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a b s t r a c t

Progressive failure constitutive model of fracture plane in geomaterial based on strain strength distribu-
tion is proposed. The basic assumption is that strain strength of geomaterial comply with a certain dis-
tribution law in space. Failure of tensile fracture plane and shear fracture plane in representative volume
element (RVE) with iso-strain are discussed, and generalized failure constitutive model of fracture plane
in RVE is established considering combined effect of tension and shear. Fracture plane consists of elastic
microplanes and fractured microplanes. Elastic microplanes are intact parts of the fracture plane, and
fractured microplanes are the rest parts of the fracture plane whose strain have ever exceeded their strain
strength. Interaction mode on elastic microplanes maintains linear elasticity, while on fractured micro-
planes it turns into contact and complies with Coulomb’s friction law. Intact factor and fracture factor
are defined to describe damage state of the fracture plane which can be easily expressed with cumulative
integration of distribution density function of strain strength. Strong nonlinear macroscopic behavior
such as yielding and strain softening can be naturally obtained through statistical microstructural dam-
age of fracture plane due to distribution of strain strength. Elastic–brittle fracture model and ideal elas-
toplastic model are special cases of this model when upper and lower limit of distribution interval are
equal.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Geomaterial is usually discontinuous with joints and pre-exist-
ing cracks (Harrison and Hudson, 2000; Jing, 2003; Selvadurai and
Yu, 2005; Brzakala, 2011). Even for the intact geomaterial sample,
it is also heterogeneous due to multi-components, internal micro-
cracks or micro-defects in mesoscopic view (Schulz and Evans,
2000; Yue et al., 2003; Lindqvist et al., 2007; Xua et al., 2008). Nat-
ure of failure process of geomaterial is the growth and coalescence
of inner micro cracks and micro defects until macro structural fail-
ure takes place under external loads (Patton, 1996; Tanga and Kou,
1998; Grasselli and Egger, 2000; Yang and Chiang, 2000). In order
to describe this physical process, plastic model based on contin-
uum mechanics was founded with nonlinear constitutive relation
established by macro experimental parameters (Lade and Kim,
1995; Ketan, 1997; Cekerevaca et al., 2006). Plasticity is a phenom-
enological model, which translates the complex geometrical prob-
lem into complicated physical problem. Plastic models such as
ideal elastoplastic model, brittle fracture model, strain softening
model etc. can only be used to the situation that crack length is
much less than research scale and macro homogeneity is applica-
ble. Under this circumstance, internal crack and fracture state in
ll rights reserved.

.

material cannot be described clearly. Fracture mechanics model
and damage mechanics model are proposed to analysis bearing
capacity and property of geomaterial with macro cracks or micro
defects (Palaniswamy and Knauss, 1972; Misra et al., 2002; Ander-
son, 2005). However, it is not easy to use fracture mechanics model
to analysis global structural failure of material since it concentrates
on single-crack property and the result strongly depends on size of
element mesh when used in computational mechanics (Marjia
et al., 2006); Damage constitutive models for geomaterial based
on elastoplasticity (Salari et al., 2004; Fang et al., 2011), energy
(Swoboda1 and Yang, 1999), and statistic models considering sta-
tistics micro cracks and defects (Suvorov and Selvadurai, 2011),
or distributive material parameters (Tang, 1997; Cao and Fang,
1998; Wang et al., 2007; Jiang et al., 2009; Deng and Gu, 2011)
have also been established to get progressive failure macroscopic
behavior. However, in these models, statistic damage of material
was expressed as reduction of elastic modulus. Internal state such
as mesoscopic discontinuity have not been fully described, and
damage and failure caused by combined effect of tension and shear
is hardly mentioned.

The objective of this paper is to propose a new progressive fail-
ure constitutive model for fracture plane in geomaterial based on
strain strength distribution. Fracture plane here refers to interface,
plane with plane crack or any section of RVEs in geomaterial. Three
types of failure mode are discussed which include tensile fracture,
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shear fracture and fracture with combined effect of tension and
shear. Strain strength is used as statistic and nonlinear macro-
scopic behaviors such as yielding and strain softening of geomate-
rial are naturally obtained through fracture of microplanes.

2. Statement of the problem and basic assumptions

Geomaterial is highly heterogeneous and discontinuous. Con-
stant material parameters are inadequate to describe its compli-
cated internal characteristics. Reasonable descriptions of the
discontinuity are necessary for a theoretical model to achieve real-
istic mechanical behavior of geomaterial. In the theory of progres-
sive failure constitutive model proposed in this paper, strength is
distributed and fractured microplanes are defined to describe the
internal fracture state of material. The geometric concept and
physical meaning of the model is shown in Fig. 1. Research scale
is restricted to the size of representative volume element with
iso-strain. That is also the characteristic length of damage or crack.
Then singularity of stress and strain needs not to be considered.
Strain is used as the measurement index of failure and assumption
of strain strength distribution in material is the major characteris-
tics of this model. Mechanical behavior on elastic area and frac-
tured area of fracture plane are described separately and
dependently. Effective stress on fracture plane is the weighted
summation of the two parts.

There are four basic assumptions:
Assumption 1. This model is applied to fracture plane of repre-

sentative volume elements with iso-strain. Iso-strain means strain
is equal everywhere in space. Research and computational scale is
restricted to representative volume element whose size must be
defined small enough that iso-strain condition is applicable. So
Fig. 1. Geometric concep
strength criterion can be used to describe fracture irrespective of
stress singularity at the crack tip.

Assumption 2. The strain strength complies with a certain distri-
bution law in representative volume element. Strain is used as the
measure of strength. Considering discreteness of strength in mate-
rial, strain strength is not uniform, but defined to comply with a
certain distribution law in space.

Assumption 3. Any section or plane in representative volume
element can be composed of elastic microplanes and fractured
microplanes. Since representative volume element is iso-strain,
any section or plane in it is also iso-strain. But strain strength is
distributed in space. Thus, fractured microplanes are formed where
strain exceeded strain strength, and the intact parts where strain
are lower than strain strength are defined as elastic microplanes.

Assumption 4. Interactions on elastic microplanes remains elas-
ticity, while on fractured microplanes it turns into contact. Elastic
microplanes are continuous and maintain elastic behavior, while
fractured microplanes become discontinuous and can be described
with contact theory. Normal tress on fractured microplanes is zero
in tensile and keeps the same value as the elastic microplanes on
fracture plane in compression. Shear stress on fractured micro-
planes comply with Coulomb’s friction law.

3. Progressive tensile failure model for tensile plane based on
distribution of strain strength

Just consider tensile failure behavior at this part. According to
the assumptions above, strain on tensile plane of representative
volume element is even, but tensile strain strength is distributed.
Under this condition, a tensile plane may be composed of intact
part and fractured part. Intact part consists of elastic microplanes
t of fracture plane.
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whose tensile strain are always below their tensile strain strength
and fractured part consists of fractured microplanes whose tensile
strain have ever exceeded their tensile strain strength. Elastic
microplanes remain linear elasticity, but fractured microplanes
could not bear tension any more.

3.1. Intact factor and fracture factor on tensile fracture plane

In order to represent damage state of tensile fracture plane
quantitatively, intact factor aI and fracture factor aD are defined.
Intact factor aI represents the ratio of elastic microplanes on the
tensile plane and fracture factor aD represents the ratio of fractured
microplanes on the tensile plane. The value of aI and aD are both
between 0 and 1, and satisfy that

aI þ aD ¼ 1 ð1Þ

Intact factor and fracture factor are key parameters of this mod-
el to describe fracture degree or damage state of any fracture plane
in representative volume element. If distribution law of strain
strength and maximum value of strain history is known, intact fac-
tor aI and fracture factor aD can be calculated in statistic way. aI is
expressed as

aI ¼
1 �e 6 emin

FIð�eÞ ¼
R emax

�e f ðnÞdn emin < �e < emax

0 �e P emax

8><
>: ð2Þ

where �e is maximum tensile strain in history. emin; emax are the low-
er and upper limits of tensile strain strength. n is integral variable.
f(n) and FIð�eÞ are distribution density function and cumulative dis-
tribution function of tensile strain strength respectively.

In this model, emin refers to linear limit strain and emax repre-
sents failure strain corresponding to experimental stress–strain
curve. Intact factor aI on tensile fracture plane is defined as a piece-
wise function of maximum tensile strain in history and depends on
the distribution law of tensile strain strength. The value of intact
factor aI is between 0 and 1, which represents the weight of elastic
area remaining to total area of the plane in tension. If �e is less than
minimum value of tensile strain strength emin, aI is equal to 1, that
means the plane is intact. If �e is larger than maximum value of ten-
sile strain strength emax, the tensile plane is totally fractured, aI is
equal to 0. Otherwise, the tensile plane is partly fractured, and aI

can be expressed as the integration of distribution density function
of tensile strain strength from �e to emax. aD is the proportion of ten-
sile fractured area to total area, equals to 1 - aI, which represents
fracture degree caused by tension and can be express as

aD ¼ 1� aI ¼
0 �e 6 emin

FDð�eÞ ¼
R �e
emin

f ðnÞdn emin < �e < emax

1 �e P emax

8><
>: ð3Þ

where FDð�eÞ is the cumulative distribution function of tensile strain
strength.

Different distribution law of tensile strain strength could be
adopted according to different material characteristics, and it will
directly determine the change law of intact factor and fracture fac-
tor, and influence the fracture process of tensile plane. For exam-
ple, if tensile strain strength complies with uniform distribution
law, FIð�eÞ and FDð�eÞ could be written as

FIð�eÞ ¼
Z emax

�e
f ðnÞdn ¼

Z emax

�e

1
emax � emin

dn ¼ emax � �e
emax � emin

ð4Þ

FDð�eÞ ¼
Z �e

emin

f ðnÞdn ¼
Z �e

emin

1
emax � emin

dn ¼
�e� emin

emax � emin
ð5Þ

aI and aD depend on two strength parameters emax and emin.
Weibull distribution (Weibull et al., 1951) is the most popular
among empirical distributions due to its wide applicability (Wang
et al., 2007), probability density function of Weibull is

f ðxÞ ¼ ðm=nÞðx=nÞm�1e�ðx=nÞm ð6Þ

where m is shape parameter, n is scale parameter, x is independent
variable. However, distributive interval of Weibull distribution is
between zero and positive infinity. In order to restrict the interval
to be between emin and emax, the original probability density func-
tion should be modified. Integration of original probability density
function from emin to emax is

P ¼
Z emax

emin

f ðnÞdn ¼
Z emax

emin

ðm=nÞðn=nÞm�1e�ðn=nÞm dn

¼ e�ðemin=nÞm � e�ðemax=nÞm ð7Þ

One can use P as a adjustment factor and the new probability den-
sity function could be written as

f ðxÞ ¼ ðm=nÞðx=nÞm�1e�ðx=nÞm

e�ðemin=nÞm � e�ðemax=nÞm ð8Þ

Then, the cumulative distribution function FIð�eÞ and FDð�eÞ could be
written as

FIð�eÞ ¼
Z emax

�e
f ðnÞdn ¼

Z emax

�e

ðm=nÞðn=nÞm�1e�ðn=nÞm

e�ðemin=nÞm � e�ðemax=nÞm dn

¼ e�ð�e=nÞm � e�ðemax=nÞm

e�ðemin=nÞm � e�ðemax=nÞm ð9Þ

FDð�eÞ ¼
Z �e

emin

f ðnÞdn ¼
Z �e

emin

ðm=nÞðn=nÞm�1e�ðn=nÞm

e�ðemin=nÞm � e�ðemax=nÞm dn

¼ e�ðemin=nÞm � e�ð�e=nÞm

e�ðemin=nÞm � e�ðemax=nÞm ð10Þ

It guarantees that the integration over emin to emax equals to 1. Using
Weibull distribution, aI and aD are controlled by four parameters
emax, emin, m and n. For Weibull distribution, relationship between
intact factor aI and tensile strain is shown in Fig. 2.

Intact factor displays different change law with variation of m
and n as shown in Fig. 2. Shape of the curve is mainly controlled
by m and the scale that the curve covered mainly depends on
parameter n.

3.2. Stress–strain relationship on tensile plane

With intact factor aI and fracture factor aD defined above, the
stress–strain relationship on tensile plane can be written as

rn ¼ aIEeþ
ð1� aIÞEe e < 0
0 e P 0

�
ð11Þ

where E is young’s modulus, rn is effective normal stress on tensile
plane, Ee is an abbreviated expression of linear elastic stress ob-
tained from elastic constitutive equation, the complete form can
be written as Ee ¼ keþ 2len, where k and l are Lame constant, e
is strain invariant, en is normal strain of the tensile plane. e is called
nominal normal strain here after.

There are two parts in the equation. The first part represents
stress on elastic microplanes which maintains linear elastic with
the weight of aI. The second part represents stress on fractured
microplanes with the weight of 1 - aI, which equals to aD. Piece-
wise functions are used to express the stress on fractured micro-
planes. Normal stress on fractured microplanes is zero in tension,
but keeps the same value as elastic microplanes on the plane in
compression.



Fig. 2. Relationship between intact factor and tensile strain in Weibull distribution
law: (a) Influence of m; (b) Influence of n. Fig. 3. Failure process of tensile plane under Weibull distribution law of tensile

strain strength: (a) Influence of m; (b) Influence of n.
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Tensile stress–strain curve on tensile plane obtained from Eq.
(11) is shown in Fig. 3. With progressive failure constitutive model
based on strain strength distribution, the stress–strain curve dis-
plays well accordance to practical stress strain relation. Nonlinear-
ity and strain softening is naturally obtained with this model.
Through variation of m and n, different form of stress–strain curve
can be obtained. Shape of stress–strain curve is influenced by
shape parameter m, which would determine the form of strain
softening. Scale parameter n determines the scale of the curve.
Once the experimental tensile curve is given, the upper and lower
limits of tensile strain strength can be determined. emax is corre-
sponding to failure strain when tensile stress is zero and emin is cor-
responding to elastic proportional limit. With variation of m and n,
different distribution form would be adopted to Weibull distribu-
tion and peak value of tensile stress as well as the strain softening
mode could be determined.
4. Progressive shear failure model for shear plane based on
distribution of strain strength

Only shear failure is considered at this part. Given distribution
law of shear strain strength, the shear plane will fail progressively
through growth of shear strain. Elastic microplanes whose shear
strain haven’t yet reach their shear strain strength will keep linear
elasticity. While fractured microplanes whose shear strain have al-
ready or have ever exceeded their shear strain strength should
comply with the coulomb’s law of friction.

4.1. Intact factor and fracture factor on shear fracture plane

The same as the definition of tensile intact factor and fracture
factor, intact factor bI and bD on shear fracture plane can be written
as

bI ¼
1 �c 6 cmin

FIð�cÞ ¼
R cmax

�c f ðnÞdn cmin < �c < cmax

0 �c P cmax

8><
>: ð12Þ

bD ¼ 1� bI ¼
0 �c 6 cmin

FDð�cÞ ¼
R �c
cmin

f ðnÞdn cmin < �c < cmax

1 �c P cmax

8><
>: ð13Þ

where �c is maximum shear strain in history. cmin and cmax are the
lower and upper limits of shear strain strength. n is integral vari-
able. f(n) is distribution density function. FIð�cÞ and FDð�cÞ are and
cumulative distribution function of shear strain strength.

Intact factor bI represents the weight of elastic microplanes
remaining on shear plane. Fracture factor bD is the ratio of shear
fractured microplanes to total area, equals to 1 - bI, which repre-
sents fracture degree caused by shear.



Fig. 4. Failure process of shear plane under Weibull distribution law of shear strain
strength: (a) Influence of m; (b) Influence of n.

Fig. 5. Joint intact factor in different distribution law with emin = 0.001, emax = 0.02,
cmin = 0.001, cmax = 0.02: (a) Uniform distribution; (b) Weibull distribution.
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4.2. Stress–strain relationship on shear plane

Effective shear stress on shear plane could be expressed as the
weighted summation of elastic stress on elastic microplanes and
friction stress on fractured microplanes with shear intact factor.
Stress–strain relationship can be expressed as

s ¼ bIGcþ
ð1� bIÞGc Gc < jrnjtgu; e < 0
ð1� bIÞjrnjtgu Gc P jrnjtgu; e < 0
0 e P 0

8><
>: ð14Þ

where G is shear modulus, u is internal friction angle, s is effective
shear stress on shear plane, c is shear strain, e is nominal normal
strain on shear plane with the same meaning as introduced in the
previous section, rn = Ee is elastic compressive normal stress on
shear plane.

The first part of the equation on the right side of equal sign
shows the elastic shear stress on elastic microplanes with weight
of bI. The second part expresses the discontinuous contact stress
on fractured microplanes with weight of 1 - bI, which equals to
bD. There are three types of stress on fractured microplanes. If
the fractured microplanes are in tension, shear stress on them is
zero. If the fractured microplanes are in compression and elastic
shear stress is below the maximum static friction stress, friction
stress is equal to elastic shear stress. Otherwise, if the fractured
microplanes are in compression and elastic shear stress is above
the maximum static friction stress, the friction stress is equal to
the maximum static friction stress.
Shear stress–strain curve got form Eq. (14) on shear plane is
shown in Fig. 4. cmax and cmin can be determined corresponding
to yield limit and proportional limit respectively on experimental
curve of direct shear. Through modification of m and n, peak stress
and strain soften mode could also be determined. When exceeding
the proportional limit, which means all area on the shear plane is
fractured, only friction remained on this plane. So shear stress
keeps a constant value that equals to the friction stress at last.
5. Joint failure model based on strain strength distribution

Under many circumstances in reality, fracture and damage are
the combined result of tension and shear. Especially on tension–
shear plane, mutual influence of tension and shear should be
considered.

5.1. Joint intact factor and joint fracture factor

Assume that distribution law of tensile strain strength and
shear strain strength are independent, and then joint intact factor
can be expressed as aIbI, which represents the proportion of elastic
microplanes remaining when tension and shear act simultaneously
on a plane. Joint fracture factor equals to 1 - aIbI, representing the
ratio of fractured microplanes on the plane.

Fig. 5 shows the contour map of joint intact factor in tension
and shear. With combined effect of tension and shear, value of



Fig. 6. Stress–strain curve on tension–shear plane in different distribution law of
strain strength, emin = 0.001, emax = 0.02, cmin = 0.001, cmax = 0.02: (a) Uniform
distribution; (b) Weibull distribution.

Fig. 7. Failure process of shear plane in degenerated form when cmin = cmax: (a)
Elastic–brittle failure; (b) Ideal elastoplastic failure.
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intact factor becomes smaller under the same value of strain com-
pared to the previous single effect cases. That means material is
more likely to fail under tension–shear load.

5.2. Stress–strain relationship on any plane in representative volume
element

With joint intact factor and joint fracture factor defined above,
given any plane in the representative volume element, stress–
strain relationship can be written as

rn ¼ aIbIEeþ
ð1� aIbIÞEe e < 0
0 e P 0

�

s ¼ aIbIGcþ
ð1� aIbIÞGc Gc < jrnjtgu; e < 0
ð1� aIbIÞjrnjtgu Gc P jrnjtgu; e < 0
0 e P 0

8><
>:

ð15Þ

where rn is normal stress, s is shear stress, E is young’s modulus, G
is shear modulus, u is internal friction angle, c is shear strain, e is
nominal normal strain on shear plane with the same meaning as
introduced in the previous section.

It is a generalized failure model on fracture plane which has
considered the mutual influence of tension and shear, and it will
naturally reduce to one of the previous two models under certain
circumstances.

Stress–strain curves on tension–shear plane are calculated with
uniform distribution and Weibull distribution according to Eq.
(15). In this case, shear and tensile strain grow simultaneously
with a special ratio, stress–strain relationship is shown in Fig. 6.
Comparing to failure behavior of pure tension, material appears
to be more vulnerable and much easier to fail under combined ef-
fect of tension and shear in both uniform distribution (Fig. 6(a))
and Weibull distribution (Fig. 6(b)).

6. Degenerated form of the constitutive model

When upper and lower limit of strain strength is equal, which
means strain strength in the material is identical, it degenerates
to classical elastic–brittle model and ideal elastoplastic model nat-
urally. The degenerated stress–strain relationship on shear plane is
shown in Fig. 7. Under this condition, if maximum elastic shear
stress is larger than the maximum static friction stress, brittle fail-
ure phenomenon takes place. Otherwise, if maximum elastic shear
stress is less than the maximum static friction stress, ideal elasto-
plastic behavior takes place.

7. Applications and verification

Progressive failure constitutive model of fracture plane can
make full use of the experimental data. Strain strength parameters
and distributive law of fracture plane can be obtained through ten-
sile test and direct shear test. For tensile strength, emax is corre-
sponding to failure strain when tensile stress is zero and emin is
corresponding to elastic proportional limit on tensile test curve.



Fig. 8. Simulation of tension and shear test with Weibull distribution of strain
strength: (a) Tension PIED uniaxial test; (b) Direct shear test.
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For shear strength, cmax and cmin can be determined corresponding
to break limit and elastic proportional limit respectively on exper-
imental curve of direct shear, and internal friction angle can be cal-
culated through friction stress after shear failure. Distributive law
can be determined by the shape of the experimental curve.

Given experimental test data of tension or shear, strain strength
and distribution law should be obtained in accordance with the
above method. Different materials have different distribution char-
acteristics of strain strength. As examples, assuming that strain
strength complies with Weibull distribution law, distribution of
strain strength is controlled by shape parameter m, scale parame-
ter n and strength interval. Since strength interval can be directly
determined corresponding to elastic proportional limit and break
limit, m and n should be adjusted to make sure that stress–strain
behavior calculated by the theoretical model is in good agreement
with the experimental data. Simulations of tension PIED uniaxial
test of Bažant and Pijaudier-Cabot (1989) and direct shear test of
Bagherzadeh-Khalkhali and Mirghasemi (2009) are shown in Fig. 8.
8. Conclusions

Progressive failure constitutive model of fracture plane in geo-
material based on strain strength distribution is introduced in this
paper. Strain is used as measure of strength and strain strength is
assumed to be distributed in material. Tensile fracture, shear frac-
ture and joint fracture in tension and shear are discussed. Intact
factor and fracture factor are proposed to describe the fracture
state on fracture plane of representative volume element in geo-
material. With definition of elastic microplanes and fractured
microplanes, more detailed description of mesoscopic mechanics
behavior in geomaterial is conducted. Interactions in elastic micro-
planes are linear elastic, while on fractured microplanes are con-
tact and friction.

Stress–strain relationship in tension, shear and combined effect
show that this model is applicative to describe nonlinearity and
strain softening of geomaterial. Through variation of distribution
parameters or distribution law of strain strength, one can get dif-
ferent types of stress–strain relationships corresponding to differ-
ent strain softening forms. Once the tensile and shear experimental
data is given, distribution characteristics of strain strength can be
obtained. Failure under combined effect of tension and shear is dis-
cussed and result shows that material is more vulnerable and
much easier to fail under combined effect of tension and shear.
Progressive failure constitutive model can reduce to elastic–brittle
fracture model and ideal elastic–plastic model when upper and
lower limit of strain strength is equal.

The model proposed here concentrates on the behavior of pro-
gressive failure for fracture plane in geomaterial. Complicated
macroscopic mechanical behavior of fracture plane in geomaterial
is naturally obtained through mesoscopic fracture and mechanism
of interactions on mesoscopic discontinuity. Fracture and friction
are quantitatively determined in statistic way and with the defini-
tion of fractured microplanes. It provides a new way to understand
and describe nature of progressive failure mode and process of
geomaterial in detail. Thus future work may extend this model to
other materials and to include, for example, scale dependent model
considering relationship of scale between microplanes and macro-
scopic fracture plane in representative volume element, or energy
dissipation model considering dissipation of fracture energy and
frictional energy. Since fracture is directional, relationship between
stress on fracture plane and homogeneous stress tensor of repre-
sentative volume element during the progressive failure process
also deserves further study.
Acknowledgments

The authors would like to acknowledge the financial support of
China National Program on Key Basic Research Project (973 Pro-
gram, Grant No. 2010CB731500).
References

Anderson, T.L., 2005. Fracture Mechanics: Fundamentals and Application. CRC Press,
Boca Raton, FL.

Bagherzadeh-Khalkhali, A., Mirghasemi, A.A., 2009. Numerical and experimental
direct shear tests for coarse-grained soils. Particuology 7, 83–91.
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