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a  b  s  t  r  a  c  t

The  adsorption-induced  surface  stress  and mass  can cause  the  resonant  frequency  shifts  of  a
microcantilever,  which  is  used  as the  sensing  mechanism  for a resonator  sensor.  Determining  the
adsorption-induced  surface  stress  and  mass  from  the  experimentally  measured  data  of resonant  frequen-
cies  forms  an  inverse  problem.  Because  there  are  infinite  combinations  of  surface  stress  and  mass  which
can result  in  the  same  change  of one  resonant  frequency,  the  previous  studies  usually  measure  surface
stress  or  mass  by one  measurement  method  and  then  find  the  other  by  another  different  measurement
eywords:
urface stress
esonant frequencies
dsorption
esonator sensor

method.  This  study  shows  that  surface  stress  and  mass  have  different  impacts  on  the  resonant  frequencies
of  a  microcantilever.  Two resonant  frequencies  are  used  to uniquely  determine  the  adsorption-induced
surface  stress  and  mass.  Mathematically,  the  new  method  presented  in  this  study  provides  an  efficient
and straightforward  solution  to the  inverse  problem  and  its  accuracy  is  also  demonstrated.  Physically,
the  new  method  only  requires  the  dynamic  mode  to measure  the  resonant  frequencies,  which  should  be
of a great  help  to various  sensor  applications.
. Introduction

Microcantilever sensor has become increasingly important in
etecting tiny force or mass [1–4]. Depending on the nature of the

nput stimuli, microcantilever sensor can be categorized as physi-
al, chemical, or biological sensor [3].  The adsorbed analytes on a
icrocantilever surface cause the three changes: increase of mass,

amping and stiffness changes [3,4]. These changes can result in
he deflection and resonant frequency shifts of a microcantilever,
hich are also the mechanisms used for sensing. The reason for

he increase of mass is rather straightforward. Damping, or say, the
nergy dissipation mechanism of a micro/nanocantilever is a com-
lex one. Although various models and mechanisms are proposed
3,5], a clear picture still remains elusive [5].  The stiffness change is
ue to surface stress, which is associated with the changes of Gibbs
ree energy during adsorption process [3]. That the change of Gibbs
urface free energy results in a surface stress is given in the Shuttle-
orth equation [6,7]. Dareing and Thundat [7] presented a model

o show how the arrangements of adsorbed atoms on a micro-
antilever surface change the Lennard–Jones (LJ) potential, which

ssentially is the Gibbs surface free energy. Part of the LJ potential
s transferred into the elastic energy, which bends the microcan-
ilever [7].  There are two operation modes of a microcantilever
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sensor: static mode and dynamic mode [3,4,8].  The static mode
is used to measure surface stress via the following Stoney formula
[1–4,8]

�� = Eh2

6R(1 − �)
, (1)

where E, � and h are the microcantilever Young’s modulus, Pois-
son’s ratio and thickness, respectively. R = 2L2/(3�z) is the radius
of curvature (L and �z  are the microcantilever length and deflec-
tion at the free end). ��  is the differential surface stress, which
has the unit of Nm−1 rather than pascal. Here we  emphasize the
word differential.  Only when surface stress is differential, can a
microcantilever bend. To maximize the differential surface stress,
one essential strategy is used: to coat one surface of microcan-
tilever with a layer that reacts with the analytes, whereas others
are uncoated or coated with a layer inert to the analytes [1,2,9,10].
One prominent drawback of Eq. (1) should be pointed out here:
the Stoney formula models the surface stress effect as if it is a con-
centrated moment acting on the free end of cantilever [11]. In other
words, if the surface stress effect is described by the Stoney formula,
the stiffness of microcantilever will not change [11–13],  which
is in contradiction with the experimental observations [3,4,8,14].
Furthermore, the Stoney formula cannot be used to measure the

non-differential surface stress of a nanowire induced by the forma-
tion of a symmetric surface layer [14,15]. Because surface stress is
proportional to the number of analytes adsorbed [1],  the analyte
concentration or its adsorbed mass on the microcantilever surface

dx.doi.org/10.1016/j.sna.2013.01.029
http://www.sciencedirect.com/science/journal/09244247
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lso needs to be closely monitored/controlled to realize a biomolec-
lar recognition [1,2]. The static mode cannot detect the adsorbed
ass.
To detect the adsorbed mass, the dynamic mode must be used,

hich in essence measures the resonant frequency change given
s follows for a one degree of freedom (DOF) system [16]

′ = 1
2�

√
K + �K

M + �M

√
1 − (C + �C)2

4MK
, (2)

′ is the resonant frequency after adsorption. K, M and C are the
ffective spring stiffness, mass and damping of a cantilever, respec-
ively. �K, �M and �C  are those corresponding changes due to
dsorption. As the microcantilever motion is recorded in an experi-
ent, C + �C  can be easily determined from the frequency response

urve by the half-power method [16]. The problem is how to deter-
ine �K  and �M.  �M can only be positive, which always reduces

he resonant frequency. However, surface stress can be either ten-
ile or compressive [1,2], which can either increases or decreases
he spring stiffness [11,12] and thus resonant frequency. There-
ore, there are infinite combinations of �K and �M which can
esult in a same f′ as indicated in Eq. (2).  One strategy is to find
ut either �K  or �M  first by a different measurement method
nd then use the dynamic mode to find the other. For example,
y measuring the concentration of adsorbed analyte (�M is thus
ound), �K can then be found from Eq. (2) [17]; or by localizing the
dsorption areas at the terminal end of cantilever to minimize the
urface stress effect on the spring stiffness, �K = 0 can be assumed
8,10], then �M can then be found by applying Eq. (2).  Obviously,
he drawback of this strategy is that extra efforts on device and
esign, which is not trivial at all, are needed. Another strategy is
o use the static mode to measure surface stress to find out �K
rst (there are other models as discussed later, which can model
he influence of surface stress on the microcantilever stiffness) and
hen use the dynamic mode to find out �M [8,18].  While, the prob-
em of this strategy is that adsorption is a dynamic process. The
dsorption-induced mass and surface stress vary not only with time
8,9] but also with how they are measured [9].  In chemical sen-
ors, adsorption and desorption of gas molecules often occur at the
ame time [19]; in biological sensor, the receptor-ligand such as
iotin–streptavidin and biotin–avidin also experiences a dynamic
rocess of bonding-debonding due to the competition between the
arrier of mechanical energy, dissociation kinetics and effect of
hermal activation [20]. One vivid example on the difference of the
tatic and dynamic modes is that the adsorption of water on the
icrocantilever coating layer of polymethylmethacrylate (PMMA)

aturates in the static mode, whereas no saturation is observed in
he dynamic mode [9].  The reason is that in the dynamic mode, the
iffusion of water within the polymer and the dissolution of the
olymer occur simultaneously [9].  In other words, the static mode
nd dynamic mode may  not measure the same adsorption-induced
ass and surface stress.
Mathematically speaking, using f′ to find out �K  and �M

s an inverse problem. In this study, a novel method is pre-
ented to solve this inverse problem. As for a cantilever which
s a continuous system with infinite resonant frequencies, the
dsorption-induced mass and surface stress have different impacts
n its resonant frequencies. This is the physical mechanism used
o solve the inverse problem. The new method only needs the
ynamic mode and two resonant frequencies to uniquely deter-
ine the adsorption-induced mass and surface stress. The new

ethod is actually simpler to detect non-differential surface stress,
hich cannot be done by the static mode. The new method is

lso demonstrated to be very accurate for a typical adsorption
cenario.
s A 194 (2013) 169– 175

2. Model development

Fig. 1(a) is a schematic of a cantilever with a uniform layer of
adsorption on its upper surface. As mentioned above, the Stoney
formula is to model the surface stress effect as a concentrated
moment applied at the beam free end [11], which has no impact on
the beam stiffness and thus its resonant frequencies. The equation
of motion based on the Stoney formula is thus not presented here.
Fig. 1(b) is a schematic of the concentrated load modeling, in which
a concentrated load F and a concentrated moment Mb are applied
at the cantilever free end. For brevity, the governing equation of
the concentrated load modeling and the boundary conditions are
given as follows [11,21,22]

(m + �m)
∂2

w

∂t2
+ c

∂w

∂t
+ E∗I

∂4
w

∂x4
− F

∂2
w

∂x2
= 0. (3)

where m is the beam mass per unit length and m = �A (� and A are
the mass density and cross-section area of the beam, respectively).
�m  is the adsorption mass per unit length, which is assumed to
have a uniform distribution all over the cantilever and is thus
treated as a constant. In the applications of chemical and bio-
logical sensors, an adsorbed mass spanning the entire cantilever
surface is preferred instead of an adsorbed one at a selected area
[23], which prevents the need for selective activation of surface
and avoids unspecific binding. w = w(x, t) is the beam deflection
and c is damping. The concentrated load F = �b (� is the adsorption
induced surface stress and b is the beam width) [11]. E* is the beam
effective Young’s modulus. Physically, the in-plane surface stress
is in two  directions, which are the x and y directions as shown
in the coordinate system of Fig. 1(b). E* = E/(1 − �) is to account
this biaxial loading scenario [11,24] (E and � are the beam Young’s
modulus and Poisson’s ratio, respectively); if a beam is (assumed)
to bend in a cylindrical shape [25], E* = E/(1 − �2) [7,11];  or simply
E* = E [11,14,15].  I is the area moment of inertia and I = bh3/12 (h is
the beam thickness) for a uniform rectangular beam. However, in
many biosensors, different materials are coated on the microcan-
tilever surfaces and the adsorption layer may  also have influence on
the microcantilever bending stiffness [1,4]. The microcantilever in
general should be treated as a composite with mutilayers [4] and
its bending stiffness is often calibrated by the resonance method
[18].

The boundary conditions of a cantilever beam under a con-
centrated load and concentrated moment at its free end are the
followings [11,21,22]

w(0, t) = 0,
∂w

∂x
(0,  t) = 0, E∗I

∂2
w

∂x2
(L, t) = Mb, E∗I

∂3
w

∂x3
(L, t)

− F
∂w

∂x
(L, t) = 0. (4)

where Mb = �bh/2 is the concentrated moment and L is the beam
length. It is noticed that the concentrated moment does not appear
in the governing equation.

The distributed load modeling as shown in Fig. 1(c) gives the
following governing equation [11]

(m + �m)
∂2

w

∂t2
+ c

∂w

∂t
+ E∗I

∂4
w

∂x4
− s(L − x)

∂2
w

∂x2
+ s

∂w

∂x
= 0. (5)

where s = F/L = �b/L is the uniformly distributed load. Physically Eq.

(5) describes surface stress as a uniformly distributed axial load
along the length direction [11]. In comparison, Eq. (3) describes
surface stress as a concentrated load F applied at the cantilever
free end, which, as discussed later, raises the issue of violating the
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ig. 1. (a) Schematic of a cantilever with a uniform layer of adsorption on its upper 

oad  modeling: � is the surface stress induced by the adsorption; F = �b and Mb = �b
he  distributed load modeling: s = F/L = �b/L and mb = �bh/(2L) are the uniformly dis

oundary conditions. The corresponding boundary conditions for
he distributed load model are as follows [11]

(0,  t) = 0,
∂w

∂x
(0,  t) = 0,

∂2
w

∂x2
(L, t) = 0, E∗I

∂3
w

∂x3
(L, t) + mb = 0.

(6)

here mb = �bh/(2L) is the uniformly distributed bending
oment.
Because the purpose here is to find the resonant frequencies, the

resence of concentrated moment Mb in the boundary conditions of
q. (4) and distributed moment mb in those of Eq. (6) causes a prob-
em of formulating an eigenvalue problem. To solve the problem,
he beam deflection is expressed as the following two  parts:

(x, t) = wo(x) + w1(x, t). (7)

here wo(x) is the equilibrium, which is independent of time t.
1(x, t) is the displacement away from the equilibrium. With the
resence of differential surface stress, the cantilever bends away
rom the horizontal position. The reason of breaking the deflection
nto the above two parts can be answered by the following analogy:
or one DOF spring-mass system, whether it is placed horizontally,
r vertically or on a slope only changes the equilibrium position
nd has no impact on the system resonant frequency, which is
nly determined by the spring stiffness and mass. For the con-
entrated load modeling, wo(x) satisfies boundary conditions of Eq.

4 2
4) and equilibrium equation of E∗I(∂ wo/∂x4) − F(∂ wo/∂x2) = 0;
or the distributed load modeling, wo(x) satisfies boundary condi-
ions of Eq. (6) and equilibrium equation of E∗I(∂4

wo/∂x4) − s(L −
)(∂2

wo/∂x2) + s(∂wo/∂x) = 0. Substitute Eq. (7) into Eqs. (3) and
e. The cantilever is with the length L, width b and thickness h. (b) The concentrated
e the concentrated load and moment exerted at the beam free end, respectively. (c)
ed load and moment along the length direction, respectively.

(4),  the following governing equation and boundary conditions are
derived for the concentrated load modeling

(m + �m)
∂2

w1

∂t2
+ c

∂w1

∂t
+ E∗I

∂4
w1

∂x4
− F

∂2
w1

∂x2
= 0. (8)

w1(0,  t) 0 = 0,
∂w1

∂x
(0,  t) = 0, E∗I

∂2
w1

∂x2
(L, t) = 0, E∗I

∂3
w1

∂x3
(L, t)

− F
∂w1

∂x
(L, t) = 0. (9)

Clearly, only the boundary conditions change, which serves
the purpose of formulating the eigenvalue problem as shown
later. Actually Eqs. (8) and (9) are also the governing equation
and boundary conditions for the micro/nanostructure with the
symmetric/non-differential surface stress [11,21,22].

Similarly, the following governing equation and boundary con-
ditions are derived for the distributed load modeling

(m + �m)
∂2

w1

∂t2
+ c

∂w1

∂t
+ E∗I

∂4
w1

∂x4
− s(L − x)

∂2
w1

∂x2
+ s

∂w1

∂x
= 0.

(10)

w1(0,  t) = 0,
∂w1

∂x
(0,  t) = 0,

∂2
w1

∂x2
(L, t) = 0, E∗I

∂3
w1

∂x3
(L, t) = 0.

(11)
Again, the governing equation does not change and boundary
conditions change. Because adsorption is assumed to occur only
on the cantilever upper surface, surface stress is differential,
which is also responsible for generating bending moment. For the
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on-differential surface stress loading scenario [14,15], the steps
tarting from Eq. (7) to Eq. (11) are not needed.

By introducing � = x/L, W1 = w1/L and 	 =
√

E∗I/(mL4)t (here

E∗I/(mL4) is with the unit of Hertz and it is the same order of the
rst natural frequency of a uniform and undamped cantilever beam
26,27]), the governing equation of the concentrated load modeling,
q. (8),  is nondimensionalized as follows

1 + ˛)
∂2

W1

∂	2
+ C

∂W1

∂	
+ ∂4

W1

∂�4
− 


∂2
W1

∂�2
= 0. (12)

here the dimensionless quantities ˛, C and 
 are defined as fol-
ows

 = �m

m
, C = c

√
L4

E∗Im
,  
 = �bL2

E∗I
(13)

learly  ̨ indicates the ratio of the adsorption mass to the beam
ass and 
 indicates the ratios of the surface stress to the beam

tiffness per unit width. C is the dimensionless damping. The
oundary conditions of Eq. (9) is now nondimensionalized as fol-

ows

1(0,  	) = 0,
∂W1

∂�
(0,  	) = 0,

∂2
W1

∂�2
(1,  	) = 0,

∂3
W1

∂�3
(1,  	)

− 

∂W1

∂�
(1,  	) = 0. (14)

or the distributed load modeling, the governing equation of Eq.
10) and boundary conditions of Eq. (11) are nondimensionalized
s follows

1 + ˛)
∂2

W1

∂	2
+ +C

∂W1

∂	
+ ∂4

W1

∂�4
− 
(1 − �)

∂2
W1

∂�2
+ 


∂W1

∂�
= 0,

(15)

nd

1(0,  	) = 0,
∂W1

∂�
(0,  	) = 0,

∂2
W1

∂�2
(1,  	) = 0,

∂3
W1

∂�3
(1,  	) = 0.

(16)

o compute the eigenfrequencies of Eq. (15), the Galerkin method
21,26,28] is applied, which assumes the following form for W1(�,
)

1(�, 	) =
N∑

j=1

aj(	)�j(�). (17)

here N is the mode number; aj(	) is the time-dependent modal
mplitude and �j(�) is the jth mode shape of a uniform cantilever
eam. It is noticed that the presence of (dimensionless) axial load

 in the boundary conditions of Eq. (14) of the concentrated load
odeling can have significant impact on the shape of �j(�) [21,28],
hich as a result can also influence the accuracy of resonant fre-

uencies. The detailed procedures of finding �j(�) under different
xial loadings are presented in reference [28]. Here it is necessary
or us to have a brief discussion and comparison on these two mod-
lings. The free end of a cantilever under a surface stress loading
s free from a net force [24]. The presence of an axial load at the
ree end as reflected in the fourth boundary condition of Eq. (14) is

herefore, according to Lachut and Sader [24], “in direct violation of
ewton’s third law”. In comparison, the distributed load modeling

ndeed guarantees the zero net force of the cantilever free end. It is
lso clear from Eqs. (12) and (15) that the influence of surface stress
s A 194 (2013) 169– 175

on the resonant frequencies acts as an axial load. Besides adsorp-
tion, the processes such as electron beam induced deposition (EBID)
[29] and low pressure chemical vapor deposition (LPCVD) [30],
which are frequently used in surface micromaching, microlithogra-
phy and manufacturing of micro/nanomechanical devices, can also
induce the changes of mass, residual stress and its gradients. The
above modelings can also apply to these scenarios.

Substitute Eq. (17) into Eq. (12), time �0
i
(�) and integrate from

0 to 1, the following equation is obtained

MIq + DIq̇ + KIq = 0.  (18)

Here (̇) = ∂
∂	

and q is a vector given as q = (a1, a2, . . .,  aN)T. MI ,

DI and KI are the N × N matrices of mass, damping and stiff-
ness, respectively. Matrices MI , DI and KI are derived by using the
orthonormality property of �j(�) [26] as follows

MI
ij =

⎧⎨
⎩ (1 + ˛)

∫ 1

0

�2
i (�)d�, i = j

0, i /=  j,

(19)

DI
ij =

⎧⎨
⎩ C

∫ 1

0

�2
i (�)d�, i = j

0, i /= j,

(20)

and

KI
ij =
∫ 1

0

�i(�)
∂4

�j(�)

∂�4
d� − 


∫ 1

0

�i(�)
∂2

�j(�)

∂�2
d�. (21)

Similarly, for the distributed load modeling, the following equation
is obtained

MIIq + DIIq̇ + KIIq = 0.  (22)

where MII = MI and DII = DI . Now the stiffness matrix KII is given as
follows

KII
ij =

∫ 1

0

�i(�)
∂4

�j(�)

∂�4
d� − 


∫ 1

0

(1 − �)�i(�)
∂2

�j(�)

∂�2
d�

+ 


∫ 1

0

�i(�)
∂�j(�)

∂�
d�. (23)

Because of the presence of damping, Eqs. (18) and (22) actually
do not formulate the exact eigenvalue problem for us to find out
the resonant frequencies. Both Eqs. (18) and (22) are the damped
nongyroscopic system [31]. For the concentrated load modeling,
the eigenvalue problem is formulated by manipulating Eq. (18) as
follows [31]

M∗Ẏ + K∗Y = 0. (24)

where Y = (q̇, q) is a 2N vector; M∗ and K∗ are the 2N × 2N matrices
defined as follows [31]

M∗ =
(

MI 0

0 −KI

)
, K∗ =

(
DI KI

KI 0

)
(25)

For the distributed loading, the eigenvalue problem is formulated
by substituting MI by MII , DI by DII and KI by KII .

3. Results and discussions
For simplicity and comparison reasons, damping is set as zero
(i.e., C = 0) in all computations presented here, which is also the
case in references [14,22,24].  The high quality factor (i.e., small
damping) is a much sought-after property in many applications
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Concentrated  load model:  Eq.(12)
Distributed  load model:  Eq. (15)
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ig. 2. The first resonance frequency (ω1) calculated by the concentrated load mod-
ling and the distributed modeling as a function of 
 when  ̨ = 0. The intersection
s marked with a circle.

f micro/nano-resonator, which can significantly enhance the sen-
itivity [23]. Therefore, the shifts of resonant frequencies due to
mall damping can be ignored in many dynamic modelings of the
icrostructure vibration in air or vacuum. The presence of damping

educes the resonant frequencies and the eigenfrequency compu-
ation of a damped system using the above Galerkin method can be
ound in reference [26]. As mentioned above, damping is usually
etermined by the so-called half-power method from the fre-
uency response curve obtained by experiment [16]. It also needs
o keep in mind that damping varies when a microbeam vibrates
t different resonances [23]. The mode number is taken as N = 4 in
ll the resonant frequency computations.

Fig. 2 plots the first eigenfrequency (ω1) calculated by the con-
entrated load model of Eq. (18) and the distributed load model of
q. (22) as the function of 
 when  ̨ = 0. The first two resonant
requencies/eigenfrequencies with  ̨ = 
 = 0 are given as follows
27]

0
1 = 1.8751042 = 3.516015, ω0

2 = 4.6940912 = 22.034492.  (26)

ecause surface stress here is modeled to have the axial load effect
nd a tensile/compressive axial load stiffens/softens a structure, the
igenfrequencies calculated by both models change with 
.  Large
ompressive surface stress can lead to the buckling of a microcan-
ilever beam [32] because of the softening effect of a compressive
xial load. The effective stiffness of a structure becomes zero at the
uckling load [33], which causes the first eigenfrequency to be zero.
hen the buckling load of 
 = − �2/4 ≈ −2.46 is reached [33], ω1

f the concentrated load model becomes zero as shown in Fig. 2.
owever, ω1 of the distributed load model is not zero. Clearly 
 in

he distributed load model has much less impact on the eigenfre-
uency. The reason has already been given by Timoshenko that a
antilever under a distributed load of s = F/L, its effect on ω1 is as
f a concentrated load of 7F/20 applied at the free end [34]. Clearly
hese two models have large difference on the stiffening and soften-
ng effects induced by surface stress. The two curves have only one
ntersection, which corresponds to (
,  ω1) = (0,  ω0

1) and is marked
s a circle.

In the following figures, only the distributed load model is used
o show how to use the shifts of eigenfrequencies to determine
he adsorbed mass and surface stress. Physically  ̨ = 
 = 0 cor-
esponds to the no adsorption case, which can also be used to
alibrate a beam [18,36]. As mentioned above, in order to real-

ze certain function or to enlarge sensitivity, the microcantilever
s usually coated with several layers of different thicknesses and

aterials [1,4], which makes it very difficult to specify the beam
ending stiffness of E*I and mass per unit length of m [35]. Even
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for a given material, for example, silicon nitride (SiNx), which
is commonly used to fabricate a microcantilever [1],  its Young’s
modulus varies from 130 to 385 GPa and its Poisson ratio ranges
from 0.2 to 0.3 because the exact atomic ratio between Si and N
is not determined [35]. Furthermore, at the small scale, surface
elasticity can also change the effective Young’s modulus of a micro-
cantilever [6].  The dimensional fundamental resonant frequency,
f 0
1 is related with the above dimensionless resonant frequency as

f 0
1 = ω0

1

√
E∗I/(mL4)/2�. Once f 0

1 is measured, E*I/m can be found

as E∗I/m = (2�f 0
1 L2/ω0

1)2. The detailed procedures of using the res-
onant frequency to calibrate a microcantilever with and without
the damping effect can be found in references [18,36].

For a microcantilever sensor made from silicon or silicon
nitride, E* ∼ 1011Nm−2, h ∼ 1 �m,  L ∼ 100 �m,  � ∼ 1.6 × 103 kg m−3;
the surface stress induced by DNA adsorption on a self-assembled
monolayer(SAM) is around 0.02 ∼ 1.5 Nm−1 [4].  Therefore, 
 can be
calculated from Eq. (13). Here  ̨ = 10−3 and 
 = 10−2 are set, which
are typical values in the above microcantilever application scenar-
ios. Substitute these two  
 and  ̨ values into Eq. (22), the first two
eigenfrequencies are obtained as follows

ω1 = 3.516491, ω2 = 22.025444.  (27)

The (dimensionless) adsorption mass (˛) can only be positive,
which always softens the beam, i.e., decreases the eigenfrequen-
cies. The (dimensionless) surface stress (
)  can be either positive
or negative. The positive 
,  which is tensile, stiffens the beam and
the negative compressive 
 softens the beam. Compared with the
eigenfrequencies of  ̨ = 
 = 0 as given in Eq. (26), it is interesting
to notice that ω1 increases, whereas ω2 decreases. Physically the
reason is that the adsorbed mass and surface stress have different
impact on the eigenfrequencies and this is the exact mechanism for
us to determine adsorption-induced mass and surface stress. It is
noticed that the eigenfrequency shifts due to these two tiny param-
eters of 
 and  ̨ are also very tiny, which is the typical application
scenarios of many resonator sensors. Because the eigenfrequency

of a beam is proportional to
√

EI/(mL4) ∝ h/L2 ×
√

E/� [26], two
major strategies of enhancing the sensitivity of detecting the eigen-
frequency shifts are: (1) to scale down the structure size [37–39],
which makes factor of h/L2 larger; (2) to use the materials with large
E/�, such as graphene [40] and carbon nanotube [41]. Both result
in higher eigenfrequencies. Therefore, a small fractional change
in eigenfrequency is still absolutely large enough to be detected
[42]. By using these two  strategies, the giga-Hertz resonator has
been fabricated [37] and the capability of detecting (dimension-
less) adsorption mass as small as  ̨ = 6.6 × 10−5 has been achieved
[41].

In the real sensor application, 
 and  ̨ are unknown; the eigen-
frequencies are extracted from the beam frequency response curves
[8,14,16]. Therefore, using the eigenfrequencies (shifts) to deter-
mine 
 and  ̨ forms an inverse problem. Fig. 3 plots the variation
of the first eigenfrequency, ω1, as a function of 
 and ˛, which is a
titled plane. ω1 increases monotonically with the increase of 
 and
decreases monotonically with the increase of ˛. The level plane is
the one with the fixed first eigenfrequency value of ω1 = 3.516491.
The intersection of these two planes is all the combinations of 
 and
˛, which result in the same first eigenfrequency of ω1 = 3.516491.
The intersection is a line marked in Fig. 3. This line also indicate that
the combinations resulting in a same eigenfrequency are infinite.
Fig. 4 plots the second eigenfrequency of ω2 as a function of 
 and
˛. The level plane is the one with the fixed value of ω2 = 22.025444.
Again, the intersection line of the two planes indicates the combi-

nations of 
 and  ̨ resulting in ω2 = 24.628. Clearly, for any given
values of 
 and ˛, each eigenfrequency is uniquely determined by
Eq. (22). As an inverse problem, there are infinite combinations of

 and  ̨ for a given eigenfrequency. However, as shown in Fig. 5,
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[10] T. Thundat, L. Maya, Monitoring chemical and physical changes on sub-
ig. 5. The combinations of  ̨ and 
 for the resonant frequencies of ω1 = 3.516491
nd ω2 = 22.025444, which are two  lines marked in Figs. 3 and 4. The intersection is
arked with a circle, which corresponds to (˛, 
)= (10−3, 10−2).

or two given eigenfrequencies, their combinations of 
 and ˛,
hich are two lines, intersect. Physically, this intersection is used

o uniquely determine the combination of  ̨ and 
.  In Fig. 5, the

ntersection of the combinations of  ̨ and 
 for ω1 = 3.516491 and

2 = 22.025444 is marked as a circle, which happens to be exactly
˛, 
)= (10−3, 10−2).
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4.  Conclusion

Adsorption-induced mass and surface stress play different roles
in the eigenfrequency shifts of a cantilever. There are infinite com-
binations of the mass and surface stress which can result in the
same shift of one resonant frequency. However, there is only one
combination which can result in the same shifts of two  resonant
frequencies, which is utilized in this study as an effective mecha-
nism to solve the inverse problem of using the resonant frequency
shifts to determine the mass and surface stress. In many sensor
applications, adsorption-induced surface stress and mass are sepa-
rately determined by static and dynamic modes. In some scenarios
when surface stress is not differential, the static mode cannot deter-
mine surface stress. With the method presented here, the static
mode is unnecessary. Two  different models are presented. Because
of their different modelings on the impact of surface stress, the
eigenfrequencies calculated by these two models are significantly
different. As the concentrated load model may  violate the bound-
ary conditions of a cantilever under a surface stress loading, only
the distributed load model is used for solving the inverse problem.
However, the method presented in this study, which in essence is
to use two  resonant frequency shifts to determine the adsorbed
mass and surface stress, can also be applied to the concentrated
load model. The method can be easily extended to the sensors with
the clamped-clamped boundary conditions (whose purpose is to
achieve larger eigenfrequencies) [37] by simply changing the mode
shape of �j. The first and second resonant frequencies are used in
this study to solve the inverse problem. When a microcantilever
vibrates at a higher resonant frequency, its sensitivity can have the
improvement of orders of magnitude due to the significant decrease
of damping [23]. This method can also be easily extended to this
application scenario by simply calculating the other two different
resonant frequencies.
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