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Abstract. This paper presents a GPU computing algorithm, used to accelerate the Continuous-based 

Discrete Element Method (CDEM). Using a NVIDIA GTX VGA card, the computing speed achieved 

an average 650 times speedup ratio vs. Intel Core-Dual 2.66 GHz CPU.  To parallelize the CDEM 

algorithm, the clone node force refreshing process is separated from the elemental calculation, and is 

replaced by a “Node Group” force assignment process, which ensures the data independence in 

parallel execution. 

Introduction 

The GPU (Geographic Processing Units) computing is a new technique which makes use of VGA 

cards to provide high-performance computing capacity with very low costs. The Continuum-based 

Distinct Element Method (CDEM) is an approach to simulate the progressive failure of geological 

mass, which is mainly used in land-slide stability evaluation, coal and gas outburst analysis, as well as 

mining and tunnel designing.  

CDEM is the combination of Finite Element Method (FEM) and Distinct Element Method (DEM), 

It contains two kinds of elements, blocks and interfaces (Fig 1). A discrete block is consisted of one or 

more FEM elements, all of which share the same nodes and faces. An interface contains several 

normal and tangent springs; each connects nodes in different blocks. Inside the block the FEM is used, 

while for the interface, the DEM is adopted.  

Various constitutive models can be used in the block, including the linear elastic model, 

Drucker-Prager model, the block breakage model and the discrete spring model. For the interfaces, 

the linear elastic model and the linear crack model can be used. To simulate the randomness of 

dimension and the geometrical features of geo-material, the random joint model is used. A fluid-solid 

interaction model is introduced to CDEM to study the influence of the seepage flow in fractures. 
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Fig. 1 Blocks and interfaces for 8 nodes hexahedron 
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CDEM is an explicit time history-analysis FEM/DEM approach on finite difference principles and 

forward-difference approximation is adopted to calculate the progressive process through a time 

marching scheme. During the calculation, the dynamic relaxation method is used to achieve 

convergence in a reasonable period time with small time steps, and the convergence is reached when 

the total magnitude of the kinetic energy is minimized. 

Fig 2 shows the main process to solve a classical geological problem.  
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Fig. 2 The process to solve a geological problem 

 

The constitutive equation of block is show in Equation 1 (just for liner elastic model), where { }
e

iF  

denotes the vector of node force of element i,  { }
e

iu  means the vector of node displacement of element 

i, and [ ]
e

iK  represents element stiffness matrix of element i.  
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The constitutive equation of interface is show in Equation 2 (just for liner elastic model), Where 
j

nF  and 
j

sF  denotes the normal and tangent force of spring j, 
j

nK  and 
j

sK  means the normal and 

tangent stiffness of spring j, 
j

nd∆  and 
j

sd∆  represents the normal and tangent displacement 

increment of spring j. 
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For simulating the failure of interface, liner crack model is adopted. During elastic stage, the same 

as liner elastic model, equation 2 is used to calculate the spring force in the interface. If the spring 

force exceeds the strength of the interface, the crack on interface begins and the Mohr-Coulomb 

criterion (Equation 3) is adopted. It is positive when nF  is compression, and negative when nF  is 

tensile. In Equation 3, T  denotes the tension, φ  means inner friction, and C  represents cohesion. 

330 Key Engineering Materials and Computer Science



 

0, 0

tan( ) tan( ) , 0

j

n n s

j j

s n s n

If F T then F F T

If F F C then F F C Cφ φ

 − ≥ = = =


≥ × + = × + =
                   ( 3 ) 

To dissipate the excessive energy in block system, the Rayleigh damping is introduced, which 

contains two kinds of damping, the mass proportional damping (α ) and the stiffness proportional 
damping( β ). The damping force is calculated from Equation 4, where { }

e

if  means the vector of 

damping force of element i, [ ]
e

iM  denotes the element mass matrix of element i, and { }
e

iv  represents 

the vector of velocity of element i.  
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Solution Algorithm in Parallel 

Unlike general CDEM algorithm which uses clone node strategy to ensure node consistency 

among elements, the parallel algorithm does the same work by means of a “nodal force group” 

strategy. The difference is out of reason of access conflict. For general CDEM, a node’s force is 

cloned to the associated nodes just when the node’s force calculation is done. This works well in serial 

execution, but may cause data access conflict in parallel execution, for various threads may clone their 

forces to a same node at the same time. Differently, the parallel algorithm uses a data structure to 

temporarily store the forces calculated. The nodal forces will be redistributed in a separate procedure 

after all of the node’s force calculation is done, as shown in Fig 3. 
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Fig. 3 Flowchart of CDEM Parallel Calculation 
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The element calculation procedure is designed according to the specialty of GPU. As is known, a 

GPU consists of a set of SIMT (single-instruction, multiple-thread) multi-processors, which are 

mapped to CUDA blocks[1]; each multi-processor has an instruction unit and several scalar processor 

cores, which are mapped to CUDA threads, and each scalar thread executes independently with its 

own instruction address and register state. Accordingly, the element calculation processes are divided 

into parallel CUDA blocks, each of which contains certain number of elements. In this work, a CUDA 

block contains 32 elements for best performance. As is shown in Fig 4, the CUDA blocks are further 

divided into threads, each of which processes one node. 
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Fig 4. Thread Division Scheme for Element Calculation 

* Practically in the program, each block contains 32 elements. 
 

Similarly, the nodal force redistribution procedure is designed following the block-thread 

architecture, namely, each CUDA block contains certain number of nodal force groups as threads, as 

is shown in Fig 5. 

The number of nodal force groups in a CUDA block should be properly determined to obtain best 

performance, which is discussed in the following section. 
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Fig 5. Nodal Force Group 

Performance Optimization 

The program is developed and tested using NVDIA CUDA Toolkit 2.1. The 8 nodes isoperimetric 

element is chosen as element model. 

To maximize parallel execution, the number of threads per block is carefully chosen. As is 

recommended by NVIDIA, the best results will be achieved when the number of threads per block is a 

multiple of 64, and for ideal performance, exceed 192 threads per block is recommended. In practice, 

best performance is achieved when the number of elements per block is 16 or 32. Because of the 8 

nodes element model, the number of threads per block is equal to Equation 5. 
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Where Nt is the number of threads per block; Ne is the number of elements per block. When 

problem scale is small (1000 elements), 16 elements per block is a little faster; for large-scale 

problems, 32 elements per block is a little better. The test results are shown in Table 1: 

Table 1 Running Time: 16 vs. 32 Elements per Block 

Problem scale 16 elements per block 32 elements per block 

1000 elements, 8000 steps 0.460 sec 0.478 sec 

41232 elements, 4000 steps 6.23 sec 6.10 sec 

Problem scale 16 elements per block 32 elements per block 

1000 elements, 8000 steps 0.460 sec 0.478 sec 

41232 elements, 4000 steps 6.23 sec 6.10 sec 

 

The effective bandwidth of each memory space depends significantly on the memory access 

pattern. As described in CUDA Programming Guide, global memory bandwidth is used most 

efficiently when the simultaneous memory accesses by threads in a half-warp (during the execution of 

a single read or write instruction) can be coalesced into a single memory transaction of 32, 64, or 128 

bytes. To achieve maximum global memory bandwidth, the data structures are realigned to thread. 

Besides, shared memory is used to store nodal forces, for the shared memory space is much faster than 

the local and global memory spaces, and nodal forces are reused among threads. 

Evaluation 

A simple 1000 elements model is used to verify the algorithm. The model consists of a 10x10x10 

hexahedron elements mesh, with the nodes on the bottom constrained, and gravity applied. Fig 6 

shows the result comparison between the CPU version and the GPU version. Table 2 shows the time 

cost comparison. 

Another instance is a fortress of the Great Wall, which contains 41232 hexahedron elements. The 

results are shown in Fig 7. 

 

 
 

a. CPU version                                   b. GPU version 

Fig 6. Result Comparison between the CPU Version and the GPU Version 
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Fig 7.  z Result of the Fortress 

Table 2 Performance Comparison between CPU and GPU 

Problem Scale CPU GPU 

1000 elements brick, 8000 steps 252 sec 0.478 sec 

41232 elements Fortress, 4000 steps 95 min 6.10 sec 

Problem Scale CPU GPU 

1000 elements brick, 8000 steps 252 sec 0.478 sec 

41232 elements Fortress, 4000 steps 95 min 6.10 sec 

The results of the CPU version and the GPU version are not the very same. Average error is less 

than 0.01%. This is because the parallel algorithm has a different accumulation order from the serial 

one. The accumulation occurs in the nodal force redistribution procedure. The CPU version 

accumulates the nodal forces one by one in the order of the elements, while the GPU version has a 

different order, which depends on the generation of nodal force group. Besides, the Arithmetic 

Logical Units on CPU and GPU have different respective error bounds. 
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