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The Tolman length & of a liquid with a plane surface has attracted increasing theoretical attention in recent years,
but the expression of Tolman length in terms of observable quantities is still not very clear. In 2001, Bartell gave a simple
expression of Tolman length & in terms of isothermal compressibility. However, this expression predicts that Tolman length
is always negative, which is contrary to the results of molecular dynamics simulations (MDS) for simple liquids. In this
paper, this contradiction is analyzed and the reason for the discrepancy in the sign is found. In addition, we introduce a new
expression of Tolman length in terms of isothermal compressibility for simple fluids not near the critical points under some
weak restrictions. The Tolman length of simple liquids calculated by using this formula is consistent with that obtained

using MDS regarding the sign.
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1. Introduction

In 1949, Tolman obtained the following relation between
the surface tension ¢ and the radius of the surface of tension
R, for spherical droplets:!!]
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where 0y is the surface tension of the planar liquid surface, and
dp is called the Tolman length for a planar surface, or Tolman
length for short.
In theory,
% = lim &6(Ry), 2)

Ry—o0

where 0 (Rs) is defined as
8(Rs) = R. — R, 3)

where R, is the radius of the equimolar surface.['! Equation (1)
shows that the surface tension deviates from its planar value
when the droplet radius is on the order of the Tolman length,
so that the Tolman length measures the extent to which the
surface tension of a small liquid drop deviates from its planar
value. Since any small radius depending on the surface ten-
sion influences the nucleation rate exponentially, experimental
interest is increased due to its nucleation phenomena.?! The
Tolman’s length & of a liquid with a plane surface has also
caught increasing theoretical attention in recent years, while
the expression of Tolman length in terms of the observable
quantities is still not very clear.’! In 2001, Bartell’s thermody-
namic approximate treatment proposed a simple relation be-
tween the Tolman length and the isothermal compressibility at
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a two-phase coexistence point in the form of
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where K is the isothermal compressibility of the bulk liquid
phase.[*! In 2006, Blokhuis and Kuipers®! gave an exact ther-
modynamic expression
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where Ky is the isothermal compressibility of the bulk vapor
phase at the two-phase coexistence point; p; o and py o are the
densities of the bulk liquid phase and the bulk vapor phase
at the two-phase coexistence, respectively; Apg and Ap; are
the difference between the densities of bulk liquid phase and
bulk vapor phase at the two-phase coexistence point and its
first derivative with respect to the curvature of the equimolar
surface at zero curvature, respectively; u is half of the sec-
ond derivative of the chemical potential with respect to cur-
vature of the equimolar surface at zero curvature. In 2010,
Zhu and Wang/®! derived two general relationships between
Tolman length and other thermodynamic quantities for single-
component liquid—vapor systems by replacing the equimolar
surface with ordinary dividing surface. Equations (5) and (6)
turn out to be two special cases of their results.

Since it is difficult to obtain the second derivatives of
the chemical potential in Eq. (5) and to use Eq. (5), it is of
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great significance to find approximate formulas of the Tol-
man length and their application conditions. In this context,
Blokhuis and Kuipers'®! pointed out that Bartell’s relation (4)
could be obtained from Eq. (5) based on the following two
assumptions:

Uz =0, N
pv=0. ®)

However, the Tolman length obtained with the help of Bartell’s
relation (4) is always negative, which contradicts with the val-
ues originating from MD simulations for simple liquid in the
sign. MD simulations have been widely accepted as a stan-
dard test method for the Tolman length.l>~131 For example,
Blokhuis and Kuipers®! pointed out that the discrepancy in
sign and its dependence on the interaction potential is not yet
understood, and further MD simulations may help us to re-
solve these issues. Therefore, Bartell’s relation (4) is incorrect
for simple liquids at least.

In this paper, we analyze the cause of the discussed prob-
lem related to Bartell’s formula (4) and propose a new approx-
imate relation between the Tolman length and the isothermal
compressibility for simple fluids not near the critical points,
under some other weak restrictions. This relation can always
result in a Tolman length which is consistent with all the re-
sults by means of MD simulations about the sign.

2. Analysis of Bartell’s formula

On the one hand, we have analyzed the composition of
Bartell’s formula (4) above. Blokhuis and Kuipers pointed out
that Eq. (5) is equivalent to Bartell’s formula (4) under the as-
sumptions (7) and (8). However, assumption (7) is not always
correct for all systems. This is the reason for that the Tolman
length obtained using Bartell’s relation (4) is different from
that derived by means of MD simulations.

On the other hand, we check Bartell’s deriving procedure
of Eq. (4). He adopted the following fundamental assumption:

Au = oopvig/Re + (Pv — Pvo)V10s &)

where A is the difference between the liquid drop (at unstable
equilibrium with the vapor at pressure py) and the bulk liquid
(at the bulk equilibrium vapor pressure py ) in the chemical
potential at the same temperature, and v; ¢ is the molar volume
of the bulk liquid at the pressure py o.

In order to reveal the possible essence of assumption (9),
we note that it can be derived from the following two sub-
assumptions. i) The liquid phase is incompressible, that is,

V| = V10, (10)

where v; is the molar volume of the internal phase of the liquid
drop. ii)

p1—py =200/Re, Y

where p is the pressure of the internal phase of the liquid drop.

Bartell computed the quantity Ay using two different
methods. One was based on the assumption (9), and the other
was based on the relation

Al = /pl wdp (12)
Ipvo
together with the state equation of linearly compressible flu-
ids. Finally, he derived Eq. (4) by assuming that Au obtained
from these two methods are equal.

In fact, Au obtained by these two methods are not equal,
which can be proved as follows.

Firstly, we use sub-assumptions (10) and (11) to replace
assumption (9) in the first method to check whether Ay ob-
tained through these two methods are equal.

Noting that Eq. (11) could also be described as!'*!

do ao,
P1— DPv :20-6/R€+ |::| :ZGe/Re‘f'ie (13)
R=R.

JdR OR.’
where the square-bracketed term gives the derivative of o (R)
with respect to a mathematical displacement of the dividing
surface, we obtain
R. do,

= = 14
Ge+28Re (o]} (14)

by combining Eq. (11) and Eq. (13) and

k
GC(R6)260+FZ, (15)

€
where k; is an integration constant!'* obtained by integrating
Eq. (14) at a constant temperature. Equation (15) implies that

& =0, (16)

which is contrary to Eq. (4). This contradiction demonstrates
that Ay obtained by these two methods are not equal.

Secondly, we analyze the assumption (9) as a whole. As-
sumption (9) is so unique and complex for us to understand
it and to judge whether a given system satisfies it, unless it
is divided into two sub-assumptions (10) and (11). Though
some researchers believed that the validity of assumption (9)
has been justified by some density functional theory (DFT)
calculations for simple fluids,!'>1% we would like to point out
that because DFT contains some approximations, the conclu-
sive judgment should be made by MD simulations. Since MD
simulations are inconsistent with Bartell’s solution (Eq. (4))
for simple liquids at least, they are also incompatible with as-
sumption (9).

Therefore, the assumption that the values of Ay obtained
using the two methods are equal is incorrect. This explains
the discrepancy in the sign of the Tolman length derived by
Bartell’s equation (4) and that given by MD simulations for
simple liquids.
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3. A new approximate relation between the Tol-
man length and isothermal compressibility

Since the known approximate relation between the Tol-
man length and isothermal compressibility (Eq. (4)) is invalid,
it is meaningful to seek a new approximate relation between
the Tolman length and isothermal compressibility, which is
consistent with the results originating from MD simulations
about the sign. In this section, we apply this idea to simple
liquids not near the critical point under some other weak re-
strictions.

On the one hand, based on the Kirkwood-Buff molec-
ular theory of the surface tension, assuming pyo = 0 and

g(z1,22,712) = g1o(r12), Jain and Nanda!'”! proved that
2
TPy [
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for the case of a linear or a cubic density profile of transition
layer, where u(r) is the pair potential, gjo(r) stands for the
two-body distribution function in the bulk liquid, and w is the
width of the transition zone.

Since the width of the transition zone w is greater than
several core diameters and not close to the critical point,
pv.0 = 0, the surface tension is approximately equal to

2
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w
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where A is a positive dimensionless parameter depending on

G()(W)

the profile shape.'®1°! It is worth noting that to understand
the sufficiency of the condition that the width w is larger than
several core diameters, one can refer to Ref. [19], the authors
of which stated that it is “good approximation even when w
equals the core diameter”.

Combination of Eq. (17) and Eq. (18) gives

T
S(w) = 304"

We can see from Eq. (19) that y(w) is proportional to w.

On the other hand, based on the density functional the-

19)

ory, Mon and Stroud gave the approximate relation between
the width of the liquid—vapor transition zone and the isother-

mal compressibility of simple liquids?"!
12p2, k100
w= —PLoM% . (20)
(P10 — Pv.0)

Neglecting py in Eq. (20) and substituting Eq. (20) into
Eq. (19), we can obtain
_ 2mKi0p

o) = 255

Obviously, Eq. (21) always gives a positive Tolman

21

length, which is consistent with that given by molecular dy-
namic simulations for simple liquids about the sign. The pos-
itive parameter A depends on the density profile of the tran-

sition zone. For the exponential density variation, Lekner

and Henderson obtained A = /30 under the first-order
approximation.['®! We calculated A based on Eq. (21) using the
MD simulation results of surface tensions, the Tolman lengths
for the Lennard—Jones potential, and the experimental data for
the isothermal compressibility of Argon.I”!! The values of A
are listed in Table 1. Different values of the constant A in
Table 1 originate from different surface tensions and Tolman
lengths obtained by different molecular dynamic simulations.

Table 1. Value of A for Argon calculated by means of Eq. (21).
Here, T* = kgT /¢ is the reduced temperature, where € = 119.8Kkp
is the depth of the Lennard—Jones potential for Argon, and kg is the
Boltzmann constant; GJ =€ /d2 is the reduced surface tension, where
d = 0.3405 nm is the length parameter of the Lennard-Jones potential
for Argon; &; = 8y/d is the reduced Tolman length; & = Kj¢/d> is the
reduced isothermal compressibility for liquid Argon.

T* K o7 & A
Ref. [13] 0.80 0.1465 0.876 0.055 2.93
Ref. [12] 0.80 0.1465 0.391 0.169 0.42593
Ref. [9] 0.80 0.1465 0.388 0.14 0.51021

4. Conclusion

The relation between the Tolman length and isother-
mal compressibility given by Bartell predicts that the Tolman
lengths are always negative, which is contrary to the results of
MD simulations for simple liquids in the sign. In this paper,
we have analyzed the origin of this contradiction. Addition-
ally, we have obtained a new approximate relation between
the Tolman length and isothermal compressibility for simple
fluids not near the critical points and under some other weak
restrictions. Tolman lengths of simple liquids calculated by
this formula are consistent with the results obtained by MD
simulations at least in the sign.
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