
Progress in Computational Fluid Dynamics, Vol. 13, No. 5, 2013 285 

Copyright © 2013 Inderscience Enterprises Ltd. 

An improved CE/SE scheme for incompressible 
multiphase flows and its applications 

Duoxing Yang* 
Research Institute of Innovative Technology for the Earth, 
9-2, Kizugawadai, Kizugawa-Shi, Kyoto, 619-0292, Japan 
and 
Key Laboratory of Crustal Dynamics, 
Institute of Crustal Dynamics, 
Chinese Earthquake Administration, 
P.O. Box 2855, Beijing, 100085, China 
Fax:+81-774-752312 
E-mail: dxyangcea@yahoo.com 
*Corresponding author 

Deliang Zhang 
Institute of Mechanics, 
Chinese Academy of Sciences, 
No. 15 Beisihuanxi Road, Beijing, 100190, China 
E-mail: dlzhang@imech.ac.cn 

Abstract: A new space-time conservation element-solution element (CE/SE) scheme,  
which is based on the hexahedron mesh, is proposed by constructing a new structure of  
solution elements (SEs) and conservation elements (CEs) and extended to two-dimensional 
incompressible multiphase flows. This scheme is applied to several incompressible flow 
problems, such as lid-driven cavity flow, dam break flow, motions of falling droplets, flow 
instability and water-kerosene interaction. The numerical results and their comparison with 
lecture results and experimental data are presented. The comparisons demonstrate that the 
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pretreatment method is proposed, transforming the elliptic-parabolic equations to the hyperbolic 
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CE/SE scheme can be applied to incompressible multiphase flows widely. 
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1 Introduction 

The incompressible multiphase flows are highly non-linear 
phenomena. Numerical simulations have become popular 
and are playing more and more important roles in the 
incompressible multiphase flow research. However, two 
main challenges are still confronted in the numerical 
methods: the numerical scheme for the governing equations 
and the special treatments for the fluid-fluid interfaces. 
Recently, the numerical research of incompressible 
multiphase flow is mainly focusing on numerical schemes 
for Navier-Stokes equations (NSE) and a method for 
interface treatment. Method research on NSE solver 
includes Lattice Boltzmann equation (LBE) method 
(Nourgaliev et al., 2003), pseudocompressibility method 
(Nourgaliev et al., 2004), projection method (Ni et al., 2006) 
and non-linear multigrid method (Shin et al., 2011), etc. 
Methods for interface treatment involve level-set method 
(Osher and Fedkiw, 2001), volume of fluid, ghost fluid 
method, a coupling method of volume-of-fluid and level set 
method (CLSVOF), particle level-set method and local front 
reconstruction method (LFRM) (Shin et al., 2011), etc. The 
hybrid particle level set (HPLS) method based on massless 
marker particles was proposed by Enright et al. (2002), 
which combines the merits of the Lagrangian approach and 
the Eulerian level set method. The HPLS is a smart 
technique for improved mass conservation in a fluid flow 
and is effective for tracing fluid-fluid interfaces. 

The space-time conservation element-solution element 
(CE/SE) method, first proposed by Chang (1995), is  
a novel computational fluid dynamics (CFD) method for 
conservation laws. This method is distinctive from 
traditional numerical method and is based on the global and 
local flux conservation in a space-time domain by 
introducing conservation elements (CEs) and solution 
elements (SEs). The CE/SE method unifies space and time 
and treats them as a single entity, preserving global and 
local flux conservation in both space and time. Typically, 
both independent flow variables and their derivatives are 
treated as unknowns and are solved for simultaneously. The 
CE/SE method has been used for accurate numerical 
solutions involving shocks (Chang, 1995), viscous flows 
(Guo et al., 2004), magneto-hydro-dynamic (MHD) flows 
(Zhang et al., 2006), multi-material elastic-plastic flows 
(Wang et al., 2009) and dilute gas-particle flows  
(Wang et al., 2011), etc. Recently, Zhang et al. (2002) 
proposed the CE/SE scheme by using quadrilateral and 
hexahedral meshes. Wang et al. (2009) proposed  
two-dimensional high-accuracy CE/SE schemes, which is 
based on the rectangular mesh. However, the CE/SE 
schemes above-mentioned have been proposed for 
compressible flow problems, which are governed by 
hyperbolic equations. 

 
 
 
 
 

The features described above make the CE/SE method a 
good candidate for problems such as Marangoni effects 
(Savino et al., 2003), microconfined shear flow (Sibillo  
et al., 2006), viscoelastic fluid (Harvie et al., 2008), etc. 
However, before testing the CE/SE method on these 
demanding tasks, one has to first be able to apply the CE/SE 
method to incompressible multiphase flow problems 
(governed by elliptic-parabolic equations) on a routine 
basis. 

The aim of the present work is to construct a simple and 
accurate two-dimensional CE/SE scheme for incompressible 
multiphase flows. We propose a new definition of SE and 
CE and construct an improved CE/SE scheme based on the 
hexahedron mesh. Furthermore, we apply the improved 
CE/SE scheme to solve the problems of two-dimensional 
incompressible multiphase flows. As to the knowledge of 
the authors, it is the first time to use the CE/SE method to 
solve these problems. The HPLS technique is used for 
tracing fluid-fluid interfaces. For verifying the accuracy, 
resolution, and efficiency of the improved CE/SE scheme, 
several validation cases, including cavity flow, dam break, 
falling droplets, flow instability and water-kerosene 
interaction are numerically simulated. The computational 
results are also compared with the results from experiments 
and other literatures. 

2 Governing equations 

Based on the continuum surface force CSF) mode, a set of 
governing equations for mass and momentum of 
incompressible multiphase flows is obtained as follows  
(Ni et al., 2006): 

Continuity equation: 
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where ui, uj and P are the dimensionless velocities and 
pressure, respectively. The Reynolds, Froude and  

Weber numbers are denoted as 
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ratios of the viscosity and density. For simplicity, λρ and λμ 
are presented as ρ  and μ  respectively. The surface tension 
force for the level set approach is reformulated as a volume 
force (Brackbill et al., 1992), 
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( ) ( )SVF k αϕ δ ϕ ϕ= ∇  (3) 

where ϕ is a smooth level set function, which is positive 
outside the interface, negative inside the interface and zero 
at the interface. d is a surface tension delta function and  
k is the interface front curvature. To prevent numerical 
instability, it is necessary to smooth the values of the 
density ρε and viscosity με as: 

( )
( )
1( ) ( )

1( ) ( )

H

H

ρε ρ ε

με μ ε

λρ ϕ λ ϕ

λμ ϕ λ ϕ

−= +

−= +
 (4) 

where the Heaviside function (Enright et al., 2002) Hε(ϕ) is 
formulated as follows: 
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3 Interfaces tracing algorithm 

Based on level-set method (Osher and Fedkiw, 2001), the 
following equation will evolve the zero level set function: 
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The above level set equation is solved using a five-order 
WENO discretisation and Runge-Kutta method. Sussman et 
al. (1994) presented a reinitialisation equation insure that 
values for level set function will not be greatly distorted. 
The reinitialisation equation can be reformulated as: 
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where 

2 2( ) / , ,o x yw signε ϕ ϕ ϕ ϕ ϕ ϕ= ∇ ∇ ∇ = +   

and signε(ϕo) = 2(Hε(ϕo) – 1/2) the sign function. The 
numerical discretisation of the reinitialisation equation of 
the level set function will not preserve the total mass 
conservation. To overcome this difficulty, the HPLS method 
(Enright et al., 2002) can be presented to conduct the 
solution of the reinitialisation equation. HPLS method is a 
coupling method of Lagrangian method and Eulerian 
method, which merges the best aspects of Eulerian front 
capturing schemes and Lagrangian front-tracking methods 
for improved mass conservation in a fluid flow. Massless 
marker particles were inserted to correct mass loss in level 
set function by using the characteristic information of the 
escaped massless marker (as shown in Figure 1). The 
particle level set method maintains the nice geometric 
properties of level set method, and performs favourably in 
the conservation of mass and for interface resolution. The 
particle Lagrangian function is written as: 

( )p
p

dr
rV

dt
=  (8) 

where pr  is the location of the particle, and V  is the 
particle velocity. The third-order Runge-Kutta scheme is 
used to solve equation (8). 

Figure 1 Schematic map of HPLS method 
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Figure 2 Mesh construction of the improved CE/SE method,  
(a) mesh points projection on xy plane (b) SE(P′)  
(c) CE(P′) 
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4 Improved CE/SE method 

4.1 Numerical scheme 

At first, the governing equations (1) and (2) can be rewritten 
in the form of conservation laws as 
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where Q, E, F, S are vectors of primary variable, flux in  
x-direction, flux in y-direction and source, respectively. The 
normal and shear stress are given by 
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Here, a new type of SE and CE on the general hexahedron 
mesh is designed, which is different from that of Chang  
et al.’s (1999) original CE/SE method (see Figure 2). The 
construction of the new numerical scheme is simpler than 
Chang’s and it is easy to be extended to three dimensional 
problems. 

Let (j, k, n) denote a set of space-time mesh points, 

where 1 30, , 1, ...
2 2

n = ± ± ±  for time, 1 30, , 1, ...
2 2

j = ± ± ±  

for x, 1 30, , 1, ...
2 2

k = ± ± ±  for y. A SE is defined as the 

vicinity of a mesh point and the whole space-time region is 
divided into non-overlapping CE. Assume that the physical 
variables in every SE are approximated by the Taylor’s 
expansions at the mesh point associated with the SE, and the 
conservation equation (9) is satisfied in every CE. Let  
x1 = x, x2 = y, x3 = t be considered as the coordinates of a 
Euclidean space E3. By means of the Gauss’ divergence 
theorem, equation (9) is rewritten in form of 

( )
m m

S V V
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where Hm (Em, Fm, Qm) is the space-time flux vector, here 
Qm, Em and Fm are the components of vector Q, E and F, 
and respectively, and Sm are the components of the source 
term vector. S(V) is the boundary of an arbitrary space-time 
region V in E3, ds = dσ ⋅ n with dσ and n, respectively, 
being the area and the outward unit normal of a surface 
element on S(V). Figure 2(a) shows the projection of mesh 
points on the x-y plane, in which the interval between the 

mesh points • and ○ is Δt/2in the time direction or 1
2

 in the 

mesh number n. For any point P′(j, k, n) on which the 
variables are solved, define the SE (P′) constituted by the 
three vertical planes intersecting at P′(j, k, n) and their 
neighbourhood space as demonstrated in Figure 2(b). 
Suppose that Qm, Em and Fm at point (t, x, y) in SE (P′) are 
approximated by the second-order Taylor expansions at  
P′(j, k, n) i.e., 
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Here, ,Pdx x x ′= −  ,Pdy y y ′= −  ,Pdt t t ′= −  where ,px ′  

py ′  and pt ′  are the position coordinates of point P′. 
Substituting equation (11) into equation (9) gives 
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The above equations imply that the variables required in 
computation are ( ) ,m PQ ′  '( )mx P

Q  and '( ) ,my P
Q  because Sm, 

Em and Fm are the function of Qm. Define the CE(P′) as 
illustrated in Figure 2(c). CE(P′) is related to not only 
SE(P′) but also the SE of SE(A), SE(C), SE(E) and SE(G). 
Note that the values of physical variables on mesh point A, 
C, E and G are known. Assume that the integral 
conservation laws are satisfied in every CE. Integrating 
equation (10) on the surfaces of CE(P′) with the aid of 
equation (12), we find 
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Using the continuity conditions at points A′, C′, E′ and G′, 
the derivatives of Qm with respect to x and y are obtained 
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and β is a constant (β = 2 in this study) (Chang, 1995). 
It should be noted that '( )m P

Q  can not be obtained 

explicitly from equation (13) due to the source term '( ) .m P
S  

As '( )m P
S  is a function of '( ) ,m P

Q  a local Newton iterative 

procedure is usually needed to determine '( ) .m P
Q . In the 

present work, to avoid the iterative procedure and save 
computation time, '( )m P

S  is replaced by their linear 

prediction of current time in equation (13), i.e., 
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where tS  is the time derivative of .S  '( )m P
Q  can be 

directly solved without any iteration, since the time 
derivative of (Sm)A, (Sm)E, (Sm)C and (Sm)G are all known at 
current time. 

4.2 Pretreatment procedure 

The concept of the pretreatment method is proposed, which 
converts the elliptic-parabolic equations to the hyperbolic 
equations, which are accurately solved by the CE/SE 
method. Based on the artificial compressibility method 
(Chorin, 1967) coupling velocity and pressure, equation (1) 
can be rewritten in form of 
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where τ is the virtual time, and C2 is the artificial 
compressibility coefficient effecting the numerical stability. 
Substituting the virtual time derivative of velocities into 
equation (9), we obtain 
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 for τ → ∞, equation (20) is consistent to 

equation (9). Applying the pressure splitting method, 
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Figure 3 Streamlines on (a) 50 × 50 grid, (b) 100 × 100 grid, and 
(c) 128 × 128 grid for Re = 1,000 
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Figure 4 Velocity profiles through the cavity centre for  
Re = 100 and Re = 1,000, (a) u component  
along the vertical line through the cavity centre  
(grid of 128 × 128) (b) v component along the 
horizontal line through the cavity centre (grid of  
100 × 100), lines denote CE/SE solutions and symbols 
present benchmark solutions in Ghia et al. (1982)  
(c) v component at the cavity’s horizontal centreline on 
50 × 50 grid and on 100 × 100 grid for Re = 1,000 
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Using the time operator splitting method to split pressure 
item in momentum equation (21), we obtain 
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We interpret equation (22) as yielding an intermediate value 

of ,n
vQ  denoted by 

1
2

n
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+

 at time n. Here, the superscript n 

indicates the time step. ( )n
vF Q  is the value of n

vQ  at time 
step n. Equation (22) can be simulated by CE/SE method to 

obtain 
1
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 By means of time-marching solutions and 
internal iteration method, equations (19) and (23) yield 
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where m is the iteration step. Assume that we have already 
carried out m iteration. Then, for the m + 1 iteration, by 

substituting 
1
2

n
vQ
+

 into equation (24) and using CE/SE 
method, Pm+1 can be calculated at iteration step m + 1. 
Substituting Pm+1 into equation (25), Um+1 is obtained. The 
above procedure is repeated for a number of iteration, 
convergence is achieved when Um+1 – Um become less than 
a prescribed value (10–6) at all grid points. After 
convergence, Un+1 can be obtained at time step n + 1. These 
governing equations are discretised on staggered orthogonal 
grid in order to eliminate the possibility of a checkerboard 
pressure pattern. 

5 Numerical validation 

In the following, the improved CE/SE scheme performance 
is examined on five test cases. The first case is the  
steady-state single-phase flow calculation. The cases 2 to 5 
are multiphase flow problems. 

5.1 Driven cavity flow 

The square lid-driven cavity (Ghia et al. 1982) is a  
well-known benchmark problem for numerical methods, 
where the flow is driven by the friction force, and the 
viscosity mainly controls the flow. Here, three sets of  
grid (50 × 50, 100 × 100 and 128 × 128) are used, and  
Re = 1,000 and Re = 100 are simulated by using the 
improved CE/SE scheme. Figures 3(a) to 3(c) shows the 

streamline. There is a primary vortex inside the cavity, and 
two smaller reverse-rotating vortices occur at both corners 
of the bottom wall. This flow structure is similar as that in 
Ghia’s result (1982). Even on a coarse grid resolution  
(50 × 50). The CE/SE method produces results that agree 
well with the reference result of Ghia et al. on the grid of 
128 × 128. Figure 4(a) shows the u velocity distribution 
(grid of 128 × 128) along the vertical centreline and is 
compared with Ghia’s data. Figure 4(b) depicts the v 
velocity distribution (grid of 100 × 100) along the horizontal 
centreline. It can be seen that the result of the finer mesh 
(128 × 128 and 100 × 100) matches very well with Ghia’s. 
Note that a 128 × 128 mesh was used in Ghia’s work. In 
addition, Figure 4(c) depicts the calculated v velocity 
profiles at the cavity’s horizontal centreline for grid 
sensitivity test. Notably, due to the CE/SE high accuracy, 
the CE/SE results on 50 × 50 grid are as good as the 
solution on 100 × 100 grid. 

5.2 Dam break 

For further validation of the improved CE/SE scheme 
coupled with HPLS method, the dam break problem  
(Martin and Moyce, 1952) is numerically calculated.  
A 81 × 41 uniform Cartesian grid is applied with an initial 
water column height to width ratio of 2. Densities of water 
and air are 1,000 kg/m3, 1 kg/m3, respectively. Viscosities  
of water and air are 0.001 kg/(ms), 0.00001 kg/(ms), 
respectively. The calculated domain is 0.285 m × 0.0675 m. 
At the outlet boundary, the Neumann boundary condition is 
set for velocities. At all other boundaries, slip wall boundary 
conditions are applied. Figure 5(a) shows the phase 
interface profiles between time of 0.0 s and time of 0.24 s 
with time interval 0.08 s. The water surface evolves in a 
smooth shape and no oscillation occurs at the interface near 
the solid wall. Figure 5(b) depicts the history of the water 
front marching along the ground surface (y = 0). The 
numerical results are in well agreement with the 
experimental data (Martin and Moyce, 1952). 

5.3 Drop falling flows 

Ni et al (2006) studied the effects of wall repulsion, inertia, 
and deformation on the motions of falling droplets, and 
considered the interaction of two and three droplets in a 
channel. Here, the improved CE/SE scheme and HPLS 
method are used to numerically investigate these physical 
processes of some cases. The computational grid 100 × 200 
is used. The droplet motions calculated by the improved 
CE/SE are demonstrated in Figure 6. Figures 6(a) and 6(b) 
shows the effects of the wall on the deformation and 
rotation of the droplet. Figure 6(c) illustrates the effect of 
the two droplets repulsion process. Figure 6(d) depicts the 
repulsion and droplets coalesce, indicating the effect of 
inter-droplet and wall repulsion. From Figures 6(a) to 6(d) 
we can find that the improved CE/SE scheme performs well 
agreement with the results by projection method coupling 
with the level set method (Ni et al., 2006). 
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5.4 Viscous Rayleigh-Taylor instability 

Rayleigh-Taylor instability problem is commonly used as 
the benchmark problem to investigate the effects of fluid 
density differences and viscosity ratios on the instability of 
immiscible flows. To initiate the instability at the fluid-fluid 
interface, the initially flat front was perturbed by a 
sinusoidal deformation (Guermond and Quartapelle, 2000.). 
Here, we considered displacement of a less dense fluid  
by a denser fluid. We consider a two-dimensional  
Rayleigh-Taylor instability problem in a domain of size  

[1 × 4]. A computational grid 100 × 400 is used. The ratio 
of viscosity and density are 1 and 3, respectively, for  
Re = 1,000. The slip boundary conditions are applied to the 
left and right sides, while non-slip boundaries for the top 
and down sides. Figure 7 shows the CE/SE calculated 
dynamics of the interface at times 1, 1.75, 2 and 2.5. As 
time increases, the mass interface transforms from a single 
smooth finger to a highly unstable fragmented dendritic. 
Results by the improved CE/SE scheme well satisfy with 
results by Guermond and Quartapelle (2000). 

Figure 5 (a) Evolution of the free interface and (b) history of water front location at y = 0 from time = 0.0 s to  
time = 0.24 s with time interval 0.08 s 

  
(a)       (b) 

Figure 6 Droplet falling, (a) near the wall with initial position (1.5, 16.5) and (b) in the central region with initial position at (4.5, 16.5)  
for Re = 100, We = 50, viscosity ratio of 1.125, density ratio of 50; Falling two-droplet flows near the wall with initial  
positions (1.5, 16.5) and (7.5, 16.5) for Re = 100 and We = 50 (c) at viscosity ratio of 1.125 and density ratio of 50 and  
(d) viscosity ratio of 50 and density ratio of 1.125 

 
(a) (b) (c) (d) 

Note: The viscosity and density ratio denote the ratio of viscosity and density of the drop to that of the background fluid, 
respectively. 
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Figure 7 Dynamics of interface calculated by the improved 
CE/SE scheme at times (a) t = 1, (b) t = 1.75, (c) t = 2, 
and (d) t = 2.5 

 
(a) (b) (c) (d) 

5.5 Water and kerosene interaction in T-shaped tube 

Dong et al (2008) set up an experiment, in which two-phase 
flow problem in a T-shaped micro-fracture was considered. 
The width and depth of the T-shaped micro-fracture are  
6 mm, 3 mm, respectively. The size of L is 6 mm. For 
detailed information about the experimental instruments  
and the experimental process, readers refer to the lecture 
(Dong et al., 2008). The motion of the mass interface and 
the mixture as well as separation process are observed by 
CCD-Scanning system. This process is also numerically 
simulated by the improved CE/SE scheme coupled with 
HPLS method, by simplifying the 3D (three dimensional) 
problem into the 2D problem as shown in Figure 8(a). The 
mesh grids are 100 × 200 and the time interval is 0.0005 s. 
The surface force between the oil, water and solid wall is 
taken into account. The wall boundary condition is 
introduced. The left and right boundaries are subject to the 
inlet condition and the outlet boundary is imposed on the 
bottom. The contact angle boundary is assigned to the 
interface between the wall and fluids by level-set function. 
The parameters used are summarised in Tables 1 and 2. 
When the flow reaches the stable state, the experimental 
data and the improved CE/SE calculated results are 
demonstrated in Figures 8(b) to 8(c). The interface between 
water and kerosene is clear. The improved CE/SE scheme 
accurately captures the interface and the separation process. 
It can be seen that the numerical results by the improved 
CE/SE scheme coupled with HPLS method match the 
experimental data well. 

6 Conclusions 

In this paper, the improved CE/SE scheme is proposed for 
incompressible multiphase flows. This scheme is based on 
the rectangular mesh and can be constructed easily. The 
fluid-fluid interfaces are traced by the high-resolution HPLS 
technique. The main advantages of the improved CE/SE 

scheme are clear in physical concept, accurate for capturing 
fluid-fluid interface, easy to be extended to three-
dimensional situations, since the CE/SE scheme and the 
HPLS technique both easy to be extended to three 
dimensions. The improved CE/SE scheme exhibits an 
excellent performance in all five test problems examined in 
the preceding sections. The numerical results show that the 
improved CE/SE scheme can accurately simulate 
incompressible multiphase flows. Thus, the improved 
CE/SE scheme can be applied to incompressible multiphase 
flow simulations for academic explore and engineering 
widely. The explicit treatment and algorithmic simplicity of 
the improved CE/SE provide additional advantages for 
massively parallel computations. The authors note that the 
code of the improved CE/SE scheme is open to the public. 

Figure 8 Concept model and experimental (Dong et al., 2008) 
data and the improved CE/SE calculated results  
for Re = 83.1, We = 0.514 (i), Re = 5.54,  
We = 0.00228 (ii) and Re = 55.4, We = 0.228 (iii), 
respectively, (a) conceptual model (b) experiment  
(c) CE/SE calculated (see online version for colours) 

                        T-shaped tube             
(a) 

 
(b)    (c) 
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Table 1 Property of kerosene and water used in this model 

Fluid Density 
(kg/m3) 

Viscosity 
(Pas) 

Surface force 
(Nm–1) 

Kerosene 780 0.000115 0.045 
Water 998.2 0.001  

Table 2 Calculated parameters for three cases 

Inlet velocity (m/s)  Re We Case 

0.2778K –0.2778W  83.1 0.514 1 
0.0185K –0.00093W  5.54 0.00228 2 
0.185K –0.00926W  55.4 0.228 3 

Notes: Minus ‘–’ denotes the flow direction. Index of K 
and W presents kerosene and water, respectively. 
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