000 steps. At last, the
streamlines both become two vortexes. It is a stable situation.
The result of CUFFT(float) is the same, so we won't show the
picture here to save space.

x

vorticity contours at t=36

1 2 3 4 5 6

1

2

3

4

5

6

x

vorticity contours at t=36

1 2 3 4 5 6

1

2

3

4

5

6

Figure 3. 128 128 result at t=36 CUFFT(double)(left),
FFTW(right)

We also calculate 10000 steps in 512 × 512 resolution. At last,
they both reach the stable situation (two vortexes).

x

vorticity contours at t=100

1 2 3 4 5 6

1

2

3

4

5

6

Figure 4. 512 512 result at t=100 CUFFT(double)(left),
FFTW(right)

In 2048 × 2048 resolution, the results are also the same. We
calculate 170000 steps, but do not reach the two vortexes'
stable situation at last. However, we can see the tendency to
stable situation. When calculated 100000 steps, the streamlines
become several vortexes and small vortexes roll into big vortex.
At last, there are two big skew vortexes in the streamline chart,
which are not like the regular ones above.

Table 1. Till 1000 steps, time required by different methods
resolution FFTW(s) CUFFT(double)(s) CUFFT(float)(s)
128 128 35.3 11.7 3.7
512 512 695 56 21
2048 2048 14431 999 424

Figure 5. Speed up with CUFFT in different resolution

In 128 × 128, 512 × 512, and 2048 × 2048 cases, the
corresponding CUFFT speedups are 3.03, 12.41, and 14.45.

From Figure 5, we can see CUDA's acceleration is more and
more obvious with the increase of the resolution.

5.3. Performance of CUFFT and FFTW
We test the performance of CUFFT and FFTW which don't
contain the communicating time. We use arrays of different
sizes to test our codes. Every array performs FFT and IFFT,
and then we count the time. The function clock() is adopted for
timing in FFTW and the function cudaevent in CUFFT.

Table 2. Time required by different resolutions
Array size FFTW(ms) CUFFT(double)(ms) speedup
128 128 1 0.3026 3.30
512 512 20 1.189 16.82
2048 2048 370 18.099 20.44

Table 2 shows that as the size increases, the advantage of
CUFFT is more obvious. It meets the conclusion we get in 5.1.
In addition, it is worth mentioning that the speedup radio of
both the N-S equation and pure FFT becomes smaller as the
size increases. As the size grows, the communication time
grows too, but we never take any measures to speed up the
communication.

Table3. The different performance of CUFFT in single and

double precisions

Array size
CUFFT(float)
(ms)

CUFFT(double)
(ms)

double/float

128 128 0.1505 0.3026 2.01
512 512 0.308 1.189 3.86
2048 2048 2.968 18.099 6.10

By comparison, we can find that single precision data has an
advantage over that of double precision in GPU computing. In
addition, the advantage gets bigger with the increase of the
resolution. However, with the increase of data amount, besides
computing ability, the bandwidth will become a limit to the
calculating speed [8].

5.4. Result in Multi-Node
As the case in a single node, we use CUFFT and FFTW
programming to solve the N-S equations at 4 nodes. At last
FFTW and CUFFT achieve the same results under different
resolutions.

In the following, the time of 100 steps’ calculation at 4 nodes is
shown for different methods. In the case of 2048 × 2048

x

vorticity contours at t=100

1 2 3 4 5 6

1

2

3

4

5

6

65

resolution, CUFFT needs 374s and FFTW needs 493s; the
speedup is 1.32 times. When resolution is 4096 4096,
1063s is required for CUFFT and 1936s for FFTW; the
speedup increases to 1.82 times.

By the above comparison, we find that as the resolution
increases, GPU shows a greater advantage. When calculating
the case of 4096 × 4096, MPI is used to collaborate on multiple
nodes. So the data transfer between Host and Device is
inevitable in every step in our code. Because of a lot of time
consumed in coping data, acceleration is not so obvious as
which in single node. Even so, there is noticeable advantage
when using GPU to compute a large amount of data. With the
larger resolution, CUFFT will have better acceleration.
However, limited by communication problems, acceleration
will not be as obvious as that in the single node.

6. DISCUSSION AND CONCLUSION

We use CUDA to accelerate our CFD code, and there is
obvious improvement after we replace the FFTW subroutines
with those of CUFFT.

In the case of a single node, the performance improvement of
CUDA can be found in every resolution. In addition, with
higher resolution, the accelerating effect is more obvious.
When the resolution is 2048 2048, the speedup is 14.45 times.
This allows us to use a higher resolution to observe the changes
of the vorticity field in a fixed calculating time, and more
subtle fluid structures can be observed.

TeslaC1060 is about 3 times more expensive than Intel
XeonE5410. When the calculated amount is small, the
economic benefit of using GPU is not very obvious, and it is
not very economical to use GPU. When the resolution of our
simulation increases, it is much cheaper to use GPU.

The tests in Section 5.2 show that CUDA has better
performance in the single-precision calculation than in double
precision, but the gap between single and double precisions
does not reach the eight times speedup in theory. On the GPU
of the next generation (C2050), the gap between single and
double precision becomes only two-times speedup in theory. If
our double-precision program is carried out on tesla C2050,
better acceleration may be achieved.

Direct communication between the GPU is not supported in
CUDA2.0 in multi-node. When using MPI to increase the
resolution, communications must occur between Hosts. The
communication between GPU and CPU is inevitable; a lot of
time has to be wasted in coping data, so the advantages of GPU
computing will be hidden. Maybe for a problem in which
transfers between nodes are not required so frequently, the
performance of GPU will be better.

7. REFERENCES

[1] Lengyel J, Reichert M, Donald B, Greenberg D,
"Real-time robot motion planning using rasterizing
computer graphics hardware", ACM SIGGRAPH
Computer Graphics, Vol.24,Issue.4, Aug 1990,
pp.327~335.

[2] Cohan J, Molemaker M, "A fast double precision CFD
code using CUDA", Parallel CFD, 2009, pp.414~427.

[3] Dong Tingxing, Li Xinliang, Li Sen, Chi Xuebin
"Acceleration of Computational Fluid Dynamics Codes
on GPU", Computer Systems & Application Vol.20,
No.1, 2011, pp.104~109.

[4] Dong Tingxing, Wang Long, Chi Xuebin, "the GPU
acceleration of a two-dimensional diffusion equation",
Computer Engineering and Science Vol.31, No.11, 2009,
pp.121~127.

[5] Http: // www.nvidia.cn/object/cuda_home_cn.Html.
[6] Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni,

Thomas A. Zang, Spectral Methods in Fluid Dynamics,
New York: Springer-Verlag Inc. Pub., 1998.

[7] NVIDIA CUDA Programming Guide.
http://www.nvidia.cn/object/cuda_develop_cn.html.

[8] J. Appleyard, D. Drikakis, "Higher-order CFD and
interface tracking methods on highly-Parallel MPI and
GPU system", Computer & Fluids, Vol.46, Issue.1, July
2011, pp101~105.

66

