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Abstract. The effects of subgrid scale (SGS) motions on the dispersion of
heavy particles raise a challenge to the large-eddy method of simulation (LES).
As a necessary first step, we propose the use of a stochastic differential equation
(SDE) to represent the SGS contributions to the relative dispersions of heavy
particles in LES of isotropic turbulence. The main difficulty is in closing the
SGS-SDE model whilst accounting for the effects of particle inertia, filter width
and gravity. The physics of the interaction between heavy particles and SGS
turbulence is explored using the filtered direct numerical simulation method. It
is found in the present work that (i) the ratio of the SGS Lagrangian and Eulerian
timescales is different from that of the full-scale Lagrangian and Eulerian
timescales. The ratios are also dependent on filter widths. (ii) In the absence of
gravity, the SGS timescale seen by heavy particles non-monotonically changes
with particle Stokes number and has a maximum at particle Stokes number (St =

τp/δTE) near 0.5. (iii) In the presence of gravity, a similarity law exists between
the SGS Lagrangian correlation function seen by a heavy particle within a time-
delay τ and the SGS spatial correlation function with the displacement 〈w〉τ ,
where 〈w〉 is the average settling velocity of a heavy particle. The joint effects
of particle inertia and gravity are accounted for using the elliptic model for pair
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correlation of SGS velocity seen by heavy particles. The SGS timescale seen by
heavy particles is extracted from the elliptic model and used to close the SGS-
SDE model. The validations of the model against direct numerical simulation
show that the SGS-SDE model can improve the performance of LES on relative
dispersions especially when their initial separations are in the inertial subrange.
Furthermore, we assess the performance of the SGS-SDE model by comparing
the results with the approximate deconvolution method. The results show that
the SGS-SDE model is more suitable for particles with small Stokes numbers,
StK < 2. The model developed here provides a basis for the development of a
more advanced SGS model for particles in non-homogeneous and anisotropic
turbulent flows in pipes or channels.
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1. Introduction

Particle-laden turbulent flows can be found in a wide range of engineering and environmental
flow problems [1]. For example, pollutant dispersion and warm rain droplet formation in the
atmosphere, and fluidization and combustion in process engineering [2–4]. Understanding the
relative dispersion of heavy particles in turbulence is vital for the processes of transport and
mixing, since it is closely related to the fluctuation of local concentration, which determines
reaction rates [5–8].

When turbulent flows are simulated using the Reynolds average numerical simulation
(RANS) method and the heavy particles are tracked using the Lagrangian method, stochastic
differential equations (SDE) are usually used to represent the contributions of turbulent
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fluctuations to the dispersion of particles [9, 10]. Chibbaro and Minier [10] addressed the
importance of introducing specific features related to the near-wall coherent structure in pipe
flows based on the Langevin probability density function (PDF) method. In the SDE, the
Lagrangian integral timescale of fluid velocity seen by heavy particles (the fluid–particle
interaction timescale), TLp, is one of the key parameters and it determines the dispersion
rates of heavy particles [11–14]. Direct numerical simulation (DNS) shows that TLp does
not vary monotonically with particle Stokes number StK from TL to TE, but has an ‘N’
shape with a maximum near StK = 1 due to the relative motion of particles near rotational
vortical structures [15–17], where StK ≡ τp/τK, τp is the particle Stokes response time and
τp = ρpd2

p/18µ, dp is the particle diameter, µ the dynamical viscosity, ρp particle density and τK

the turbulent Kolmogorov timescale.
The RANS method finds wide application in engineering calculations [9] and the DNS

method has manifested its power in fundamental research [17–20]. However, DNS is still
limited to flows at relatively low or moderate Reynolds numbers. RANS does not predict well
the unsteady structures in turbulent flows which are of importance for turbulent dispersion
of heavy particles. Motivated by the limitations of RANS and DNS, large-eddy simulation
(LES) is becoming a potential method for future engineering calculations. In LES, large-scale
velocities ū(x, t) are resolved explicitly using the filtered Navier–Stokes equations. The small-
scale velocities u′(x, t) are ignored but their effects on large-scale velocities are modeled using
an subgrid scale (SGS) model [21–25].

If one uses the resolved large-scale velocity ū(x, t) to replace the real fluid velocity u(x, t)
and calculates the particle motion with the SGS velocity being neglected, large errors in the
statistics related to both fluid particles and inertial particles can be observed [26–31]. The effects
of SGS fluid motions on the dynamics of particles are an important and open issue. In isotropic
turbulence, the relative dispersion of heavy particles is mainly dominated by small-scale fluid
motions. In channel flows, complex flow structures exist due to the mean shear rate and the
anisotropy near the wall. Thus the relative dispersions are controlled by the wall-dependent
flow structures. Marchioli et al [27] verified the important effect of subgrid turbulence on
particle motions and tried to explicitly recover SGS effects using fractal interpolation and
approximate deconvolution methods (ADM). They further pointed out the necessity to introduce
the information of flow structures to quantitatively predict particle segregation and preferential
concentration [28]. Jin et al [31], and more recently Bianco et al [32], studied the effects of
the filtering errors on particle clustering in isotropic turbulence and channel flows, respectively.
In the latter, the filtering error is a function of the wall distance and has a maximum in the
buffer region. Many other efforts have been devoted to this issue, using the ADM [28, 33–38],
stochastic models [39–47] and fractal interpolation [28]. The ADM is favorable to correct the
resolved eddies near cutoff scales but cannot be used to recover the ones below the cutoff scales.
Therefore, the SDE model becomes the favored candidate and we shall assess the performances
of the SGS-SDE model and the ADM by comparing their prediction results.

The SGS timescale seen by heavy particles is a key parameter for the closure of the SGS-
SDE model which describes the interaction timescale between heavy particles and SGS eddies.
Shotorban and Mashayek [39] and Fede et al [41] assumed that the SGS timescale δTLp seen
by heavy particles is equal to the Lagrangian integral timescale of SGS fluid velocity δTL, that
is, δTLp = δTL. The assumption is only suitable for particles with very small Stokes numbers.
Berrouk et al [42, 43] proposed a model for the timescale in the SGS-SDE model using the
Wang–Stock model [11] to consider heavy particle dispersion in LES. Jin et al [46] proposed a
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model for the dependence of δTLp on the Stokes number and filter width in isotropic turbulence.
Geurts and Kuerten [48] analyzed the characters of the SGS stochastic force acting on particles
in turbulent channel flow. However, the effects of the drift velocity due to gravity were not
considered. Under gravity, the crossing trajectory effect [14] reduces the interaction timescale
between SGS turbulent eddies and heavy particles in the context of LES. In LES, the drift
velocity effect is important when the particle drift velocity is comparable to the root mean
square (rms) turbulent velocity. Therefore, the effects of drift velocity on the SGS timescale
seen by heavy particles require further investigation.

As a necessary first step to more complex wall-bounded turbulent flows, the purpose of
this paper is to investigate the closure for the SGS-SDE model, especially to provide the SGS
timescale seen by particles with a mean drift velocity in isotropic turbulent flows. The results
obtained provide a basis for constructing more advanced models for LES of inhomogeneous
and anisotropic turbulent flows such as channel or pipe flows.

The paper is organized as follows. The governing equations for fluid and particle motions
and the definitions of integral timescales of fluid velocities at full- and SGSs are given in
section 2. The difference between the Lagrangian and Eulerian timescales at full- and SGSs, the
non-monotonical variations of the SGS timescale seen by heavy particles and the elliptic model
for the SGS particle–fluid timescale under consideration of drift velocity are given in section 3.
The validation of the proposed SGS-SDE model for relative dispersion and the comparison
between the performances of the SGS-SDE model and the ADM are given in section 4. The
conclusions and proposals for future work are presented in section 5.

2. The governing equations and timescales of fluid motions

In the turbulent flow simulated, particle concentration is very dilute and particle diameter dp is
smaller than the Kolmogorov lengthscale η, thus one-way coupling is assumed. The equations
for turbulent flows and particle motions are described in this section.

2.1. Equations for isotropic turbulent flows

2.1.1. Direct numerical simulation method. In spectral space, the Navier–Stokes equation for
the isotropic and incompressible turbulence in a box of (2π)3 can be represented as ( k < kmax)(

∂

∂t
+ νk2

)
û(k, t) = P(k)z(u × ω) + f̂(k, t), (1)

where û(k, t) is a Fourier coefficient, k = (kx , ky, kz) the wavenumber vector and k = |k|, u and
ω fluid velocity and vorticity in physical space, ν fluid kinematical viscosity.z denotes a Fourier
transform, P jm = δ jm − k j km/k2 ( j, m = 1, 2, 3). The random artificial force f̂(k, t) proposed
by Eswaran and Pope [49] is used to drive and maintain the turbulent flow. The random force is
a vector-valued Uhlenbeck–Ornstein stochastic process. It is characterized by three parameters,
the forcing radius 0<‖k‖<

√
8, the forcing amplitude

√
447.3 and a timescale of 0.038.

The flow domain is discretized uniformly into N 3 grid points (N = 256 in this paper). The
maximum cutoff wavenumber kmax = N/3. The Fourier coefficients are advanced in time using
a second-order Adams–Bashforth method for the nonlinear term and an exact integration for
the linear viscous term. The time step is chosen to ensure that the Courant–Friedrichs–Lewy
number is 0.5 or less for numerical stability and accuracy [18].
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2.1.2. Filtered-DNS method. The filtered velocity field is calculated from the Fourier
coefficients obtained from DNS using a sharp spectral filter H(kc − |k|) (H is the Heaviside
function)

ũ(x, t) =z−1

{
û(k, t) if |k| ∈ [1, kc],
0 if |k| ∈ (kc, kmax],

(2)

where ũ(x, t) is the filtered velocity in physical space, kc the cutoff wavenumber. The subgrid
velocity field is then

u′(x, t) = u(x, t) − ũ(x, t). (3)

One of the advantages of FDNS is that the full-scale turbulent flow field from DNS is directly
decomposed into a large-scale part and a small-scale part using equations (2) and (3). Thus, we
can study the characteristics of the SGS flow field and the interaction between heavy particles
and SGS motions directly. By varying the cutoff wavenumber kc, we can study the effects of
filter width on the SGS timescale seen by heavy particles.

2.1.3. Large-eddy simulation method. The LES of isotropic turbulence is performed on the
coarser grids using the same pseudo-spectral method and large-scale forcing scheme as DNS.
The governing equation in LES is given by (k 6 kc, kc is the cutoff wavenumber in LES){

∂

∂t
+ [ν + νe(k| kc)]k

2

}
ˆ̄u(k, t) = P(k)F(ū × ω̄) + f̂ (k, t), (4)

where ū and ω̄ are the resolved velocity and vorticity in physical space respectively. The term
νe(k| kc)k2 ˆ̄u(k, t) on the left-hand side represents the net effects of SGS motions on the resolved
ones. The spectral SGS eddy viscosity model [50, 51] is used,

νe(k| kc) = ν+
e (k/kc)

√
E(kc)

kc
(5)

with

ν+
e (k/kc) = C−3/2

K [0.441 + 15.2 exp(−3.03kc/k)]. (6)

The spectral viscosity νe(k| kc) depends on the wavenumber k, kc and E(kc), the value of the
energy spectrum function at kc. Here, E(kc) in equation (5) is dynamically evaluated from the
LES fluid field. The Kolmogorov constant CK has a universal value at an asymptotically high
Reynolds number [52, 53]. To be consistent with the flow obtained from the DNS, CK = 2.1 is
obtained by fitting the compensated spectrum in DNS; it is a bit larger than the experimental
value CK = 1.62 [54] due to the modest Reynolds number in this study. The same value was
used by Chasnov [55] in the LES of Kolmogorov inertial subrange.

If we neglect the numerical error by virtue of the spectral method, there are filtering errors
and SGS modeling errors in real LES. The filtering error comes from the absence of SGS
velocity due to the filtering operation [32]. The modeling error comes from the fact that the
LES only gives an approximation and cannot provide the same filtered velocity as FDNS due
to the limitations of currently available SGS models [34]. The SGS eddy viscosity model is
usually too dissipative and it alters the local flow structure and timescales of resolved scales.
The changes in the resolved flow structures in LES lead to a larger integral timescale of the
velocity correlation functions [26] and a slower dispersion rate than that in FDNS, which will
be seen in section 4.
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2.2. Equations for particle motion

The discrete phase is composed of 400 000 solid, spherical particles with diameter dp = 0.5η

and ρp/ρf � 1 where ρf is the fluid density. Many forces act on a single particle suspended in
a turbulent flow field [56]. Since ρp/ρf � 1, the forces on a small particle can be simplified as
drag force and gravity force. Then, the governing equations for a single particle can be written as

dxp(t)

dt
= vp(t), (7)

dvp(t)

dt
=

(u(xp(t), t) − vp(t)) f + w0

τp
, (8)

where xp(t) and vp(t) are the particle position and velocity at time t , w0 the particle Stokes
settling velocity in a still fluid under gravitational acceleration, g and w0 = gτp. u(xp(t), t) is
the fluid velocity seen by a particle. The velocity is obtained from the flow field by a three-
dimensional (3D) six-point Lagrangian interpolation scheme [18], f is the nonlinear drag
correction coefficient,

f (Rep) = 1 + 0.15Re0.687
p , (9)

which is determined by the instantaneous value of the particle Reynolds number

Rep =
∣∣u − vp

∣∣ dp

/
ν. (10)

Letting u = 0, vp = 〈w〉 and dvp(t)/dt = 0 in equation (8), we can obtain the relation
between the real average settling velocity 〈w〉 and the Stokes settling velocity w0 = gτp from
equations (9) and (10) in a still fluid as

w0 = 〈w〉

(
1 + 0.15

(
dp〈w〉

ν

)0.687
)

, (11)

〈w〉 is a necessary parameter for the closure of the SGS-SDE model in the presence of gravity
in equations (46) and (47). Equation (11) is used to account for the nonlinear effects of particle
Reynolds number on particle settling velocity. We can quickly estimate the particle Reynolds
number if we assume that the average relative velocity between fluid and particle is about
the fluid rms fluctuating velocity 19.34, particle diameter is 0.5η = 0.006 75, fluid kinematical
viscosity ν = 0.0488, then Rep = 1.48.

The motion of a particle is obtained by numerical integration of equations (7) and (8)
using a fourth-order Adams–Bashforth method for the particle velocity and a fourth-order
Adams–Moulton method for particle trajectory, respectively.

2.3. The subgrid scale stochastic model for a heavy particle in large-eddy simulation

Following the ideas of Simonin et al [9] and Pope [57], we propose an SGS-SDE model for the
SGS velocity seen by heavy particles in the context of the LES of heavy particles. The full-scale
fluid velocity seen by a heavy particle is then modeled as

du+
i =

{
ūi

[
xp(t + dt), t + dt

]
− ūi

[
xp(t), t

]}
−

1

δTLp,i i
(u+

i − ūi)dt + (CiεSGS dt)1/2 ξ, (12)
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where the superscript + in equation (12) denotes the modeled full-scale velocity. The first term
on the right-hand side is taken from the resolved velocity in the LES, the second and the third
terms constitute a Langevin equation. ξ is a Gaussian random variable of zero mean and unit
variance, the timescale of the Lagrangian correlation function of the SGS velocity seen by heavy
particles (we shall simply call δTLp,ii the SGS timescale seen by heavy particles hereinafter) and
the coefficient Ci depend on the direction of velocity u+

i along or vertical to gravity (please see
equations (46)–(48) for δTLp,ii and Ci in section 3.3) [58]. In equation (12), the SGS dissipation
rate εSGS is evaluated in spectral space as

εSGS = 2
∫ kc

1
νe(k| kc)k

2 E(k) dk. (13)

The second term on the right-hand side of equation (12) represents the memory of the SGS
velocity seen by a particle at the previous time step and the third term accounts for the
contribution of SGS fluctuations seen by heavy particles.

In order to close equation (12), we need to specify δTLp,ii and Ci considering the particle
inertia, filter width and the effects of gravity. We shall firstly give the definitions of the
correlation functions and the timescales at full- and SGSs used in this paper.

2.4. Subgrid scale timescale seen by heavy particles

The Eulerian temporal correlation can be calculated as

RE,i j(τ ) =

〈
ui(x, t0)u j(x, t0 + τ)

〉〈
ui(x, t0)u j(x, t0)

〉 (14)

and the Eulerian integral timescale is then

TE,i j =

∫
∞

0
RE,i j(τ )dτ, (15)

where i, j = 1, 2, 3 denote the directions of the three axes. The Lagrangian correlation can be
calculated as

RL,i j(τ ) =

〈
ui(x0, t0)u j(x(t0 + τ), t0 + τ)

〉〈
ui(x0, t0)u j(x0, t0)

〉 (16)

and the Lagrangian integral timescale is

TL,i j =

∫
∞

0
RL,i j(τ )dτ . (17)

The SGS Eulerian temporal correlation can be calculated as

δRE,i j(τ ) =

〈
u′

i(x, t0)u′

j(x, t0 + τ)
〉〈

u′

i(x, t0)u′

j(x, t0)
〉 (18)

and SGS Eulerian integral timescale is

δTE,i j =

∫
∞

0
δRE,i j(τ )dτ. (19)

The SGS Lagrangian correlation can be calculated as

δRL,i j(τ ) =

〈
u′

i(x0, t0)u′

j(x(t0 + τ), t0 + τ)
〉〈

u′

i(x0, t0)u′

j(x0, t0)
〉 (20)
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Table 1. Flow parameters in the DNS 2563.

Method DNS (2563)

Reynolds number Reλ 102.05
rms fluid velocity urms 19.34
Dissipation rate ε 3554.4
Minimum lengthscale η 0.0135
Minimum timescale τK 0.0037
Minimum velocity scale vK 3.6272
Large-eddy turnover timescale TE 0.051
Lagrangian integral timescale TL 0.037
Integral lengthscale L f 0.9946
Viscosity ν 0.0488

and SGS Lagrangian integral timescale is

δTL,i j =

∫
∞

0
δRL,i j(τ )dτ . (21)

Here it is important to point out that x(t0 + τ) in equations (16) and (20) is the location of a fluid
particle based on the full-scale velocity field

dx(t0 + τ)

dτ
= u(x(t0 + τ), t0 + τ). (22)

The Lagrangian correlation function of the SGS velocity seen by heavy particles can be
calculated as

δRLp,i j(τ ) =

〈
u′

i(xp(t0), t0)u′

j(xp((t0 + τ), t0 + τ)
〉〈

u′

i(xp(t0), t0)u′

j(xp(t0), t0)
〉 , (23)

where particle position xp((t0 + τ), t0 + τ) is obtained by solving equation (7). We shall simply
call δRLp,i j(τ ) the SGS correlation seen by heavy particles in this paper. The SGS timescale
seen by heavy particles used in equation (12) can be calculated as

δTLp,i j =

∫
∞

0
δRLp,i j(τ )dτ . (24)

Without the force of gravity, the motions of both particles and fluid are isotropic and δTLp,i j

reduces to δTLp.

3. Closure for the subgrid scale stochastic model

3.1. Eulerian and Lagrangian timescales at full scale and subgrid scale

Table 1 lists the flow parameters of the isotropic turbulent flow simulated in the present study.
All the parameters in the table are non-dimensional. Figure 1 plots the energy spectrum from
the DNS of isotropic turbulence on resolution of 2563. Here the vertical dashed lines represent
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kη

E
(k

)

10-2 10-1 100

10-2

10-1

100

101

102

k-5/3

Figure 1. The energy spectrum of the simulated flow in DNS (2563). The vertical
dashed lines denote different cutoff locations in FDNS.

the different cutoff wavenumbers in FDNS. The rms velocity urms and average dissipation rate
ε are defined below and computed from the energy spectrum as shown in figure 1

urms =

√
1

3
〈ui ui〉 =

√
2

3

∫ kmax

1
E(k) dk, (25)

ε =

∫ kmax

1
2νk2 E(k) dk. (26)

Therefore, the Kolmogorov length, time and velocity scales in DNS are defined as

η = (ν3
/
ε)0.25, τK = (ν/ε)0.5, vK = (εν)0.25. (27)

For full-scale velocity in isotropic turbulent flows, the Eulerian velocity correlation RE(τ ) from
equation (14) decorrelates slower than its Lagrangian counterpart RL(τ ) from equation (16),
as shown in figure 2. Therefore, the Eulerian integral timescale is larger than its Lagrangian
counterpart, TE > TL. Figure 3 shows that the ratio of Lagrangian integral timescale to the
Eulerian integral timescale is independent of turbulent Reynolds number Reλ and has a mean
value of 0.78 [59]. Our current result is consistent with the previous results. The fact that the
timescale ratio is less than one at full-scale is contrary to the results at SGSs which can be
observed in figure 2.

A full-scale turbulent flow field can be directly decomposed into a large-scale part and
an SGS part using the low-pass sharp spectral filter, see equation (2). The SGS flow field can
be thus obtained using equation (3). Figure 4 shows the slices of vorticity contour obtained
from the above decomposition at the cutoff wavenumber kc = 21 or ηkc = 0.284 at z = π .
Figure 4(a) shows the vorticity contour of the full-scale turbulent flow field u. Figure 4(b) shows
the vorticity contour of the large-scale part of the turbulent flow field ũ, while figure 4(c) shows
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R
E
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R
L
(τ)

δR
E
(τ)

δR
L
(τ)

Figure 2. Eulerian and Lagrangian fluid velocity temporal correlation functions
of the full-scale field and SGS field at ηkc = 0.284. In contrast to the full-scale
flow field case, the SGS Eulerian temporal correlation decorrelates faster than
its Lagrangian counterpart in SGS flow field since the small-scale eddies are
convected by energy-containing large eddies in turbulence.

Reλ

T
L
/T

E

0 100 200
0

0.4

0.8

Figure 3. The ratio of Lagrangian integral timescale to Eulerian integral
timescale at different Reynolds numbers. ◦: present result; �: results from [59];
4: result from [16]; − −−−: the mean value 0.78 from [59]. It is observed that
the ratio is independent of Reynolds number.

the vorticity contour of the small-scale (or SGS) part of the turbulent flow field u′. It can be
observed that the vorticity contour in figure 4(b) is much smoother than that in figure 4(a) due
to the low-pass filtering operation. However, there are many small-scale structures with high
vorticity in figure 4(c).
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(a)

(c)

(b)

Figure 4. Vorticity contours of the full-scale flow field, filtered flow field and
SGS flow field at z = π in DNS 2563, where kc = 21 and ωx = ω̃x + ω′

x , ωy =

ω̃y + ω′

y . The filtered field is smooth, while the SGS field exhibits many small-

scale structures. (a) Full-scale vorticity contour
√

ω2
x + ω2

y , (b) Filtered vorticity

contour
√

ω̃2
x + ω̃2

y and (c) SGS vorticity contour
√

ω′
x

2 + ω′
y

2.

In contrast to the full-scale velocity field where the Eulerian velocity decorrelation rate
is slower than its Lagrangian counterpart, the SGS Eulerian correlation function δRE(τ )

decorrelates faster than its Lagrangian counterpart δRL(τ ), as shown in figure 2, where the
cutoff wavenumber is at ηkc = 0.284. This is because in a turbulent flow field, the Eulerian
time correlation is dominated by the sweeping effect, the small-scale eddies in the SGS part are
carried and convected by the large-scale velocity. Thus, the SGS Eulerian correlation function
decorrelation rate is fast and the integral timescale δTE is shorter than the SGS Lagrangian
integral timescale δTL. One additional observation from figure 2 is that both δRE(τ ) and δRL(τ )

decorrelate at much faster rates than RE(τ ) and RL(τ ), respectively. This is because the SGS
field is ‘more’ δ-correlated than the full-scale field as shown in figures 4(a) and (c).

The SGS Lagrangian and Eulerian timescales and their ratio β = δTL/δTE are necessary
parameters for the model of the SGS timescale seen by inertial particles, see equation (31) for
details. The SGS Eulerian timescale δTE can be estimated using

δTE =
3π

10

1

kcūrms
, (28)
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where 3π/10kc is the SGS integral lengthscale (see equation (39) for details). ūrms is the rms of
resolved fluctuating velocity in LES. The SGS Lagrangian timescale can be estimated using

δTL =
1

0.5 + 0.75C0

kSGS

εSGS
, (29)

where C0 is a constant and it is closely related to the Lagrangian Kolmogorov constant.
However, there is great uncertainty about the numerical value of Lagrangian Kolmogorov
constant and it varies in the range 2.0–7.0 estimated from DNS and experiments [57, 60]. A
recent estimation of the Lagrangian Kolmogorov constant is about 6.9 ± 0.2 using DNS data at
high Reynolds number [61]. Sheikhi et al [62] set C0 to be 2.1 in the LES of a passive scalar
using the SDE. As the extent of the consistency between the Langevin equation for a fluid
particle and the Kolmogorov hypotheses about the second-order Lagrangian structure function
is still an open question, we set C0 = 2.1 in FDNS plus SDE and C0 = 6.0 in LES plus SDE,
respectively, in the present study. The SGS kinetic energy kSGS in equation (29) can be estimated
using

kSGS = Cε(εSGS1)2/3 (30)

and Cε = 1.0 and the filter width in physical space 1 = π/kc. εSGS in equation (29) is calculated
using equation (13) in the spectral space. The ratio β = δTL/δTE is larger than unit at the SGS,
this is expected if we observe the decorrelation rates of the SGS correlation functions in figure 2.

3.2. Inertial effects on the subgrid scale timescale seen by heavy particles

The particle inertia affects the SGS timescale seen by heavy particles. In the case of a particle
with a finite Stokes number, the SGS Lagrangian correlation seen by a particle, δRLp(τ ), in the
absence of gravity is shown in figure 5, where the cutoff location is at ηkc = 0.284. It is observed
in figure 5 that the behavior of δRLp(τ ) changes within three limits: the SGS Lagrangian
correlation at St ∼ 0 (St = τp/δTE), the SGS Eulerian correlation at St ∼ ∞ and a strongest
correlation at St ∼ 0.5. Among the three limits, there are two regimes: for 0 < St 6 0.5, the
correlation δRLp(τ ) decays more slowly with increasing St as shown in figure 5(a); for St > 0.5,
the correlation δRLp(τ ) decays faster and faster with increasing St and finally approaches the
SGS Eulerian correlation, as shown in figure 5(b). Similar behavior of full-scale velocity seen
by heavy particles in an isotropic turbulent flow field was previously observed by Jung et al [17].

Quantitatively, the variation of SGS timescale seen by heavy particles, δTLp, is obtained by
integrating δRLp(τ ) from 0 to ∞ and is shown in figure 6 using circles. As discussed above,
our DNS results show that for St < 0.03, dTLp ≈ dTL or the difference between dTL and dTLp

is negligible. Particles with very large Stokes numbers, St ≈ 100 or larger, do not respond to
the SGS eddies, thus δTLp → δTE. For a particle with intermediate Stokes number, δTLp/δTL

varies with St and this variation is non-monotonic. The ratio δTLp/δTL first increases with
increasing St , reaches a maximum at St ∼ 0.5 and then decreases to approach the limiting value
of δTE/δTL. Our numerical results can be fitted by an empirical curve (solid line in figure 6) [46]

δTLp

δTL
=

1

β

{
(0.444 − 0.7ηkc) exp

{
−

[
ln

(
St

0.5

)]2
}

+ 1 − (1 − β) exp

(
−

St

5.15

)}
, (31)
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Figure 5. Lagrangian correlation functions of SGS fluid velocity seen by heavy
particles, ηkc = 0.284. (a) St 6 0.5, the correlation function increases with
particle Stokes numbers, St = τp/δτE. (b) St > 0.5, the correlation function
decreases with particle Stokes numbers.

St

δT
L

p/
δT

L
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1
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Figure 6. Variation of δTLp/δTL with particle Stokes number St , where the
cutoff location is at ηkc = 0.284, St ≡ τp/δTE. Circles: FDNS result; solid line:
equation (31); dashed line: the model δTLp/δTE = 1 − (1 − β)/(1 + St)0.4(1+0.01St)

proposed by Wang and Stock [11] where the timescales at full-scale, TL and TE,
are replaced with those at SGS, δTL and δTE, respectively and β = δTL/δTE =

2.26; dotted line: δTLp = δTL.

where β = δTL/δTE which can be estimated using equations (28) and (29). η in LES is calculated
using equation (27) with the total dissipation rate ε calculated using the SGS eddy viscosity
model,

ε = 2
∫ kc

1
[ν + νe(k| kc)]k

2 E(k) dk. (32)
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Figure 7. Normalized SGS longitudinal fluid spatial velocity correlation at
different cutoff locations. The abscissa has been normalized by the longitudinal
integral scale dL f .

Equation (31) was optimized with the results from several cutoff locations, noting that both δTL

and δTE also depend on kc. It captures all the main characteristics of the dependence of δTLp on
St and kc. It is worth pointing out that the first term in the brackets represents that the magnitude
of the convexity near St = 0.5 depends on the filter width ηkc.

3.3. The elliptic model for the subgrid scale timescale seen by heavy particles under gravity

Under gravity, δRLp,i j(τ ) and the timescale δTLp,i j are anisotropic even in isotropic turbulent
flows due to the drift velocity. The cross trajectory effect makes δRLp,i j(τ ) decorrelate more
rapidly in the direction of the drift velocity than in the case without drift velocity. In order
to relate dRLp,i j(s) to the statistics of SGS fluid turbulence, we shall extend the work of
Csanady [14] and Wang and Stock [11] to transfer dRLp,i j(s) from SGS temporal correlation
to SGS spatial correlation when the drift velocity increases from 0 to ∞ in the context of
LES. δRLp,i j(τ ) in the direction of gravity can be approximately expressed using an exponential
function

δRLp,11(τ ) = exp

(
−

τ

δTLp,11

)
. (33)

The SGS longitudinal correlation function δ f (r) is defined as

δ f (r) =
〈u′

x(x0, y0, z0)u′

x(x0 + r, y0, z0)〉

〈(u′
x)

2(x0, y0, z0)〉
. (34)

The normalized SGS longitudinal correlations at different cutoff locations are plotted in figure 7.
As the first-order approximation, we use an exponential relation to represent δ f (r) in the SGS
flow field

δ f (r) = exp

(
−

r

δL f

)
. (35)
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Figure 8. Variation of the SGS longitudinal integral scale with the filter width.
Solid line: theoretical equation (39); squares: DNS result using equation (36) at
different cutoff locations.

The abscissa in figure 7 has been normalized by the longitudinal integral scale δL f which is
defined as

δL f ≡

∫
∞

0
δ f (r) dr. (36)

By extending the relation L f =
(
π
/

2u2
rms

) ∫
∞

0 (E(k)
/

k) dk for the full-scale flow field in an
isotropic turbulent flow into the SGS case [16], we can obtain

δL f =
π

2u ′2
rms

∫
∞

kc

E(k)

k
dk, (37)

where the SGS rms turbulent velocity u′

rms can be obtained from the 3D energy spectrum

u′

rms =
2

3

∫
∞

kc

E(k)dk. (38)

Introducing the energy spectrum E(k) = CKε2/3k−5/3 in equations (37) and (38), we can obtain

δL f =
3

10

π

kc
. (39)

The comparison of equations (39) and (36) using DNS data is shown in figure 8. We can observe
that the computational results and the theoretical formula are consistent with each other. Thus
we can use equation (39) to estimate the necessary parameter, the lengthscale of the SGS motion,
δL f in the closure equations (46) and (47) for the SGS-SDE model.

The SGS transverse correlation function δg(r) is defined as

δg(r) =
〈u′

y(x0, y0, z0)u′

y(x0 + r, y0, z0) + u′

z(x0, y0, z0)u′

z(x0 + r, y0, z0)〉

〈(u′
y)

2(x0, y0, z0) + (u′
z)

2(x0, y0, z0)〉
. (40)
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For an isotropic and incompressible turbulent flow, since the continuity equation k · û = 0 holds
for every wavenumber k in the spectral space, the SGS transverse correlation function δg(r) can
be obtained using the continuity relation

δg(r) = δ f (r) +
r

2

d(δ f (r))

dr
. (41)

Using equations (35) and (41), we can obtain

δg(r) =

(
1 −

r

2δL f

)
exp

(
−

r

δL f

)
. (42)

With equations (33), (35) and (42) for δRLp,11(τ ), δ f (r) and δg(r) respectively, we shall
consider the SGS fluid velocity correlation seen by heavy particles RLp,i j(τ ) under gravity.

The mean spatial displacement parallel to the direction of gravity is r = 〈w〉 τ in the
time interval τ for a heavy particle settling at a mean speed 〈w〉, which can be obtained from
equation (11) if we neglect the effects of preferential sweeping on particle settling [18, 63]. This
displacement leads to δ f (r), a decorrelation in space. As stated by Csanady [14], in the limiting
case of δL f / 〈w〉 � min(δTL, δTE), we have δRLp,11(τ ) = δ f (〈w〉 τ) parallel to the direction of
gravity and δRLp,22(τ ) = δRLp,33(τ ) = δg(〈w〉 τ) perpendicular to the direction of gravity.

In a general situation, both the inertia and the drift velocity are not zero, and the two effects
can be included in δRLp,11(τ ) by extending the elliptic hypothesis of Csanady [14] into the SGS
case that δRLp,11(τ ) is a constant on the ellipse

τ 2

(δTLp)2
+

(〈w〉 τ)2

(δL f )2
= const. (43)

Equation (43) can be also derived from the elliptic model for Lagrangian time correlation,
as done by He et al [64]. δRLp,11(τ ) can be formally expressed as a Taylor series in terms
of space and time separations, where the particle separations can be further expanded as a
power series of time delay. The first-order approximation gives the Taylor frozen-flow model
and the second-order one recovers the above elliptic model. Equation (43) makes a smooth
transition of dRLp,11(s) from the SGS temporal correlation to the SGS spatial correlation

when 〈w〉 changes from 0 to ∞. If replacing r/δL f , r with τ

√
1
/
δT 2

Lp + 〈w〉
2
/
δL2

f and 〈w〉 τ

in equations (35) and (42), respectively, we can obtain the SGS correlations seen by heavy
particles in the gravitational direction δRLp,11(τ ) and perpendicular to the gravitational direction
δRLp,22(s) = δRLp,33(s), respectively,

δRLp,11(τ ) = exp (−τn) , (44)

δRLp,22(τ ) =

(
1 −

〈w〉 τ

2δL f

)
exp (−τn) , (45)

where τn = τ

√
1/δT 2

Lp + 〈w〉
2/δL2

f . Integrating equations (44) and (45), we can get SGS
timescales along the direction of the drift velocity δTLp,11 and normal to the direction of the
drift velocity δTLp,22 or δTLp,33, respectively,

δTLp,11 =

∫
∞

0
δRLp,11(τ ) dτ =

1√
1

δT 2
Lp

+ 〈w〉
2

δL2
f

, (46)
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TLp,22 or TLp,33with particle Stokes settling velocity w0 for StK = 0.5 and filter
width ηkc = 0.284.

δTLp,22 =

∫
∞

0
δRLp,22(τ ) dτ =

1√
1

δT 2
Lp

+ 〈w〉
2

δL2
f

1 −
〈w〉

2δL f

1√
1

δT 2
Lp

+ 〈w〉
2

δL2
f

 . (47)

We compare the analytical results of equations (46) and (47) with our numerical results of drift
velocity in figure 9. It is shown that the proposed formulae fit the numerical results well. With
increasing drift velocity, δTLp,11 decreases due to the crossing trajectory effect (solid line and
squares) and the continuity effect further reduces δTLp,22 or δTLp,33 (dashed line and circles). In
the limit of very large drift velocities, 〈w〉 → ∞, δTLp,22 → 0.5δTLp,11.

To consider the anisotropy due to gravity, we can express the coefficient Ci on the right-
hand side of equation (12) as [58]

Ci = C1bi + 2
3(bi − 1), (48)

where bi = δTLp/δTLp,i i (i = 1 and 2 or 3) and C1 can be expressed as follows when we consider
the inertial effects

C1 =
C0β{

(0.444 − 0.7ηkc) exp
{
−
[
ln
(

St
0.5

)]2
}

+ 1 −(1 − β) exp
(
−

St
5.15

)} , (49)

where C0 = 2.1 in FDNS and C0 = 6.0 in real LES to take into account the over-correlative flow
structures due to the SGS model error. When the Stokes number is very small and there is no
drift velocity, C1 = C0, bi = 1, thus Ci reduces to C0 for fluid particles [62].

We shall summarize the SGS-SDE model given by equation (12) where the SGS timescale
δTLp,11 is given by equation (46), δTLp,22 and δTLp,33 are given by equation (47) where δL f is
given by equation (39), 〈w〉 is given by equation (11), δTLp is given by equation (31) where β

is given by equations (28) and (29). The coefficient Ci is given by equations (48) and (49). The
SGS-SDE (12) is then closed. We shall validate this model by predicting the particle relative
dispersion in the next section.
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4. Large-eddy simulation of two-particle relative dispersion

4.1. Validation of the subgrid scale-stochastic differential equation model by comparison
with direct numerical simulation

The relative dispersion of heavy particles is very important in turbulent transport and mixing in
many industrial and natural flows. The correlations in local turbulent structures are responsible
for the superdiffusive separation of heavy particles [5, 65]. In isotropic turbulence, the two-
particle relative dispersion is mainly dominated by small-scale motions which cannot be
resolved in conventional LES. Thus prediction of two-particle relative dispersion poses a
challenge for the LES method. In LES, SGS fluid velocity and SGS turbulent structures are
removed due to the filtering operation, and the SGS eddy viscosity model is usually over-
dissipative and it also alters the spatial-time correlations of the resolved motions [26]. Thus,
the relative dispersion of inertial particles might be affected by the SGS motions.

In this subsection, we shall validate the proposed closure for the SGS-SDE model
(equation (12)) to consider the effects of SGS motions on two-particle relative dispersion
with an initial separation in the inertial subrange using FDNS and LES respectively. The
separation between two particles in time is R(t) ≡ xp,2(t) − xp,1(t), where xp,2(t) and xp,1(t)
are the positions of two particles. The relative dispersion is defined as 〈δR(t, R0) · δR(t, R0)〉

where δR(t) = R(t) − R(t = 0) is the vectorial separation increment and the initial separation
R0 = |R(t = 0)|. For fluid particles with an initial separation in the inertial subrange, η � R0 �

L f and t � TE, the relative dispersion has two regimes, that is, the Batchelor regime and the
Richardson regime, respectively,

〈δR(t, R0) · δR(t, R0)〉 =


11

3
C0 R2

0

(
t

t0

)2

, t � t0 ≡

(
R2

0

ε

)1/3

,

gRεt3, t0 � t � TE,

(50)

where L f is the integral lengthscale, TE is the large-eddy turnover time, TE = L f /urms =

(L2
f /ε)

1/3, gR is the Richardson constant and C0 = 2.1. The Batchelor regime has been observed
numerically or experimentally, while the existence of the Richardson regime has not been well
established [5, 65]. The Batchelor regime was also experimentally observed for heavy particles.
The heavy particles initially separate faster than fluid particles [65].

When the flow reaches a stationary state, 2 × 105 pairs of particles with an initial separation
of R0 = 20η = 0.27 are released into the flow field. The initial particle velocities are set to
be the fluid velocities at the individual particle position. The life time of an eddy at scale R0

is t0 = 0.0268 and its ratio to the large-eddy turnover time is TE/t0 = 1.86 for the simulated
flow at a modest Reynolds number. In LES, the resolution of 323 is used. In FDNS, the cutoff
wavenumber is kc = 10. The SGS lengthscale estimated using equation (39) in LES and FDNS
is about δL f = 0.09, much smaller than the initial separation, R0 = 0.27. In figures 10–13,
the solid line denotes the result obtained from DNS, the short dashed line denotes the result
from FDNS, the long dashed line denotes the result from LES, the dash-dot-dotted line denotes
the result from FDNS with the SGS-SDE model and the dash-dotted line denotes the result
from LES with the SGS-SDE model. Please note that the dashed line for FDNS and the
dash-dotted line for LES with SGS-SDE model almost collapse in figure 13(b). One can
observe that both FDNS and LES under-predict the relative dispersion of heavy particles due
to missing fluctuating SGS fluid motions. Another observation is that LES under-predicts the
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Figure 10. Comparison of the results from DNS, FDNS, LES, FDNS plus
SDE and LES plus SDE at Stokes number StK = 0.1. (a) StK = 0.1, w = 0 and
(b) StK = 0.1, w = 18.1.
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Figure 11. Comparison of the results from DNS, FDNS, LES, FDNS plus
SDE and LES plus SDE at Stokes number StK = 1.0. (a) StK = 1.0, w = 0 and
(b) StK = 1.0, w = 18.1.

relative dispersion even lower than FDNS. This is due to the SGS model error. The SGS eddy
viscosity model used to close the filtered Navier–Stokes equations (4) makes the fluid field more
correlative than that in FDNS [26], thus, particles separate slower in LES flow field than in
FDNS flow field. Therefore, a larger value of the coefficient C0 = 6.0 in equation (49) is needed
in the LES plus SGS-SDE model to recover the effects of SGS motion on particle separation.
It means that more strongly modeled SGS perturbations are needed in the real LES plus SGS-
SDE model than in the FDNS plus SGS-SDE model to separate particle pairs. The observations
show that the proposed SGS-SDE model can improve the prediction of relative dispersion in all
cases at Stokes numbers StK = 0.1, 1.0, 2.0 and 3.0 both with and without the force of gravity,
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Figure 12. Comparison of the results from DNS, FDNS, LES, FDNS plus
SDE and LES plus SDE at Stokes number StK = 2.0. (a) StK = 2.0, w = 0 and
(b) StK = 2.0, w = 18.1.
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Figure 13. Comparison of the results from DNS, FDNS, LES, FDNS plus SDE
and LES plus SDE at Stokes number StK = 3.0. In (b) the dashed line for FDNS
and the dash-dotted line for LES plus SDE almost collapse. (a) StK = 3.0, w = 0
and (b) StK = 3.0, w = 18.1.

respectively. In the cases with gravity, the drift velocity is 18.1, which is comparable to the
rms turbulent fluctuating velocity. The drift velocity reduces the relative dispersion of heavy
particles in all cases. The result is consistent with the results of EIMaihy and Nicolleau [66]
in which heavy particles disperse in a flow field based on kinematic simulation. We can also
notice that with increasing Stokes number, the performance of the SGS-SDE model for heavy
particles with larger Stokes number decreases. This is physical since heavy particles with larger
Stokes numbers are awkward to respond to recovered SGS motions by the SGS-SDE model
with increasing inertia.
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4.2. Assessment of the subgrid scale-stochastic differential equation model by comparing with
the approximate deconvolution methods

In addition to the SGS-SDE model discussed above, SGS models based on fractal interpolation
and the ADM were used to model the effects of SGS turbulence on the statistics of fluid and
particle velocities and particle concentration in channel flows by Marchioli et al [27]. It was
shown that the two-dimensional fractal interpolation is inefficient since the reconstructed fluid
signals vary rather smoothly in space. An improvement in the prediction of wall-normal particle
concentration was obtained using the ADM.

In this subsection, we shall compare the performance of the SGS-SDE model with the
ADM on relative particle dispersion in isotropic turbulence. The main principle of the ADM is
to approximate the inverse of a smooth filter Ĝ−1(k) by a truncated series of the filter Ĝ(k),

Ĝ−1(k) '

N∑
n=0

(
I − Ĝ(k)

)n
, (51)

where I is the identity operator. According to Stolz and Adams [33], N = 5 is sufficient.
Therefore, we can obtain the approximation of the inverse of a smooth filter, Ĝ−1(k), when
N = 5,

Ĝ−1(k) ' 6 − 15Ĝ(k) + 20Ĝ2(k) − 15Ĝ3(k) + 6Ĝ4(k) − Ĝ5(k). (52)

Using equation (52), we can obtain the improved fluid velocity û∗(k, t) by

u∗(k, t) = Ĝ−1(k) ∗ ˆ̄u(k, t)

' 6 ˆ̄u(k, t)−15 ˆ̄ū(k, t)+20
ˆ̄
¯̄u(k, t)−15

ˆ̄
¯̄ū(k, t)+6

ˆ̄
¯̄
¯̄u(k, t)−

ˆ̄
¯̄
¯̄ū(k, t), (53)

where the multiple bars over û denote repeated filtering, that is, ˆ̄ū(k, t) = Ĝ(k, t) ∗ ˆ̄u(k, t),
ˆ̄
¯̄u(k, t) = Ĝ(k, t) ∗

ˆ̄ū(k, t), . . ., and ˆ̄u(k, t) is the resolved velocity from LES. We choose the
3D Gaussian and top-hat filters in this study and they are defined as follows:

Ĝ(k) =

exp

(
−

|k|
2 12

24

)
if |k| < kc,

0 if |k| > kc

(54)

and

Ĝ(k) =


sin

(
1
2 kx1

)
1
2 kx1

sin

(
1
2 ky1

)
1
2 ky1

sin

(
1
2 kx1

)
1
2 kz1

if |k| < kc,

0 if |k| > kc.

(55)

The one-dimensional Gaussian and top-hat filters and their inverses computed using
equation (52) are shown in figure 14. We can observe that the two filters and their inverses
are qualitatively similar and the inverse filters can increase the Fourier coefficients near the
cutoff wavenumber (k/kc ≈ 1) by about 50%.

The function of the SGS-SDE model is to reconstruct the SGS fluid velocity along the
trajectory of a heavy particle, while the ADM tends to improve the accuracy of the resolved
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Figure 14. The one-dimensional Gaussian and top-hat filters and their
approximate inverses.
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Figure 15. Comparison of LES plus SDE and LES plus ADM at Stokes number
StK = 0.1. (a) StK = 0.1, w = 0 and (b) StK = 0.1, w = 18.1.

scales near the cutoff wavenumber in LES but not to recover the scales smaller than the filter
width. The performances of the SGS-SDE model and the ADM on relative dispersion thus might
depend on particle inertia. This is because the motions of particles with small Stokes numbers
are sensitive to the fluctuating SGS velocity, and the motion of particles becomes less and less
sensitive to the fluctuating SGS velocity with increasing Stokes number. Therefore, the SGS-
SDE model improves the relative dispersion of particles with small Stokes numbers and the
ADM improves the relative dispersion of particles with modest Stokes numbers. This tendency
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Figure 16. Comparison of LES plus SDE and LES plus ADM at Stokes number
StK = 1.0. (a) StK = 1.0, w = 0 and (b) StK = 0.1, w = 18.1.
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Figure 17. Comparison of LES plus SDE and LES plus ADM at Stokes number
StK = 2.0. (a) StK = 2.0, w = 0 and (b) StK = 2.0, w = 18.1.

is demonstrated through figures 15–18, where both the SGS-SDE model and AMD can improve
the prediction of relative dispersion for all Stokes numbers, but the extent of improvement varies
for particles with different Stokes numbers. In figures 15 and 16, the SGS-SDE model performs
well while the ADM performs modestly at StK = 0.1 and 1.0. In figure 17, both the SGS-SDE
model and the ADM perform modestly for particles with StK = 2.0, while the ADM performs
well but the SGS-SDE model performs modestly for particles with StK = 3.0 in figure 18.
Another observation in figures 15–18 is that the Gaussian filter and the top-hat filter perform
similarly. This is expected from figure 14, where the Gaussian inverse filter and top-hat inverse
filter are very similar.
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Figure 18. Comparison of LES plus SDE and LES plus ADM at Stokes number
StK = 3.0. (a) StK = 3.0, w = 0 and (b) StK = 3.0, w = 18.1.

5. Conclusions and future work

Relative dispersion of heavy particles is very important for turbulent transport and mixing and
it is mainly determined by small-scale motions in isotropic turbulence which are absent in
conventional LES. Therefore, prediction of turbulent relative dispersion raises a new challenge
for the LES method. In this paper, we propose the use of an SGS-SDE model to represent the
effects of the SGS eddies on the relative dispersion in LES. Although the stochastic Langevin
equation is not new, how to close the equation which accounts for filter width, particle inertia
and gravity is important in the context of LES. The main objective of this paper is to provide the
SGS timescale seen by heavy particles for the SGS-SDE model. For this purpose, the physics
of the interaction between heavy particles and the SGS turbulence obtained by FDNS has to be
explored.

The new physical findings include:

1. The timescales of SGS velocity fields are not only quantitatively but also qualitatively
different from the ones of full-scale velocity fields. The SGS Eulerian timescale δTE is
shorter than its Lagrangian counterpart δTL because the SGS eddies are contained and
convected by large-scale eddies in the flow. Their ratio β = δTL/δTE, a necessary parameter
for the closure, is larger than unity and changes with the filter widths.

2. In the absence of gravity, the SGS timescale δTLp non-monotonically varies with particle
Stokes number from the SGS Lagrangian timescale to the SGS Eulerian timescale with a
maximum at Stokes number St = τp/δTE near 0.5 due to the inertial bias between the fluid
and heavy particles.

3. In the presence of gravity, a similarity law exists between the SGS Lagrangian correlation
function seen by a heavy particle within a time-delay τ and the SGS spatial correlation
function with the displacement 〈w〉τ of a heavy particle. To combine the effects of particle
inertia and gravity on the SGS timescale seen by particles, a nonlinear elliptic model is first
extended into the SGS flow fields to analytically derive the SGS timescale seen by heavy
particles.
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4. The crossing trajectory effect due to gravity reduces δTLp,11 with increasing settling
velocity and the continuity effect further reduces δTLp,22 or δTLp,33.

5. Gravity tends to reduce the relative dispersion of heavy particles in isotropic turbulent
flows.

The nonlinear model for the SGS timescale seen by particles is then used to close the SGS-SDE
model for LES and FDNS. It is validated against DNS of relative dispersion. The proposed
model can improve the prediction of relative dispersion with an initial separation in the
inertial subrange at different Stokes numbers with and without gravitational force, respectively.
Furthermore, the assessment of the relative performances of the SGS-SDE model and the ADM
is carried out. We found that the SGS-SDE model is suitable for particles with small Stokes
numbers, StK < 2, while the ADM is more suitable for particles with modest Stokes numbers,
StK > 2.

The LES prediction of other quantities related to particle separations such as the radial
distribution function and the mean radial relative velocity between particles with the SGS-SDE
model needs to be investigated in the future. In turbulent channel flows, the SGS timescale seen
by particles changes with the distance from the wall due to the presence of strong shear rates
and high flow anisotropy in the near-wall region [8, 27, 67]. The corresponding problem that
should be studied is the effects of the shear rate on the SGS timescale seen by heavy particles.
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