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Advances in the understanding of 
nanomaterial–biomembrane interactions and their 
mathematical and numerical modeling

With the rapid development of nanotechno­
logies, nanomaterials (NMs) have become part 
of our daily lives. They are used in cosmetics, 
textiles, bioimaging, medicine and diagno­
sis [1–8]. The widespread applications of NMs 
increase their chances of entering the human 
body via a number of pathways, such as the respi­
ratory system [9], skin absorption [10,11], intra­
venous injection [12] and implantation [13]. As a 
result, there is an urgent need to understand the 
potential physiological and pathological reac­
tions after exposure to NMs [14,15]. NMs can 
induce a series of complicated reactions, but 
they first need to cross a biomembrane barrier 
(e.g., skin, lung surfactant, intestinal barrier or 
cell membrane) to reach target cellular compart­
ments [16]. Therefore, it is of great importance 
to investigate NM–biomembrane interactions.

Significant efforts have been devoted to 
experimentally investigating NM–biomembrane 
interactions. Many important findings have been 
obtained from these efforts. For instance, it has 
been established that NMs can induce specific 
interactions with targeted cell membranes via 
specific ligands [17], modify the biconcave shape 
of erythrocytes [18], change cell membrane asym­
metry and thickness [19,20], damage the integrity 
of cells through hole formation [21] and induce 
oxidative stress [18]. In addition, NMs can be 
rapidly taken up by cells; a characteristic that 
has been applied for cancer gene therapy [22,23], 
cancer imaging and phototherapy [24], and drug 

delivery [25,26]. However, despite all of these 
important applications, the mechanisms under­
lying NM–biomembrane interactions are poorly 
understood, as experimental tests and observa­
tions at the nanoscale for complex biological 
systems remain technically challenging.

Alternatively, it has been demonstrated that 
mathematical and numerical modeling can 
simulate the NM–biomembrane interaction at 
the nanoscale, as well as conditions that are chal­
lenging to realize experimentally, providing deep 
insight into the dynamic process of the system 
[27–29]. Moreover, the capability of numerical 
simulations has been significantly enhanced 
with the increase in computing power in the 
last few decades. In this review, we present the 
state-of-the-art advances in the understanding of 
NM–biomembrane interactions and their math­
ematical and numerical modeling. The ‘Path­
way of cellular uptake of NMs’ and ‘Key factors 
for NM–biomembrane interactions’ sections 
describe the basic cellular uptake pathways of 
NMs and key factors associated with NM–bio­
membrane interactions, respectively. The ‘Math­
ematical & numerical modeling approaches for 
NM–biomembrane interactions’ section reviews 
the existing mathematical and numerical model­
ing approaches for NM–biomembrane interac­
tions and discusses the advantages and disad­
vantages associated with each method. Finally, 
the ‘Discussion’ and ‘Conclusion & future per­
spective’ sections highlight the limitations of the 
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current modeling methods and future research 
topics for NM–biomembrane interactions.

Pathways of cellular uptake of NMs
The cellular uptake of NMs usually consists of 
two processes, adsorption of NMs on the mem­
brane, and internalization of NMs by endocytic 
and nonendocytic pathways (Figure 1) [16,30–33].

�� Endocytic pathway
Endocytosis is an important pathway for cellular 
uptake because the most important substances, 
such as proteins, which are biomacromolecules, 
cannot directly penetrate the cell membrane. 
Endocytosis can be divided into phagocytosis 
and nonphagocytosis; the latter includes mac­
ropinocytosis, clathrin-mediated endocytosis 
(CME), caveolae-mediated endocytosis (CvME), 
and other clathrin- and caveolae-independent 
endocytosis pathways [34]. CME is the predom­
inant receptor-mediated endocytosis pathway 
for most cells, and involves membrane curva­
ture generation, clathrin lattice formation and 
clathrin-coated vesicle formation. CvME forms 
flask-shaped invaginations in the membrane 
that allow molecules to enter the cells through 
ligand–receptor binding [35]. Other types of 
clathrin- and caveolae-independent endocytic 
pathway have been discovered aside from CME 
and CvME, such as lipid raft-mediated and 
ARF6-mediated GEEC pathways [36].

A variety of NMs (e.g., carbon nanotubes 
[CNTs], metal NMs and semiconductor NMs) 

have been demonstrated to enter into the cells 
via endocytosis [37–44]. For instance, both single-
walled nanotubes (SWNTs) and SWNT con­
jugates (SWNT–streptavidin, protein–SWNT 
and DNA–SWNT) can enter human promy­
elocytic leukemia (HL60) cells via endocytosis 
[39,40]. Several factors affect the endocytosis pro­
cess [45], such as NM size, membrane elasticity 
and receptor–ligand interactions. For instance, 
most nanosized synthetic NMs are internalized 
through endocytosis [35], and the optimal size 
of NMs for endocytosis is 25–30  nm [46,47]. 
An increased membrane elasticity can reduce 
the membrane bending energy, enhancing the 
ability of the membrane to wrap around NMs 
[48]. In addition, specific receptor–ligand inter­
actions are involved in the endocytosis process 
(Figure 2), which is the most effective promotive 
force for endocytosis [45].

�� Nonendocytic pathways
Although endocytosis is the main pathway for 
cellular uptake of NMs, nonendocytic path­
ways exist, where NMs directly penetrate the 
cells [35]. For instance, NMs with sufficiently 
small diameters (e.g., metal clusters [49]) and 
needle-shaped NMs (e.g., single CNTs [50]) can 
directly penetrate the membrane. Cationic NMs 
(e.g., PAMAM dendrimers [51,52], Au–NH

2
 and 

SiO
2
–NH

2 
[17]) can pass through the membrane 

by forming pores in the membrane. Large NMs 
can also penetrate into the cells when attached 
to cell-penetrating peptides (CPPs) [33,53]. CPPs 
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Figure 1. Cellular uptake pathways of nanomaterials. The cellular uptake pathways of 
nanomaterials can be simply divided into two kinds, namely, endocytic and nonendocytic. The 
endocytic pathway includes phagocytosis, macropinocytosis, clathrin-dependent endocytosis, 
caveolae-dependent endocytosis, and other mechanisms of clathrin- and caveolae-independent 
endocytosis. The nonendocytic pathway includes direct penetration and other pathways, which are 
not yet fully understood.
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can effectively deliver nanomedicine to the inter­
cellular target by passing through the plasma 
membrane [54]. Studies have found that peptide-
encapsulated fluorescent silver nanoclusters [49] 
and polyarginine-conjugated iron oxide NMs 
loaded with siRNA can directly penetrate cell 
mebranes [55]. Similar to CPPs, several synthetic 
NMs, such as synthetic amphipathic phospho­
lipid polymers [56] and nanoparticles (NPs) 
coated with hydrophilic–hydrophobic striated 
ligand shell [57,58] can also penetrate the mem­
brane in a similar manner to the CPPs without 
disrupting the membrane.

Table 1 summarizes the cellular uptake path­
ways of different NMs. Although numerous 
studies have been performed, as previously men­
tioned, the entry mechanism of NMs through 
the membrane is far from clear. For instance, no 
precise definition exists for different entry path­
ways of NMs into cells. More work is needed 
to better understand the NM–biomembrane 
interactions.

Key factors for NM–biomembrane 
interactions
�� Physicochemical properties of NMs

Key physicochemical properties of NMs which 
affect NM–biomembrane interactions include 
NM size, shape, surface roughness and rigidity, 

charge, hydrophobic properties, and protein 
corona.

NM size can determine the entry pathways 
of the NMs into the cells and affect the rates of 
cellular uptake. For instance, silica NMs with 
a size of less than 1.2 nm can penetrate into a 
dimyristoylphosphatidylcholine lipid bilayer 
without damaging the membrane, while pores 
form in the lipid membrane for NMs with a size 
ranging from 1.2 to 22 nm, and the membrane 
envelopes NMs with a size over 22 nm (Figure 3) 
[59,60]. The modes of endocytosis depend on the 
NM size, which is typically 100 nm for CME and 
50–80 nm for CvME, respectively [34]. Moreover, 
studies have found that the cellular uptake rate 
for gold (Au)‑NMs with sizes of approximately 
50 nm is faster than that of other sizes [37,61].

NM shape is another important factor that 
affects the cellular uptake process. For instance, 
the polystyrene NM shape determines the 
formation of the actin structures that initiate 
phagocytosis [62]. The endocytosis rate of spheri­
cal Au‑NMs (74 and 14 nm in diameter) was 
higher than that of rod-shaped Au‑NMs of the 
same size in one study. Furthermore, the endo­
cytosis rate of rod-shaped Au‑NMs (74 × 14 nm) 
with a low aspect ratio (1:3) was greater than 
the high-aspect-ratio (1:5) NMs [37]. However, 
in another study, the rate of cellular uptake of 
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Surface roughness

+
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Figure 2. Receptor-mediated cellular uptake of nanomaterials. The interactions between 
nanomaterials and the biomembrane can be classified into two kinds: specific receptor–ligand 
interactions and nonspecific interactions. Specific receptor–ligand interactions always lead to 
endocytosis. The nanomaterial properties (e.g., surface roughness, hydrophobicity and charge) that 
promote binding with lipid molecules generally relate to nonspecific forces, such as hydrophobic and 
electrostatic interactions. The nonspecific interactions can lead to direct penetration of the 
membrane. 
Reproduced with permission from [45].
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high-aspect-ratio cylindrical hydrogel particles 
(diameter: 150 nm; height: 450 nm) into HeLa 
cells was four-times faster than that of low-
aspect-ratio cylindrical NMs (diameter: 200 nm; 
height: 200 nm) with a similar volume. One pos­
sible explanation is that the high-aspect-ratio 
cylindrical particles have larger surface areas to 
contact the membrane [63]. Numerical simula­
tions have also revealed that the minimum driv­
ing forces for NMs to penetrate the membrane 
depend on the NM shape (e.g., sphere, ellipsoids, 
rods, discs and pushpin-like) [64]. Shi et al. simu­
lated the entry mechanism of 1D CNTs with 
different tips (hemispherical cap, enlarged cap, 
CNT bundle tip and open tip) into cells and 
found that different tips resulted in different cell 
entry modes [65].

Surface roughness and rigidity of NMs also 
affect the NM–biomembrane interactions. For 
instance, silica NMs with a smooth surface 
(22 nm in diameter) were completely enveloped 
by the lipid membrane, whereas the bumpy NMs 
with the same size were only partially envel­
oped, as shown in Figure 3 [60]. In the study of 
Shi et al., soft NMs were more difficult to be 
fully wrapped by the membrane than rigid NMs, 
because a larger adhesion energy was needed for 
the former [66].

Electrostatic interactions and hydrophobic 
interactions are the two main nonspecific inter­
action types in NM–biomembrane interactions. 
Negatively charged cell plasma membrane results 
in a greater internalization potential of positively 
charged NMs relative to neutral and negatively 
charged NMs [41,67], because the electrostatic 
attraction promotes the adsorption of posi­
tively charged NMs on the membrane. Both 
experimental studies and computer simulations 
indicated that cationic Au‑NMs induce more 
disruption of the cell membrane than anionic 
Au‑NMs [68,69], as it depends on the charge 
density. For the hydrophobic interactions, a 
simulation study showed that hydrophobic NMs 
(diameter: 10 nm) could be embedded into the 
cell membrane, whereas semihydrophilic NMs 
only adhered to the membrane [70]. 11‑mer­
capto-1‑undecanesulfonate Au‑NPs that only 
had hydrophilic sulfonate ligands were endocy­
tosed by cells, whereas the 66–34 1‑octanethiol 
Au‑NPs (Au‑NPs coated with a 2:1 molar mix­
ture of 11‑mercapto-1‑undecanesulfonate and 
1‑octanethiol) with a hydrophilic–hydrophobic 
striated ligand shell directly penetrated the cell 
membrane owing to ligand rearrangement [57].

Before the NMs get close to the mem­
brane surface, such as in the blood, plasma Ta
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and interstitial fluid, where there are a lot of 
proteins, the protein corona of NMs will be 
formed, which may affect the cellular uptake 
of NMs [45,71]. For instance, polymeric carrier 
NMs can be bound by opsonin proteins in the 
blood serum, recognized and phagocytozed by 
macrophages and then deliver drugs to their des­
tination [72]. Researchers also use the protein 
corona of NMs to target specific cell types, such 
as apolipoproteins–quantum dots, which com­
plex with murine macrophages, human dermal 
fibroblasts and primary murine glial cells [73]. 
In some cases, the formation of protein corona 
of NMs can also reduce cellular uptake. For 
instance, serum proteins adsorbed on CNPs 
can reduce the cellular uptake of HeLa cells [74].

�� Properties of the biomembrane
Phospholipids are the main lipids in the cel­
lular membrane and can be divided into 
phosphatidylcholine, phosphatidylserine and 

phosphatidylethanolamine depending on their 
hydrophilic head groups. Phosphatidylcholine 
and phosphatidylethanolamine are neutrally 
charged, while phosphatidylserine is nega­
tively charged. In general, the cell membrane 
is electronegative and will repel negatively 
charged and attract positively charged NMs 
[75]. The membrane structure (e.g., phase tran­
sition and heterogeneity of the membrane) is 
also a key factor. For instance, the polycationic 
polymer NMs disrupt the lipid membrane in 
a membrane structure-dependent manner, 
with only the liquid–crystalline phase found 
to induce disruption [76]. With proteins, sugar 
and cholesterol on it, the membrane always 
presents heterogeneity. The interaction of NPs 
and the heterogeneous membrane with an adhe­
sive raft on the membrane was simulated in one 
study, where the raft drove the entry process of 
membrane-wrapped NPs into the vesicle [77].

The properties of biomembranes are sig­
nificantly dependent on environmental factors, 
such as temperature, pH and salt concentration 
[78–80]. For instance, the membrane fluidity 
decreases and changes from the liquid–crystal­
line to gel phase with decreasing temperature, 
which inhibits NM–biomembrane interactions 
[76,80]. The environmental pH and salt concen­
tration can alter the mechanical and electrical 
properties of the membrane. The compressive 
modulus of the PC membrane was reduced by 
30% at pH 2 compared with at pH 3 or 9 [78]. 
Therefore, a decrease in membrane elasticity 
can reduce the endocytic ability of the cell. As 
for salt concentration, NaCl and CaCl

2
 can sig­

nificantly increase the order of lipid molecules, 
leading to reduced membrane elasticity [79]. The 
strong interactions between PC membranes and 
Na+ ions caused notable membrane compres­
sion, whereas the interaction of K+ ions with the 
membrane was much weaker [81].

Mathematical & numerical modeling 
approaches for NM–biomembrane 
interactions
Computer simulation can describe the tra­
jectories of molecules and the dynamic pro­
cess of the NM–biomembrane interactions, 
providing deep insights into the understand­
ing of NM–biomembrane interactions at the 
nanoscale. Two types of dynamic models exist 
in the computer simulation model of NM–bio­
membrane interactions, namely the atomistic 
and coarse-grained models. The main differ­
ence between the two models is the simulation 
units that are adopted. Atomistic models employ 

<~1.2 nm

1.2−5 nm

>22 nm

>22 nm

<22 nm

Figure 3. Interaction mechanisms of silica nanomaterials of different sizes 
with supported lipid membranes. (A) Nanomaterials (NMs) with sizes smaller 
than 1.2 nm penetrated into the lipid membrane without disrupting it. (B & C) The 
NMs with a size of 1.2–22 nm could form pores in the lipid membrane, (D) whereas 
NMs with a size over 22 nm were enveloped by the lipid membrane. (E) The bumpy 
NMs (>22 nm) were partially enveloped. 
Reproduced with permission from [59,60].
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simulation units of a single atom, providing a 
detailed description of atom–atom interactions, 
whereas the simulation units of coarse-grained 
models include a cluster of atoms, molecules 
or chemical groups. This section reviews the 
recent advances in these modeling methods, and 
focuses on the advantages and disadvantages of 
each method (Table 2).

�� Molecular dynamics method
The molecular dynamics (MD) method is based 
on the classical Newton’s law of motion. A tra­
jectory that describes the change in an atom’s 
position with time can be obtained by solving 
the differential equations of Newton’s second 
law, with the potential energy of the atoms 
represented by the force field. The force field 
contains bond interactions that represent both 
the chemical bond (i.e., bond stretching, angle 
bending and torsion angle potentials) and non­
bonded interactions (i.e., Van der Waals and 
electrostatic interactions). The potential energy 
of the system may be given as follows:

    , ,V r r r r
i

N

1
f =

=
N21 U ij

^ ^h h//

where r
i 
is the location of atom i and F(r

ij
) is the 

interaction potential between atom i and atom 
j. The control equations are:

	 d f^ h, ,F rr rri 1 2 Ni =-

	 rm F F= =
!j

i i ij
i

p /

Numerous studies involving the MD method 
have been performed to determine the interac­
tions between the biomembrane and C

60 
NMs 

with different properties (i.e., morphology and 
concentration). The permeability coefficient 
had a decreasing trend as follows: nanoC

60
, 

C
60

 and open-C
60

 [82]. The interactions of 
nine C

60
 molecules with the lipid bilayer were 

simulated to investigate the effect of a C
60 

con­
centrated solution. The results show that C

60
 

molecules preferred to spread homogeneously 
near the membrane center when inserted into 
the membrane [83]. The preferred position, 
which minimized the potential of mean force, 
of a C

60
 inside a liquid crystalline lipid bilayer 

was approximately 6–7 Å from the center of the 
bilayer [84]. For the more ordered gel-phase lipid 
bilayers, the position was approximately 18 Å 
from the bilayer center, because of the energy 
penalty [85]. The permeability of C

60 
through 

the lipid bilayer correlated with its dispersion 

interaction with the surrounding medium [86]. 
The MD method was also used to investigate 
small molecules (e.g., benzocaine, ethanol, urea 
and caffeine) that penetrate across the lipid 
bilayer [75,87,88].

The MD method is capable of capturing the 
details of atomic interactions. With the MD 
method, researchers can investigate structure 
dynamics changes, both for NMs and lipid mol­
ecules (e.g., the interactions between atoms in 
individual lipid molecules and different atom 
sizes of G3-PAMAM dendrimer) [89]. The 
atomic interactions can help us to understand 
interactions from the microscopic point of view, 
which is challenging for experimental observa­
tion. However, with present computing power, 
the MD method is limited by the small length 
and time scale (nanometer and nanosecond); 
hence, it is hard to simulate the endocytosis 
processes and large NM–biomembrane systems, 
which contain thousands of lipid molecules 
(Table 2), using this method.

�� Coarse-grained MD method
Compared with the MD method, the atoms 
are grouped together into clusters as simula­
tion units in the coarse-grained MD (CGMD) 
method which will reduce computation con­
sumption greatly. The MARTINI force field 
developed by Marrink et al. is a typical coarse-
grained force field which is in agreement with 
experimental results [90]. It is widely used in 
biosystem simulation.

The CGMD method has been widely 
employed to simulate the effects of NM prop­
erties, environments and membrane proper­
ties on NM–biomembrane interactions. For 
example, Gu et al. simulated the effect of the 
hydrophobic property of NMs and the effect of 
charges on NM–biomembrane systems [70,91]. 
Hydrophobic interaction and electrostatic 
attraction improved the interaction process. 
Energy-independent endocytosis of NMs with 
varying shapes and ligand coverage (Figure 4) 
was simulated by Vácha et al. who indicated 
that endocytosis eff iciency was higher for 
spherocylindrical NMs than for spheres [92]. 
As for the effect of pH, PAMAM dendrimers 
can be absorbed onto the negatively charged 
membrane at a low pH and can even induce 
hole formation in the membrane when the cor­
responding protonation levels are employed 
in the simulation to mimic the different pH 
conditions (e.g., pH 10, 7 and 5) [93,94]. Aside 
from pH, the formation of holes induced by 
Au‑NMs and PAMAM dendrimers was also 
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affected by surface charge signs and den­
sity of NMs, membrane surface tension and 
temperature [69,95,96].

Compared with the MD method, the CGMD 
method has a longer time (millisecond) and 
length scale (micrometer), as shown in Table 2. 
Therefore, more experimental phenomena can 
be simulated by this method, such as the whole 
dynamic process of direct penetration and 
endocytosis. For instance, Figure 5 illustrates a 
single fullerene or a cluster of ten fullerenes pen­
etrating the dioleoylphosphatidylcholine mem­
brane [97]. The results are consistent with the 
MD simulations [83], in which the interactions 
were divided into two segments: the fullerenes 
lying inside or outside of the membrane. The 
permeation process of fullerene clusters into the 
lipid bilayer occurs on a microsecond timescale, 
which is too large for MD simulations to cap­
ture. Although the CGMD method loses the 
atomic details, acceptable simulation results can 
be achieved because the atom description has 
limited influence on the mesoscopic system [27].

�� Dissipative particle dynamics method
The dissipative particle dynamics (DPD) 
method is also a coarse-grained model where 
individual molecules or atoms are lumped 
together into a ‘bead’. The motion of the bead 
obeys Newton’s equation, but each DPD bead 
is subjected to three types of forces, namely, 
conservative–repulsive forces, dissipative forces 
and random forces [98]. The dissipative forces 
and random forces are coupled through the fluc­
tuation–dissipation theorem, and the system 
momentum is locally conserved.

Many complicated NM–biomembrane sys­
tems can be simulated using the DPD method. 
For ligand-coated NMs, a study has designed 
novel NMs with ligand-decorated surfaces 
through dynamic bonds and simulated its pen­
etrating process through the membrane using 
the kinetic theory [99]:

A ABB
k

kon
+

off

where A represents NMs, B represents free 
ligands, and AB stands for the NM–ligand 

t = 1000 t = 3000 t = 18,000

t = 75,000t = 73,000t = 44,000

t = 76,000 t = 78,000 t = 83,000

Figure 4. Snapshots of a spherical nanoparticle that underwent endocytosis by a lipid membrane. Yellow beads represent 
ligands. Blue beads represent membrane receptors, orange beads stand for head groups, while gray and orange are tail beads. Gray 
beads are purely repulsive. 
Reproduced with permission from [92]. 
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complex. The bond is broken when the bond 
length between the NMs and the ligand head 
is longer than its initial length. The bond 
forms again if the length is shorter than its ini­
tial length. The study provided a new way of 
translocating NMs and designing ligand-coated 
NMs. Another study investigated the effect of 
ligand properties (e.g., ligand density, length 
and rigidity) in receptor-mediated endocytosis, 
and found that the engulfment degree (partial 
or full engulfment) was strongly affected by 
ligand properties [100].

Coulombic interactions are needed to sim­
ulate the interaction of charged NMs with 
the biomembrane. Groot proposed a method 
based on the local lattice grid to calculate the 
electrostatic force [101]. Based on this method, 
many studies have investigated the interac­
tion between the charged dendrimer and the 
membranes of different structures, such as the 
vesicle membrane [102,103]. Figure 6 shows snap­
shots of hole formation induced by the charged 
dendrimers in the tensed bilayer membrane. 
The figure shows that the permeability of the 

254.7 ns 255.5 ns 256.3 ns 259.5 ns

752 ns 756 ns 760 ns 764 ns

1600 ns776 ns772 ns768 ns

Figure 5. Penetration of a single fullerene or a cluster of ten fullerenes into the dioleoylphosphatidylcholine membrane. 
(A) Penetration of a single fullerene into the dioleoylphosphatidylcholine membrane. Fullerene is shown in red, the lipids in cyan with 
blue head groups, and water in yellow. (B) Penetration of a cluster of ten fullerenes into the dioleoylphosphatidylcholine membrane. The 
penetration of the fullerene cluster was much slower than a single fullerene and started with the insertion of a single fullerene in the lipid 
head region. Water is not represented. 
Reproduced with permission from [97].
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charged dendrimers could be enhanced in the 
tensed membrane.

To simulate different membrane structures or 
surface tension, the bilayer membranes can be 
stretched by changing the lateral dimensions of 
the simulation box, in other words:

d d, , , ,x y xz y z
2"
d

^ `h j

to form pores or change surface tension in the 
membrane [102,104]. The N-varied DPD simu­
lation with an adjusted bead number can be 
applied to release the tension induced by the 
membrane deformation, as well as to preset 
membrane tension and simulate the effect on the 
cytoskeleton and actin. This method has been 
employed to investigate the membrane response 
to the adsorption of ligand-coated NMs [105] and 
the endocytosis kinetics of ligand‑coated NMs 
with different shapes [106].

Similar to the CGMD method, the DPD 
method has a time (millisecond) and length 
(micrometer) scale that allows simulation of the 
whole direct penetration process, the endocyto­
sis process and other more complicated systems, 

such as NM–heterogeneous membrane interac­
tions [77]. Furthermore, the DPD method allows 
larger time steps than the CGMD method, 
which greatly reduces computational efforts. In 
addition, the DPD method is able to describe the 
hydrodynamic effects because the momentum 
involved is conserved [107]. In addition, as with 
the CGMD method, the DPD method loses 
atomic details that cannot be used for structure 
analysis in the microscopic scale.

�� Other methods
Aside from the three methods stated above, 
other methods have also been used to simu­
late NM–biomembrane interactions, such as 
the Brownian dynamics method, the Monte 
Carlo method, thermodynamic models and 
mathematical models.

The Brownian dynamics method is based on 
the Langevin equation, where explicit solvent 
molecules are replaced by stochastic forces [27]. 
This method can simulate the phenomena with 
longer length (micrometer) and time scales (sec­
onds) than the CGMD and DPD methods. For 

Figure 6. Snapshots of a charged G5 dendrimer-induced hole in the tense bilayer membrane. The time for each snapshot was 
(A) 0, (B) 4.5, (C) 6.9 and (D) 15 μs. Color scheme: positively charged head beads are green; negatively charged head beads are pink; 
uncharged head beads are blue; tail beads are cyan; charged beads of the dendrimer are red; and uncharged beads of the dendrimer are 
yellow. Solvent and counterions are not represented. 
Reproduced with permission from [102].
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Experiments

CGMD/DPD

MD
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Figure 7. The length and time scale for experiments and simulations. 
CGMD: Coarse-grained molecular dynamics; DPD: Dissipative particle dynamics; 
MD: Molecular dynamics.

instance, the Brownian dynamics method was 
used to simulate the interactions between the 
lipid bilayer vesicles and adhesive NMs in which 
the NMs could induce vesicle budding, connec­
tion and fission [108]. The Monte Carlo method 
relies on repeated random sampling to obtain 
numerical results and it is used to model phe­
nomena with significant uncertainty regarding 
inputs. For example, the Monte Carlo method 
was used to model NM surface rearrangements, 
which is important in nonspecific interactions 
[109]. In addition, a thermodynamic model has 
also been developed to investigate the condition 
in which the NMs could be adsorbed onto or dis­
rupt the membrane. In this model, only the ther­
modynamic aspect information can be obtained 
without the dynamic process [110]. In contrast 
to molecular modeling simulations, Lunov et al. 
proposed a mathematic model to investigate the 
receptor-mediated endocytosis of engineered NPs 
by macrophages, which showed key parameters 
of this process (e.g., rate of uptake, the number of 
NPs per cell in saturation and the mean uptake 
time) [111]. They presented the understanding of 
NM–cell interactions in a more macroscopic way 
than the dynamic method.

Discussion
Despite extensive research on the mathematical 
and numerical simulations of NM–biomem­
brane interactions, a significant discrepancy 
exists between the experimental observa­
tion and simulation. For instance, in a nano­
tube–mouse liver cell interaction experiment, 
the cells were exposed to CNTs for 2 h before 
observation [65]. However, in the simulation, 
the CNT–lipid bilayer interaction lasted for a 
few microseconds. The reason for this discrep­
ancy is that it takes a long time for the CNTs 
to get close to the membrane surface, while we 
placed the CNTs on the lipid bilayer surface in 
the simulation. In addition, in the process of 
NMs getting close to the membrane surface, the 
protein corona and environment can also affect 
the NMs’ properties, as discussed in the ‘Key 
factors for NM–biomembrane interactions’ sec­
tion. It is challenging to observe the dynamic 
process of NM–biomembrane interactions in 
the appropriate time (microseconds) and length 
(several nanometers) scales. The invention of 
real-time monitoring microscopy with high 
resolution will greatly improve experimental 
studies. Meanwhile, for the simulation, it is dif­
ficult to take these factors into account because 
the simulation system within recent calculation 
capacity is only a few nanometers cubed, and 

only the lipid molecules, simplified proteins 
and solvents are simulated. Therefore, specific 
assumptions of the models are not realistic and 
further improvements are needed. Figure 7 shows 
the length and time scale for experiments and 
simulations. Table 2 summarizes the advantages 
and disadvantages of the main existing dynamic 
methods for simulating NM–cell interactions.

Conclusion & future perspective
This article mainly reviews the cellular uptake 
pathways of NMs, the key factors of NM–
biomembrane interactions, and the mathematical 
and numerical methods for NM–biomembrane 
interactions. The advantages and limitations for 
each method in terms of time and length scales 
were highlighted, and which proper models can 
be chosen to simulate different phenomena were 
determined. Despite the extensive achievements 
in this important and fast-growing field, many 
challenges remain. The major topics for further 
studies are, therefore, identified as follows:

�� The membrane structure is complex in vivo 
because numerous proteins, sugars and cho­
lesterol are attached to the membrane. How­
ever, the existing simulations only give a 
simple description of the lipid membrane 
skeleton, which consists of lipid molecules 
and simplified proteins. Simulation of more 
realistic lipid membranes to interact with 
NMs is needed;
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Executive summary
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