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Advances in the understanding of

mathematical and numerical modeling

nanomaterial-biomembrane interactions and their

The widespread application of nanomaterials (NMs), which has accompanied advances in nanotechnology,
has increased their chances of entering an organism, for example, via the respiratory system, skin absorption
or intravenous injection. Although accumulating experimental evidence has indicated the important role
of NM-biomembrane interaction in these processes, the underlying mechanisms remain unclear.
Computational techniques, as an alternative to experimental efforts, are effective tools to simulate
complicated biological behaviors. Computer simulations can investigate NM-biomembrane interactions
at the nanoscale, providing fundamental insights into dynamic processes that are challenging to
experimental observation. This paper reviews the current understanding of NM—-biomembrane interactions,
and existing mathematical and numerical modeling methods. We highlight the advantages and limitations
of each method, and also discuss the future perspectives in this field. Better understanding of
NM-biomembrane interactions can benefit various fields, including nanomedicine and diagnosis.

KEYWORDS: biomembrane
numerical modeling

With the rapid development of nanotechno-
logies, nanomaterials (NMs) have become part
of our daily lives. They are used in cosmetics,
textiles, bioimaging, medicine and diagno-
sis [1-8]. The widespread applications of NMs
increase their chances of entering the human
body via a number of pathways, such as the respi-
ratory system [9], skin absorption [10,11], intra-
venous injection [12] and implantation [13]. As a
result, there is an urgent need to understand the
potential physiological and pathological reac-
tions after exposure to NMs [14,15]. NMs can
induce a series of complicated reactions, but
they first need to cross a biomembrane barrier
(e.g., skin, lung surfactant, intestinal barrier or
cell membrane) to reach target cellular compart-
ments [16]. Therefore, it is of great importance
to investigate NM—biomembrane interactions.
Significant efforts have been devoted to
experimentally investigating NM—biomembrane
interactions. Many important findings have been
obtained from these efforts. For instance, it has
been established that NMs can induce specific
interactions with targeted cell membranes via
specific ligands [17], modify the biconcave shape
of erythrocytes [18], change cell membrane asym-
metry and thickness [19.20], damage the integrity
of cells through hole formation [21] and induce
oxidative stress [18]. In addition, NMs can be
rapidly taken up by cells; a characteristic that
has been applied for cancer gene therapy [22,23],
cancer imaging and phototherapy [24], and drug
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delivery [25.26]. However, despite all of these
important applications, the mechanisms under-
lying NM-biomembrane interactions are poorly
understood, as experimental tests and observa-
tions at the nanoscale for complex biological
systems remain technically challenging.
Alternatively, it has been demonstrated that
mathematical and numerical modeling can
simulate the NM—biomembrane interaction at
the nanoscale, as well as conditions that are chal-
lenging to realize experimentally, providing deep
insight into the dynamic process of the system
(27-29]. Moreover, the capability of numerical
simulations has been significantly enhanced
with the increase in computing power in the
last few decades. In this review, we present the
state-of-the-art advances in the understanding of
NM-biomembrane interactions and their math-
ematical and numerical modeling. The Path-
way of cellular uptake of NMs’ and ‘Key factors
for NM—biomembrane interactions’ sections
describe the basic cellular uptake pathways of
NMs and key factors associated with NM-bio-
membrane interactions, respectively. The ‘Math-
ematical & numerical modeling approaches for
NM-biomembrane interactions’ section reviews
the existing mathematical and numerical model-
ing approaches for NM-biomembrane interac-
tions and discusses the advantages and disad-
vantages associated with each method. Finally,
the ‘Discussion’ and ‘Conclusion & future per-
spective’ sections highlight the limitations of the
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current modeling methods and future research
topics for NM—-biomembrane interactions.

Pathways of cellular uptake of NMs
The cellular uptake of NMs usually consists of
two processes, adsorption of NMs on the mem-
brane, and internalization of NMs by endocytic
and nonendocytic pathways (Ficure 1) [16,30-33].

Endocytic pathway
Endocytosis is an important pathway for cellular
uptake because the most important substances,
such as proteins, which are biomacromolecules,
cannot directly penetrate the cell membrane.
Endocytosis can be divided into phagocytosis
and nonphagocytosis; the latter includes mac-
ropinocytosis, clathrin-mediated endocytosis
(CME), caveolae-mediated endocytosis (CYME),
and other clathrin- and caveolae-independent
endocytosis pathways [34]. CME is the predom-
inant receptor-mediated endocytosis pathway
for most cells, and involves membrane curva-
ture generation, clathrin lattice formation and
clathrin-coated vesicle formation. CYME forms
flask-shaped invaginations in the membrane
that allow molecules to enter the cells through
ligand—receptor binding [35]. Other types of
clathrin- and caveolae-independent endocytic
pathway have been discovered aside from CME
and CvME, such as lipid raft-mediated and
ARF6-mediated GEEC pathways [36).

A variety of NMs (e.g., carbon nanotubes
[CNTs], metal NMs and semiconductor NMs)

Endocytic pathways

have been demonstrated to enter into the cells
via endocytosis [37-44]. For instance, both single-
walled nanotubes (SWNTs) and SWNT con-
jugates (SWNT=streptavidin, protein—-SWN'T
and DNA-SWNT) can enter human promy-
elocytic leukemia (HLG60) cells via endocytosis
(39.40]. Several factors affect the endocytosis pro-
cess [45], such as NM size, membrane elasticity
and receptor-ligand interactions. For instance,
most nanosized synthetic NMs are internalized
through endocytosis [35], and the optimal size
of NMs for endocytosis is 25-30 nm [46.47].
An increased membrane elasticity can reduce
the membrane bending energy, enhancing the
ability of the membrane to wrap around NMs
48]. In addition, specific receptor-ligand inter-
actions are involved in the endocytosis process
(Fieure 2), which is the most effective promotive
force for endocytosis [45].

Nonendocytic pathways
Although endocytosis is the main pathway for
cellular uptake of NMs, nonendocytic path-
ways exist, where NMs directly penetrate the
cells (35]. For instance, NMs with sufficiently
small diameters (e.g., metal clusters [49]) and
needle-shaped NMs (e.g., single CNTs [50]) can
directly penetrate the membrane. Cationic NMs
(e.g., PAMAM dendrimers [51.52], Au-NH, and
SiO,-NH, [17]) can pass through the membrane
by forming pores in the membrane. Large NMs
can also penetrate into the cells when attached
to cell-penetrating peptides (CPPs) [33.53]. CPPs

Nonendocytic pathways
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Figure 1. Cellular uptake pathways of nanomaterials. The cellular uptake pathways of
nanomaterials can be simply divided into two kinds, namely, endocytic and nonendocytic. The
endocytic pathway includes phagocytosis, macropinocytosis, clathrin-dependent endocytosis,
caveolae-dependent endocytosis, and other mechanisms of clathrin- and caveolae-independent
endocytosis. The nonendocytic pathway includes direct penetration and other pathways, which are

not yet fully understood.
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Figure 2. Receptor-mediated cellular uptake of nanomaterials. The interactions between
nanomaterials and the biomembrane can be classified into two kinds: specific receptor—ligand
interactions and nonspecific interactions. Specific receptor-ligand interactions always lead to
endocytosis. The nanomaterial properties (e.g., surface roughness, hydrophobicity and charge) that
promote binding with lipid molecules generally relate to nonspecific forces, such as hydrophobic and
electrostatic interactions. The nonspecific interactions can lead to direct penetration of the

membrane.
Reproduced with permission from [4s].

can effectively deliver nanomedicine to the inter-
cellular target by passing through the plasma
membrane [54]. Studies have found that peptide-
encapsulated fluorescent silver nanoclusters [49]
and polyarginine-conjugated iron oxide NMs
loaded with siRNA can directly penetrate cell
mebranes [5s]. Similar to CPPs, several synthetic
NMs, such as synthetic amphipathic phospho-
lipid polymers [56] and nanoparticles (NPs)
coated with hydrophilic—hydrophobic striated
ligand shell [57:58] can also penetrate the mem-
brane in a similar manner to the CPPs without
disrupting the membrane.

Tase 1 summarizes the cellular uptake path-
ways of different NMs. Although numerous
studies have been performed, as previously men-
tioned, the entry mechanism of NMs through
the membrane is far from clear. For instance, no
precise definition exists for different entry path-
ways of NMs into cells. More work is needed
to better understand the NM—biomembrane
interactions.

Key factors for NM-biomembrane
interactions

Physicochemical properties of NMs
Key physicochemical properties of NMs which
affect NM—biomembrane interactions include
NM size, shape, surface roughness and rigidity,

future science group

charge, hydrophobic properties, and protein
corona.

NM size can determine the entry pathways
of the NMs into the cells and affect the rates of
cellular uptake. For instance, silica NMs with
a size of less than 1.2 nm can penetrate into a
dimyristoylphosphatidylcholine lipid bilayer
without damaging the membrane, while pores
form in the lipid membrane for NMs with a size
ranging from 1.2 to 22 nm, and the membrane
envelopes NMs with a size over 22 nm (Ficure 3)
(59.60]. The modes of endocytosis depend on the
NM size, which is typically 100 nm for CME and
50-80 nm for CYME, respectively [34]. Moreover,
studies have found that the cellular uptake rate
for gold (Au)-NMs with sizes of approximately
50 nm is faster than that of other sizes [37.61].

NM shape is another important factor that
affects the cellular uptake process. For instance,
the polystyrene NM shape determines the
formation of the actin structures that initiate
phagocytosis (62]. The endocytosis rate of spheri-
cal Au-NMs (74 and 14 nm in diameter) was
higher than that of rod-shaped Au-NM:s of the
same size in one study. Furthermore, the endo-
cytosis rate of rod-shaped Au-NM:s (74 x 14 nm)
with a low aspect ratio (1:3) was greater than
the high-aspect-ratio (1:5) NMs [37]. However,
in another study, the rate of cellular uptake of
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8 > = o= oo £8 cylindrical particles have larger surface areas to
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8§ 28 28 88 28 5% contact the membrane (63]. Numerical simula-
© © © © @ R .. .
9 2 €€ 2 &€ ¢ tions have also revealed that the minimum driv-
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S zZL 22 =282 z£ }7 ing forces for NMs to penetrate the membrane
Q . .
oS depend on the NM shape (e.g., sphere, ellipsoids,
=7 rods, discs and pushpin-like) [64]. Shi ez 2/. simu-
a3 lated the entry mechanism of 1D CNTs with
9] 9] ) . . . .
5 5 s 8§ g different tips (hemispherical cap, enlarged cap,
4 |8 g 8 N g CNT bundle tip and open tip) into cells and
g g S £ 5% found that different tips resulted in different cell
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@ T O c e < g entry modes [65].
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g = = e 2 2 Surface roughness and rigidity of NMs also
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'g 2 2 T S 3T affect the NM—biomembrane interactions. For
= = 35 . . .
g 8 g 3 st instance, silica NMs with a smooth surface
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2 v Y = o g g by the lipid membrane, whereas the bumpy NMs
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€5 oped, as shown in Ficure 3 [60]. In the study of
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gs because a larger adhesion energy was needed for
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s the former [66].
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g5 Electrostatic interactions and hydrophobic
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~ S E £ 8 action types in NM—-biomembrane interactions.
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n > g0 tively charged NMs on the membrane. Both
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= (G T indicated that cationic Au-NMs induce more
g ks %Z disruption of the cell membrane than anionic
= 2 S\iﬂi Au-NMs [68,69], as it depends on the charge
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- @ = N RS density. For the hydrophobic interactions, a
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S g = -~z s £ og simulation study showed that hydrophobic NMs
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=la v <n < = T cell membrane, whereas semihydrophilic NMs
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< kel
o 2 £ g SE capto-l-undecanesulfonate Au-NPs that only
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- T 9 = %] -
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R0l = |- T S| =2>)00 brane surface, such as in the blood, plasma
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Figure 3. Interaction mechanisms of silica nanomaterials of different sizes
with supported lipid membranes. (A) Nanomaterials (NMs) with sizes smaller
than 1.2 nm penetrated into the lipid membrane without disrupting it. (B & C) The
NMs with a size of 1.2-22 nm could form pores in the lipid membrane, (D) whereas
NMs with a size over 22 nm were enveloped by the lipid membrane. (E) The bumpy
NMs (>22 nm) were partially enveloped.

Reproduced with permission from [59,60].
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and interstitial fluid, where there are a lot of
proteins, the protein corona of NMs will be
formed, which may affect the cellular uptake
of NMs [45.71]. For instance, polymeric carrier
NM:s can be bound by opsonin proteins in the
blood serum, recognized and phagocytozed by
macrophages and then deliver drugs to their des-
tination [72]. Researchers also use the protein
corona of NMs to target specific cell types, such
as apolipoproteins—quantum dots, which com-
plex with murine macrophages, human dermal
fibroblasts and primary murine glial cells (73].
In some cases, the formation of protein corona
of NMs can also reduce cellular uptake. For
instance, serum proteins adsorbed on CNPs
can reduce the cellular uptake of HeLa cells [74].

Properties of the biomembrane
Phospholipids are the main lipids in the cel-
lular membrane and can be divided into

phosphatidylcholine, phosphatidylserine and

Nanomedicine (2013) 8(6)

phosphatidylethanolamine depending on their
hydrophilic head groups. Phosphatidylcholine
and phosphatidylethanolamine are neutrally
charged, while phosphatidylserine is nega-
tively charged. In general, the cell membrane
is electronegative and will repel negatively
charged and attract positively charged NMs
(75]. The membrane structure (e.g., phase tran-
sition and heterogeneity of the membrane) is
also a key factor. For instance, the polycationic
polymer NMs disrupt the lipid membrane in
a membrane structure-dependent manner,
with only the liquid—crystalline phase found
to induce disruption [76]. With proteins, sugar
and cholesterol on it, the membrane always
presents heterogeneity. The interaction of NDPs
and the heterogeneous membrane with an adhe-
sive raft on the membrane was simulated in one
study, where the raft drove the entry process of
membrane-wrapped NDPs into the vesicle [77].

The properties of biomembranes are sig-
nificantly dependent on environmental factors,
such as temperature, pH and salt concentration
(78-80]. For instance, the membrane fluidity
decreases and changes from the liquid—crystal-
line to gel phase with decreasing temperature,
which inhibits NM—biomembrane interactions
(76.80]. The environmental pH and salt concen-
tration can alter the mechanical and electrical
properties of the membrane. The compressive
modulus of the PC membrane was reduced by
30% at pH 2 compared with at pH 3 or 9 [78].
Therefore, a decrease in membrane elasticity
can reduce the endocytic ability of the cell. As
for salt concentration, NaCl and CaCl, can sig-
nificantly increase the order of lipid molecules,
leading to reduced membrane elasticity [79]. The
strong interactions between PC membranes and
Na* ions caused notable membrane compres-
sion, whereas the interaction of K* ions with the
membrane was much weaker [s1].

Mathematical & numerical modeling
approaches for NM-biomembrane
interactions

Computer simulation can describe the tra-
jectories of molecules and the dynamic pro-
cess of the NM—biomembrane interactions,
providing deep insights into the understand-
ing of NM-biomembrane interactions at the
nanoscale. Two types of dynamic models exist
in the computer simulation model of NM-bio-
membrane interactions, namely the atomistic
and coarse-grained models. The main differ-
ence between the two models is the simulation
units that are adopted. Atomistic models employ

fsg
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simulation units of a single atom, providing a
detailed description of atom—atom interactions,
whereas the simulation units of coarse-grained
models include a cluster of atoms, molecules
or chemical groups. This section reviews the
recent advances in these modeling methods, and
focuses on the advantages and disadvantages of
each method (Tasie 2).

Molecular dynamics method

The molecular dynamics (MD) method is based
on the classical Newton’s law of motion. A tra-
jectory that describes the change in an atom’s
position with time can be obtained by solving
the differential equations of Newton’s second
law, with the potential energy of the atoms
represented by the force field. The force field
contains bond interactions that represent both
the chemical bond (i.e., bond stretching, angle
bending and torsion angle potentials) and non-
bonded interactions (i.e., Van der Waals and
electrostatic interactions). The potential energy
of the system may be given as follows:

V(55 1) = 250()

where 7is the location of atom 7 and dD(rl,],) is the
interaction potential between atom 7 and atom
j. The control equations are:

Numerous studies involving the MD method
have been performed to determine the interac-
tions between the biomembrane and C, NMs
with different properties (i.e., morphology and
concentration). The permeability coefficient
had a decreasing trend as follows: nanoC,,
C,, and open-C_ [82]. The interactions of
nine C,, molecules with the lipid bilayer were
simulated to investigate the effect of a C_ con-
centrated solution. The results show that C_|
molecules preferred to spread homogeneously
near the membrane center when inserted into
the membrane [83]. The preferred position,
which minimized the potential of mean force,
of a C_, inside a liquid crystalline lipid bilayer
was approximately 67 A from the center of the
bilayer (84]. For the more ordered gel-phase lipid
bilayers, the position was approximately 18 A
from the bilayer center, because of the energy
penalty [8s]. The permeability of C_ through
the lipid bilayer correlated with its dispersion

future science group

interaction with the surrounding medium [86].
The MD method was also used to investigate
small molecules (e.g., benzocaine, ethanol, urea
and caffeine) that penetrate across the lipid
bilayer [75,87.88].

The MD method is capable of capturing the
details of atomic interactions. With the MD
method, researchers can investigate structure
dynamics changes, both for NMs and lipid mol-
ecules (e.g., the interactions between atoms in
individual lipid molecules and different atom
sizes of G3-PAMAM dendrimer) [89]. The
atomic interactions can help us to understand
interactions from the microscopic point of view,
which is challenging for experimental observa-
tion. However, with present computing power,
the MD method is limited by the small length
and time scale (nanometer and nanosecond);
hence, it is hard to simulate the endocytosis
processes and large NM—biomembrane systems,
which contain thousands of lipid molecules
(Tase 2), using this method.

Coarse-grained MD method
Compared with the MD method, the atoms
are grouped together into clusters as simula-
tion units in the coarse-grained MD (CGMD)
method which will reduce computation con-
sumption greatly. The MARTINTI force field
developed by Marrink et al. is a typical coarse-
grained force field which is in agreement with
experimental results [90]. It is widely used in
biosystem simulation.

The CGMD method has been widely
employed to simulate the effects of NM prop-
erties, environments and membrane proper-
ties on NM—biomembrane interactions. For
example, Gu ez al. simulated the effect of the
hydrophobic property of NMs and the effect of
charges on NM~-biomembrane systems [70,91].
Hydrophobic interaction and electrostatic
attraction improved the interaction process.
Energy-independent endocytosis of NMs with
varying shapes and ligand coverage (Ficure 4)
was simulated by Vdcha ez a/. who indicated
that endocytosis efficiency was higher for
spherocylindrical NMs than for spheres [92].
As for the effect of pH, PAMAM dendrimers
can be absorbed onto the negatively charged
membrane at a low pH and can even induce
hole formation in the membrane when the cor-
responding protonation levels are employed
in the simulation to mimic the different pH
conditions (e.g., pH 10, 7 and 5) [93,94]. Aside
from pH, the formation of holes induced by
Au-NMs and PAMAM dendrimers was also
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t=44,000

t=76,000

t = 83,000

Figure 4. Snapshots of a spherical nanoparticle that underwent endocytosis by a lipid membrane. Yellow beads represent
ligands. Blue beads represent membrane receptors, orange beads stand for head groups, while gray and orange are tail beads. Gray

beads are purely repulsive.

Reproduced with permission from [92].

1004

affected by surface charge signs and den-
sity of NMs, membrane surface tension and
temperature [69,95,96].

Compared with the MD method, the CGMD
method has a longer time (millisecond) and
length scale (micrometer), as shown in Tasie 2.
Therefore, more experimental phenomena can
be simulated by this method, such as the whole
dynamic process of direct penetration and
endocytosis. For instance, Ficure 5 illustrates a
single fullerene or a cluster of ten fullerenes pen-
etrating the dioleoylphosphatidylcholine mem-
brane [97]. The results are consistent with the
MD simulations [83], in which the interactions
were divided into two segments: the fullerenes
lying inside or outside of the membrane. The
permeation process of fullerene clusters into the
lipid bilayer occurs on a microsecond timescale,
which is too large for MD simulations to cap-
ture. Although the CGMD method loses the
atomic details, acceptable simulation results can
be achieved because the atom description has
limited influence on the mesoscopic system [27].

Nanomedicine (2013) 8(6)

Dissipative particle dynamics method
The dissipative particle dynamics (DPD)
method is also a coarse-grained model where
individual molecules or atoms are lumped
together into a ‘bead’. The motion of the bead
obeys Newton’s equation, but each DPD bead
is subjected to three types of forces, namely,
conservative—repulsive forces, dissipative forces
and random forces [98]. The dissipative forces
and random forces are coupled through the fluc-
tuation—dissipation theorem, and the system
momentum is locally conserved.

Many complicated NM—-biomembrane sys-
tems can be simulated using the DPD method.
For ligand-coated NMs, a study has designed
novel NMs with ligand-decorated surfaces
through dynamic bonds and simulated its pen-
etrating process through the membrane using
the kinetic theory (99):

k,

A+B=—%=AB
Kofr

where A represents NMs, B represents free
ligands, and AB stands for the NM-ligand

future science group
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complex. The bond is broken when the bond
length between the NMs and the ligand head
is longer than its initial length. The bond
forms again if the length is shorter than its ini-
tial length. The study provided a new way of
translocating NMs and designing ligand-coated
NMs. Another study investigated the effect of
ligand properties (e.g., ligand density, length
and rigidity) in receptor-mediated endocytosis,
and found that the engulfment degree (partial
or full engulfment) was strongly affected by
ligand properties [100].

254.7 ns

Coulombic interactions are needed to sim-
ulate the interaction of charged NMs with
the biomembrane. Groot proposed a method
based on the local lattice grid to calculate the
electrostatic force [101]. Based on this method,
many studies have investigated the interac-
tion between the charged dendrimer and the
membranes of different structures, such as the
vesicle membrane [102,103]. Ficure 6 shows snap-
shots of hole formation induced by the charged
dendrimers in the tensed bilayer membrane.
The figure shows that the permeability of the

255.5 ns 256.3 ns

259.5 ns

Figure 5. Penetration of a single fullerene or a cluster of ten fullerenes into the dioleoylphosphatidylcholine membrane.
(A) Penetration of a single fullerene into the dioleoylphosphatidylcholine membrane. Fullerene is shown in red, the lipids in cyan with
blue head groups, and water in yellow. (B) Penetration of a cluster of ten fullerenes into the dioleoylphosphatidylcholine membrane. The
penetration of the fullerene cluster was much slower than a single fullerene and started with the insertion of a single fullerene in the lipid

head region. Water is not represented.
Reproduced with permission from [97].

future science group
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Figure 6. Snapshots of a charged G5 dendrimer-induced hole in the tense bilayer membrane. The time for each snapshot was
(A) 0, (B) 4.5, (C) 6.9 and (D) 15 ps. Color scheme: positively charged head beads are green; negatively charged head beads are pink;
uncharged head beads are blue; tail beads are cyan; charged beads of the dendrimer are red; and uncharged beads of the dendrimer are
yellow. Solvent and counterions are not represented.
Reproduced with permission from [102].

charged dendrimers could be enhanced in the
tensed membrane.

To simulate different membrane structures or
surface tension, the bilayer membranes can be
stretched by changing the lateral dimensions of
the simulation box, in other words:

(x,y,2)— (ﬁx, 5y,§>

to form pores or change surface tension in the
membrane [102,104]. The N-varied DPD simu-
lation with an adjusted bead number can be
applied to release the tension induced by the
membrane deformation, as well as to preset
membrane tension and simulate the effect on the
cytoskeleton and actin. This method has been
employed to investigate the membrane response
to the adsorption of ligand-coated NM:s [105] and
the endocytosis kinetics of ligand-coated NMs
with different shapes [106].

Similar to the CGMD method, the DPD
method has a time (millisecond) and length
(micrometer) scale that allows simulation of the
whole direct penetration process, the endocyto-
sis process and other more complicated systems,

such as NM-heterogeneous membrane interac-
tions [77]. Furthermore, the DPD method allows
larger time steps than the CGMD method,
which greatly reduces computational efforts. In
addition, the DPD method is able to describe the
hydrodynamic effects because the momentum
involved is conserved [107]. In addition, as with
the CGMD method, the DPD method loses
atomic details that cannot be used for structure
analysis in the microscopic scale.

B Other methods

Aside from the three methods stated above,
other methods have also been used to simu-
late NM—biomembrane interactions, such as
the Brownian dynamics method, the Monte
Carlo method, thermodynamic models and
mathematical models.

The Brownian dynamics method is based on
the Langevin equation, where explicit solvent
molecules are replaced by stochastic forces [27].
This method can simulate the phenomena with
longer length (micrometer) and time scales (sec-

onds) than the CGMD and DPD methods. For

1006
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instance, the Brownian dynamics method was
used to simulate the interactions between the
lipid bilayer vesicles and adhesive NMs in which
the NMs could induce vesicle budding, connec-
tion and fission [108]. The Monte Carlo method
relies on repeated random sampling to obtain
numerical results and it is used to model phe-
nomena with significant uncertainty regarding
inputs. For example, the Monte Carlo method
was used to model NM surface rearrangements,
which is important in nonspecific interactions
(109]. In addition, a thermodynamic model has
also been developed to investigate the condition
in which the NMs could be adsorbed onto or dis-
rupt the membrane. In this model, only the ther-
modynamic aspect information can be obtained
without the dynamic process [110]. In contrast
to molecular modeling simulations, Lunov et /.
proposed a mathematic model to investigate the
receptor-mediated endocytosis of engineered NPs
by macrophages, which showed key parameters
of this process (e.g., rate of uptake, the number of
NPs per cell in saturation and the mean uptake
time) (111]. They presented the understanding of
NM-—cell interactions in a more macroscopic way
than the dynamic method.

Discussion

Despite extensive research on the mathematical
and numerical simulations of NM—biomem-
brane interactions, a significant discrepancy
exists between the experimental observa-
tion and simulation. For instance, in a nano-
tube—mouse liver cell interaction experiment,
the cells were exposed to CNTs for 2 h before
observation [65]. However, in the simulation,
the CNT-lipid bilayer interaction lasted for a
few microseconds. The reason for this discrep-
ancy is that it takes a long time for the CNTs
to get close to the membrane surface, while we
placed the CNTs on the lipid bilayer surface in
the simulation. In addition, in the process of
NM:s getting close to the membrane surface, the
protein corona and environment can also affect
the NMs’ properties, as discussed in the ‘Key
factors for NM—biomembrane interactions’ sec-
tion. It is challenging to observe the dynamic
process of NM-biomembrane interactions in
the appropriate time (microseconds) and length
(several nanometers) scales. The invention of
real-time monitoring microscopy with high
resolution will greatly improve experimental
studies. Meanwhile, for the simulation, it is dif-
ficult to take these factors into account because
the simulation system within recent calculation
capacity is only a few nanometers cubed, and

future science group

only the lipid molecules, simplified proteins
and solvents are simulated. Therefore, specific
assumptions of the models are not realistic and
further improvements are needed. Ficure7 shows
the length and time scale for experiments and
simulations. Tasie 2 summarizes the advantages
and disadvantages of the main existing dynamic
methods for simulating NM—cell interactions.

Conclusion & future perspective

This article mainly reviews the cellular uptake
pathways of NMs, the key factors of NM-—
biomembrane interactions, and the mathematical
and numerical methods for NM—biomembrane
interactions. The advantages and limitations for
each method in terms of time and length scales
were highlighted, and which proper models can
be chosen to simulate different phenomena were
determined. Despite the extensive achievements
in this important and fast-growing field, many
challenges remain. The major topics for further
studies are, therefore, identified as follows:

The membrane structure is complex iz vivo
because numerous proteins, sugars and cho-
lesterol are attached to the membrane. How-
ever, the existing simulations only give a
simple description of the lipid membrane
skeleton, which consists of lipid molecules
and simplified proteins. Simulation of more

realistic lipid membranes to interact with
NDMs is needed;

[
|
Experiments
|
s L -
o M
E CGMD/DPD
HS |
|
|
|
|
T 1
pm
Length

Figure 7. The length and time scale for experiments and simulations.

CGMD: Coarse-grained molecular dynamics; DPD: Dissipative particle dynamics;

MD: Molecular dynamics.
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= Fundamental studies are necessary in order to obtain a systematic understanding of the mechanism underlying nanomaterial
(NM)—biomembrane interactions. Mathematical and numerical modeling can provide deep insight into the dynamic process of the

F2EWA Qu, He, Lin er al.

= The microenvironments for various cells are
different, which affects the NM—biomem-
brane interactions. More work is needed to
match the physiological situation more closely;

* The potential functions that describe the
forces between simulation units are not pre-
cise. Searching for more precise and simpler
potential functions is also a challenge for
simulating NM—-biomembrane simulations;

* Improvement of the computer calculation
capacity is needed. Simulation of large and
complicated NM-biomembrane systems with
a long simulated time that matches the real
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Executive summary

system, which has been demonstrated to be a useful tool.
The cellular uptake of various NMs generally includes endocytic and nonendocytic pathways.

Key factors that affect NM—biomembrane interactions include physicochemical properties of NMs (size, shape, surface roughness and
rigidity, charge, hydrophobic properties and protein corona), biomembrane properties, temperature, pH and salt concentration.
There are two types of dynamic model for the simulation of NM—-biomembrane interactions, namely, atomistic models (molecular
dynamics) and coarse-grained models (coarse-grained molecular dynamics and dissipative particle dynamics). The length and time

scales of each method determine the simulated system phenomena.

Simulation of a larger NM—biomembrane interaction system that matches the physiological situation more closely is needed in future

studies.
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