
A GPU Accelerated Red-Black SOR Algorithm for

Computational Fluid Dynamics Problems

Jitang Liu1, a, Zhaosong Ma1, b, Shihai Li1, c, Ying Zhao1, d

1
 Institte of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

a
 ljt_1987624@163.com,

b
 marze@163.com,

c
 shli@mail.imech.ac.cn,

d
 zhaoying@imech.ac.cn

Keywords: (Graphics Processing Units) GPU, (Computational Fluid Dynamics) CFD, Red-Black
SOR, Memory hierarchy, Shared Memory Allocation.

Abstract. GPUs are high performance co-processors of CPU for scientific computing including CFD.

We present an optimistic shared memory allocation strategy to solve 2D CFD problems using

Red-Black SOR method on GPU with CUDA (Compute Unified Device Architecture). Lid-driven

results are compared with the benchmark data. The speed up ratio of same problem size by using

NVDIA GTX480 and Intel Core-Dual 3.0GHz processor is discussed, the performance of GPU is 120

times faster than the sequential code on CPU with the problem size of 756×756. Based on this work,

we conclude that using the memory hierarchy properly has a key role in improving the computational

performance of GPU.

1. Introduction
Simulating CFD problems efficiently and accurately is of great importance for scientific computing

and engineering applications. GPUs that are originally designed for graphics rendering have become

massively-parallel "co-processors" of the Central Processing Unit (CPU). In recent years, GPU

technology develops quickly and modern GPU can provide memory bandwidth and floating-point

performance that are orders of magnitude faster than a standard CPU [1]. Researchers in CFD field

have done a lot of work in parallel computing algorithms and applications on GPU and gotten great

achievements. In the aspect of algorithms of CFD, Senocak [2] presented a 3D Navier-Stokes solver

on GPU for incompressible flows using Jacobi iteration method, Serban Georgescu [3] developed a

Conjugate Gradient solver for 3D Poisson’s equation on GPU and reported up to 22 times

acceleration when using three GPUs compared with CPU, Jonathan M. Cohen [4] implemented 3D

Boussinesq code with Red-Black Gauss-Seidel on GPU and got an acceleration of up to 8 times faster

than a CPU.

Red-Black SOR which is a high efficiency, yielding simple, inexpensive and fully parallelizable

method [5] is widely used in parallel computing both on CPU and GPU. Chih-Wei Hsieh [6]

implemented Red Black method for solving 2D parabolic partial differential equations on GPU was

11 times faster compared with CPU with the problem size of 400x400, Sheng-Hsiu Kuo [7] solved 2D

nonlinear Burgers’ equation by using Red-Black SOR method on GPU and got a speed-up ratio of 12

times at mesh size 1026×1026 on GPU compared with CPU, Jonathan M. Cohen [4] and Aaron F.

Shinn [8] implemented the Red-Black SOR iteration method to solve 3D CFD problems on GPU with

multi-grid relaxation schemes and achieved speed up ratio of 8 times and 15times respectively. As a

highly parallel computational method, Red-Black SOR method is suitable for GPU computing and

can achieve a high speed up ratio if we use the memory hierarchy properly and allocate memory

efficiently according to our experience.

The rest of this paper is organized as follows. Section 2 introduces the GPU hardware architecture

and CUDA programming model. Section 3 briefly shows the governing equation and numerical

method of incompressible fluid flows. The acceleration strategy of solving CFD problems on GPU is

described in section 4 and the result verification and speed up discussion is shown in section 5.

Finally, Section 6 gives the conclusion and future work.

Advanced Materials Research Vol. 320 (2011) pp 335-340
Online available since 2011/Aug/16 at www.scientific.net
© (2011) Trans Tech Publications, Switzerland
doi:10.4028/www.scientific.net/AMR.320.335

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP,
www.ttp.net. (ID: 130.194.20.173, Monash University Library, Clayton, Australia-15/01/14,04:42:59)

http://www.scientific.net
http://www.ttp.net

2. GPU Hardware Architecture and CUDA Programming Model

GPU Hardware Architecture. GPU which is originally built for graphics rendering has become a

highly parallel, powerfully programmable, suitable for general purpose computing device owing to

its’ unique hardware architecture. As is shown in Fig.1 (a), GPU is an example of a Single Instruction

Multiple Data (SIMD) multiprocessor [11]. Each thread reads data in different memory locations

when executes. Each thread has its own registers and local memory, each block has the same shared

memory of its own, all threads in a grid can access the data in global memory. Besides, there are two

kinds of read only memory: constant memory and texture memory [12].

a) GPU SIMD multiprocessor architecture b) CUDA thread organization

Figure 1. GPU Hardware Architecture and CUDA Programming Model[12]

CUDA Programming Model. CUDA is a general purpose parallel computing architecture that

leverages the parallel compute engine in NVIDIA GPUs to solve many complex computational

problems in a more efficient way than on a CPU. CUDA C extends C by allowing the programmer to

define C functions which are called kernels. Each kernel is mapped to threads on GPU. Threads in the

same block can communicate with each other and synchronize together while threads from different

blocks can’t. Blocks which execute the same kernel function can be batched together into a grid and

be executed in parallel [12], which are illustrated by Fig.1 (b).

3. Governing Equation and Numerical Method of Incompressible Fluid Flows

The Navier-Stokes equations for 2D incompressible fluid flows can be written as follows:

0
x

u
=

∂

∂
+

∂

∂

y

v

 (1)

)(
Re

1
2

2

2

2

y

u

x

u

x

p

y

u
v

x

u
u

t

u

∂

∂
+

∂

∂
+

∂

∂
−=

∂

∂
+

∂

∂
+

∂

∂
ν

 (2)

Grid0

Block (0, 0)

ShareMemory

Thread

(0, 0) (0, 1)

Register

Local

Memory

Global Memory

Constant Memory

Texture Memory

Block (1, 0)

ShareMemory

Thread

(0, 0) (0, 1)

Register

Local

Memory

Gird0

Block (0, 0)

Block (1, 0)

Block (1, 1)

Block (0, 1)

Thread (0, 0)

Block (1, 1)

Thread (1, 0)

Thread (0, 1) Thread (1, 1)

Thread (0, 2) Thread (1, 2)

336 Key Engineering Materials and Computer Science

)(
Re

1
2

2

2

2

y

v

x

v

y

p

y

v
v

x

v
u

t

v

∂

∂
+

∂

∂
+

∂

∂
−=

∂

∂
+

∂

∂
+

∂

∂
ν

 (3)

Where u, v is the velocity, p is the pressure, ν is the kinematic viscosity and Re is Reynolds number.

To solve the equations above in numerical method, we choose first-order, explicit Euler scheme for

time term and second-order central difference scheme for the diffusion and advection terms. The

projection method is used to solve Navier-Stokes equations for incompressible flows [9].

To solve the Pressure Poisson equation on GPU in high speed, we choose the Red-Black SOR as

iteration method which has the same convergence rate as the Gauss-Seidel method. As is shown in

Fig.2, the red (black) points are surrounded by each other. We update the red points use the black

points’ previous values firstly and then update the black points use the red just solved. The Red-Black

SOR iteration number was set to be 20 for each time step to get convergence results for problems of

Re=100. The flow diagram of the code procedure is shown in Fig.3.

Boundary points

Red points

Black points

Figure 2. Red and black point distribution Figure 3. The flow diagram of executing code on GPU

4. Acceleration Strategies of Solving CFD Problems on GPU
As is mentioned above, solving CFD problems using Red-Black SOR is an optimal choice because

of its highly parallel capability and efficiency. But the dependency on neighboring points reduces the

extent of parallelism, which is also the bottle-neck of computing performance enhancement on GPU.

Compared with the floating-point performances, the performance of computing is limited by the

memory bandwidth of GPU when the data on Global memory was accessed by the execution units.

Shared memory is chosen as the cache to improve computing performance in this paper. Firstly, the

data (including boundary element data) is loaded into shared memory from global memory. Secondly,

all the operations on data are completed in shared memory. Lastly, the data is written to global

memory.

The domain decomposition method is used for GPU implementation. The grids in computational

domain are divided into sub-domains and mapped on GPU thread as is shown in Fig. 4. The block

dimension is chosen 1D and threads number is times of 32 (64 or 128, will be discussed later) to

utilize the shared memory properly and efficiently (Fig. 4), hence the coalescence is obtained during

the data access. Firstly, the threads in the block read the data (including the boundary data) from

global memory to shared memory in the form of lines, the data in columns will be read successively

New

time

step Solve pressure (Red-Black SOR)

Calculate velocity in new time

Calculate intermediate velocity

Copy data from CPU to GPU

Time > time to end?

Boundary condition on GPU

Copy data from GPU to CPU

Initial condition on CPU

End

Advanced Materials Research Vol. 320 337

by the same block thread. Secondly, the points of inner grid are calculated by the 1D thread in the

same block which can change data with each other via the shared memory. Lastly, the solved inner

points are copied from shared memory to global memory. The height of the sub-domain in which

condition to get highest performance will also be discussed later.

a) Computation domain decomposition b) Sub-domain mapped on 1D GPU thread

Figure 4. Domain decomposition method and thread allocation strategy

The code snippet is composed of two loops, the outer loop for time advance and the inner for

iterations of Red-Black solver to solve Poisson equations numerically. Firstly, the intermediate

velocity is solved using the momentum equations. Secondly, the boundary condition is computed by

the next two kernel functions. Thirdly, the divergence of every element is solved by the next kernel

which will be used in the iterations. Fourthly, the Poisson equations are solved using Red-Black SOR

method. Lastly, the new velocity at time n+1 is calculated with the intermediate velocity and pressure

solved justly.

5. Result Verification and Speed Up Discussion

Result Verification. The lid-driven flow was chosen as a benchmark for validation of our numerical

method. Fig. 5 shows the contour distribution of velocity u and v, the stream line of lid-driven

problem of Reynolds number 100 at steady state respectively.To numerically validate the GPU code,

results of computed on GPU are compared with data from Ghia [10], which is shown in Fig. 6. As is

shown in Fig. 6, the two velocity components u and v along the vertical and horizontal lines through

the geometric center are in excellent agreement with results of Ghia [10] both for Reynolds numbers

100 and 1000.

Figure. 5 Steady state Contour distribution of u, v and stream line at Reynolds number 100

338 Key Engineering Materials and Computer Science

a) Results comparison for Re=100 b) Results comparison for Re=1000

Figure. 6 Comparison of GPU results with benchmark data from Ghia for Re=100 and Re=1000

Speed Up Discussion. Next we will present the GPU computing performance compared with CPU .

The lid-driven flow of Reynolds number 100 is chosen as the test case. We compared the time of the

code executes 1000 time steps on different platforms. Table 1 shows the time of two codes for

problems of different sizes with different thread allocation methods and the same sub-domain height

(of 8), the speed up ratio can get 120 for 756×756 size when allocate 1D 128 threads in the block. The

same thread allocation method (1D 128 threads in the Block) and different sub-domain heights are

shown in table 2, we can get a higher speed up ratio for small problem size (120× for 756×756) when

the height of the sub-domain is 8. The codes are complied by Microsoft Visual Studio 2008. The GPU

we choose is GTX 480 and CPU is Intel 3.0GHz processor.

Table 1. Time comparison for problems of different sizes

with different thread allocation methods and sub-domain height of 8.
Grid number CPU time (s) GPU time (s) Speed up

372×372 46.437 0.531 87.45

744×744 189.25 1.641 115.33

a) problems of different sizes with 64 threads in a block

Grid number CPU time (s) GPU time (s) Speed up

378×378 47.578 0.516 92.21

756×756 199.046 1.657 120.12

b) problems of different sizes with 128 threads in a block

Table 2. Time comparison for problems of different sizes with 128 thread in a block and different

sub-domain heights.
Grid number CPU time (s) GPU time (s) Speed up

504×504 87.375 0.922 94.77

1008×1008 355.172 3.219 110.34

a) problems of different sizes with sub-domain height of 6

Grid number CPU time (s) GPU time (s) Speed up

378×378 47.578 0.516 92.21

756×756 199.046 1.657 120.12

b) problems of different sizes with sub-domain height of 8

Grid number CPU time (s) GPU time (s) Speed up

504×504 87.375 0.829 105.40

1008×1008 355.172 2.937 120.93

c) problems of different sizes with sub-domain height of 10

Advanced Materials Research Vol. 320 339

6. Conclusion and Future Work

We found a new strategy to allocate the memory hierarchy of CUDA programming model properly

to improve the overall bandwidth utilization and thus to hence the performance of computing on

GPU. Based on the algorithm, we have gotten a CFD solver for incompressible fluid problems with

Red-Black SOR on GPU with higher speed up ratio than ever reported. Overall, the numerical solver

of incompressible fluid flow equations was accelerated by a factor 120 by using the NVDIA GTX 480

compared with the serial code on CPU 3.0 GHz processor when computing problems size of

756×756. It’s found that using the memory hierarchy properly has a key role in improving the

computational performance of GPU.

In our future work, we will execute the free surface code on GPU using the method offered above

and investigate the speed up performance of our method.

Acknowledge

Gratefully acknowledge the support from Natural Science Foundation of China (Grant No.

11002146) and the Chinese National 973 Project (Grant No. 2010CB731500).

References

[1] J.C. Thibault, I. Senocak: 47th AIAA Aerospace Sciences Meeting Including The New Horizons

Forum and Aerospace Exposition (2009).

[2] I. Senocak, J. Thibault, M. Caylor: Eighth Symposium on the Urban Environment, Phoenix

Arizona (2009).

[3] S. Georgescu, H. Okuda: Numer. Meth. Fluids. Vol. 64(2010), p. 1254.

[4] Information on http://www.nvidia.com/content/cudazone/CUDABrowser/ downloads/papers/

DoublePrecision-CFD-Cohen-parCFD09.pdf.

[5] I. Yavneh: SIAM J. Sci. Comput., Vol. 17 (1996), p. 1.

[6] C.W. Hsieh, S.H. Kuo, F.A. Kuo, C.Y Chou: International Symposium on Parallel and Distributed

Processing with Applications (2010).

[7] S.H. Kuo, C.W. Hsieh, R.K. Lin, W.H. Sheu: Computer Science. Vol. 6082 (2010), p. 297.

[8] Information on http://www.greatlakesconsortium.org/events/manycore/files/CaseStudy_CFD

_GPU.pdf.

[9] A. J. Chorin: Math. Comput., Vol. 22(1968), p. 745.

[10] U Ghia, K.N. Ghia, C.T. Shin: J. Comput. Phys., Vol. 48 (1982), p. 387.

[11]. Information on http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/

NVIDIA _CUDA_ProgrammingGuide.pdf.

[12] Shu Zhang, Yanli Chu, Kaiyong Zhao, Yubo Zhang: GPU High Performance computing –

CUDA (China WaterPower Press, 2009).

340 Key Engineering Materials and Computer Science

Key Engineering Materials and Computer Science
10.4028/www.scientific.net/AMR.320

A GPU Accelerated Red-Black SOR Algorithm for Computational Fluid Dynamics Problems
10.4028/www.scientific.net/AMR.320.335

DOI References

[3] S. Georgescu, H. Okuda: Numer. Meth. Fluids. Vol. 64(2010), p.1254.

http://dx.doi.org/10.1002/fld.2462
[5] I. Yavneh: SIAM J. Sci. Comput., Vol. 17 (1996), p.1.

doi:10.1137/0917013
[6] C.W. Hsieh, S.H. Kuo, F.A. Kuo, C. Y Chou: International Symposium on Parallel and Distributed

Processing with Applications (2010).

doi:10.1109/ISPA.2010.48
[9] A. J. Chorin: Math. Comput., Vol. 22(1968), p.745.

http://dx.doi.org/10.1090/S0025-5718-1968-0242392-2
[10] U Ghia, K.N. Ghia, C.T. Shin: J. Comput. Phys., Vol. 48 (1982), p.387.

doi:10.1016/0021-9991(82)90058-4
[12] Shu Zhang, Yanli Chu, Kaiyong Zhao, Yubo Zhang: GPU High Performance computing – CUDA

(China WaterPower Press, 2009).

doi:10.1109/ICC.2009.5199483

http://dx.doi.org/www.scientific.net/AMR.320
http://dx.doi.org/www.scientific.net/AMR.320.335
http://dx.doi.org/http://dx.doi.org/10.1002/fld.2462
http://dx.doi.org/10.1137/0917013
http://dx.doi.org/10.1109/ISPA.2010.48
http://dx.doi.org/http://dx.doi.org/10.1090/S0025-5718-1968-0242392-2
http://dx.doi.org/10.1016/0021-9991(82)90058-4
http://dx.doi.org/10.1109/ICC.2009.5199483

