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In this paper, liquid films flowing down a porous vertical cylinder were investigated
by an integral boundary layer model. Linear stability and nonlinear evolution were
studied. Linear stability results of the integral boundary layer model were in good
agreement with the linearized Navier-Stokes equations which indicated that the per-
meability of the porous medium enhanced the instability of the flow system. The
growth rate and cut-off wave number increased with increasing the permeability and
the Reynolds number. Linear stability analysis showed that the system was more
unstable for a larger Reynolds number Re. Nonlinear studies showed that, for a very
small Re, the film evolved with time while a saturated state was not observed. In
addition, it was observed that the film ruptured when the permeability parameter
β > 0, and the rupture time decreased with increasing β. However, for a moder-
ate Reynolds number, a small finite harmonic disturbance evolved to a saturated
traveling wave. Further investigation was conducted on the droplet-like wave solu-
tion. Results showed that the wave speed increased as the permeability parameter
increased. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4808112]

I. INTRODUCTION

The flow of a thin liquid film down a vertical cylinder subject to the gravity is of great impor-
tance for industrial applications. Numerous studies have been carried out on falling films after the
experimental work of Kapitza and Kapitza1 who conducted research on a liquid film falling down
an inclined plate. However, in the past decades, many experiments on thin liquid films flowing down
vertical cylinders were conducted due to the simplification in measurements.2–4

The azimuthal curvature distinguishes the core-annular flow system from the planar flow sys-
tem. The surface tension plays a stabilizing factor in the planar plane configuration, while it is a
destabilizing factor in the core-annular flow system. Lord Rayleigh5 first explained the physical
mechanism of droplet’s formation in a liquid jet under the action of the surface tension. A detailed
review of free film breakup and droplet formation literature was provided by Eggers.6

Theoretical studies on the flow of thin films down the outer surface of a vertical cylinder
were first carried out by Goren.7 Goren7 analyzed the linear stability of a liquid thread at rest, and
investigated the influences of surface tension and the ratio between liquid thickness and radius of
the solid substrate. Lin and Liu8 performed linear stability analysis on a thin falling film flowing
down the outside or inside of a vertical tube. Their results showed that the flow system was unstable
under the influence of surface tension.

Experimental observations of finite-amplitude interfacial waves in core-annular flow system
were conducted by Quéré2 and De Ryck and Quéré.9 Successively, Frenkel10 derived an asymptotic
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model equation to study the problem of a very large radius cylinder coated with very thin liquid films.
Kliakhandler et al.11 analyzed creeping flow (the Reynolds number Re = O(1)) on a vertical fiber
and proposed a Benney-type model. Unlike Frenkel’s10 work, the model developed by Kliakhandler
et al.11 considered relatively thick liquid films and examined the linear stability of the flow system.
Linear stability results by Kliakhandler et al.11 agreed with results by the linearized Navier-Stokes
equations when Re was very small, i.e., Re ≈ 0. In addition, the nonlinear evolution investigation of
the interfacial shape subjected to a small finite-amplitude disturbance was also carried out. Hereafter,
we denote the model by Kliakhandler et al.11 as KDB model for simplicity.

Since saturated traveling waves were observed in thin liquid film flow systems,2, 9 many re-
searchers investigated the non-deformation waves. Pumir et al.12 discussed solitary waves in a
falling film down an inclined planar substrate by the Benney equation. Trifonov13 studied steady-
state traveling waves in the viscous flow down vertical wires and derived a two-equation model.
Craster and Matar14 extended the study of Kliakhandler et al.11 and investigated the droplet-like
phenomenon theoretically and experimentally. The problem of thin liquid films flowing down a
vertical fiber at moderate flow rates was extended by Sisoev et al.15 A two-equation model based on
the boundary layer equations was proposed. Linear stability analysis showed that the two-equation
model15 was more accurate than Benney-type equation11 for a moderate Re. The bifurcation theory
was employed by Sisoev et al.15 to study traveling waves in the flow system. Furthermore, the
phenomenon of solitary waves in core-annular flow system was investigated by Shkadov et al.16

through the two-equation model.
A more accurate two-equation model based on weighted-residual theory was proposed by

Ruyer-Quil and Manneville to study thin liquid films flowing down inclined planes17, 18 and vertical
cylinders.19 Their model is essential for high Re flow and can overcome the nonphysical blow-up
phenomenon. Recently, Ruyer-Quil and Kalliadasis20 extended this two-equation model to study
nonlinear waves in the viscous film flowing down a vertical fiber. It was observed that the weighted-
residual model20 was very complex.

In industry and biological systems, the porous fiber has wide applications, such as in prosthetic
devices for replacement and reconstruction of bone structure in the skeletal system of humans or
animals and filtration systems in market. When considering a liquid film flowing down a vertical
porous cylinder or fiber, the permeability of the liquid-porous interface makes it more complex
than that on a solid impermeable cylinder. To describe the boundary conditions at the liquid-
porous interface, Beavers and Joseph21 proposed an empirical formula. A one-sided model based
on neglecting the dynamics of liquids in the porous medium was carried out by Pascal22 to examine
the influences of permeability on the stability of a thin liquid film falling down an inclined porous
plate. Results by Pascal showed that the permeability of porous substrate enhanced the instability of
flow system. Pascal further extended this model22 to a non-Newtonian liquid film.23

Sadiq and Usha24 derived a Benney-type equation to investigate a Newtonian liquid film flowing
down an inclined porous plate. The weakly nonlinear analysis was applied to study the supercritical
and subcritical stabilities of the flow system. Nonlinear evolution studies showed that, in the su-
percritical stable region, small finite-amplitude disturbances evolved to permanent finite-amplitude
waves. An interesting phenomenon observed was that amplitudes of these permanent waves were
either time-independent or time-dependent, and the oscillation behavior in the heights of the time-
dependent permanent waves was promoted by the porous substrate. Extension work of a conducting
liquid film flowing down an inclined porous plate in the presence of electric field was investigated by
Uma and Usha.25 Recently, Samanta et al.26 considered a liquid film flowing down a slippery inclined
plate and derived a weighted-residual model to investigate high Reynolds number flow. Their results
showed that the phase speed of the first kind solitary wave was promoted by the slippery boundary.
Instead of using the one-sided model, Liu and Liu27 proposed a two-sided model to investigate the
stability of a falling film on a porous substrate. Results of the two-sided model revealed that filtration
at the liquid-porous interface played an important role in determining the unstable mode when the
Reynolds number was large. Liu and Liu28 further examined the non-modal instability of the flow
system by the one-sided model.

Recently, Ding and Liu29 investigated a thin liquid film falling down a porous vertical cylinder.
They derived a Benney-type model to investigate the stability of the flow system. Their results
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showed that the instability of the system was enhanced by the permeability of the porous cylinder.
It was observed that the model by Ding and Liu29 can only describe very small Reynolds number
flow. Furthermore, we observed that (i) their model showed that growth rate of disturbances was
independent of the Reynolds number, which did not agree with the results of linearized Navier-
Stokes equations even when Re = 1; (ii) the cut-off wave number by the Benney-type model29 was
independent of Re as well as the permeability parameter, which did not agree with the linearized
Navier-Stokes equations; (iii) the linear wave speed by the Benney-type model29 was independent
of wavenumber, contrary to the results of linearized Navier-Stokes equations; (iv) the Benney-type
model failed to describe strong nonlinear phenomenon because it neglected the inertia term in the
streamwise momentum equation.

In this paper, we derive a two-equation model based on the boundary layer equations to inves-
tigate the dynamics of an annular liquid film falling down a vertical porous cylinder. The inertia
term is taken into account in the two-equation model which was neglected in Ref. 29. The structure
of this paper is organized as follows. The mathematical formulation is constructed in Sec. II. In
Sec. III, the integral boundary layer (IBL) model is derived to study the linear stability and nonlinear
time-dependent evolution of flow system. Further discussion on droplet-like wave solution is carried
out in Sec. IV. The results are summarized in Sec. V.

II. MATHEMATICAL FORMULATION

Consider a two dimensional layer of liquid film flowing down a porous vertical cylinder under
the influence of gravity as shown in Figure 1. The liquid is Newtonian with constant density ρ,
kinematic viscosity ν, and dynamical viscosity μ = ρν. The surface tension σ is assumed to be
constant. It is assumed that the flow through the porous medium is governed by Darcy’s law. The

r 0

z

    r

r= r0+ h(z, t)

Liquid

g

Porous
 Cylinder

FIG. 1. The geometry of the film flow down a porous vertical cylinder.
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experimental investigation by Beavers and Joseph21 established the condition for tangential velocity
at the liquid-porous interface. Considering liquids flowing on a porous cylinder, the condition21 for
the tangential velocity is specialized as

n · ∇w∗ = α̂√
K

(w∗ − w∗
p), (1)

in which w∗, w∗
p are dimensional velocities parallel to the axis (hereafter, the superscript * represents

the dimensional variable), and each represents velocity in the liquid film and in the porous medium,
respectively (hereafter, the subscript p represent the porous medium). α̂ is a dimensionless parameter
dependent on the micro-structure of porous medium, and K is the permeability of porous medium.
n is the liquid-porous surface normal and ∇ is the gradient operator.

Velocity in the radial direction is assumed not to vary across the boundary layer formed at the
top of the porous medium. At the liquid-porous interface,

u∗ = u∗
p, (2)

where u∗, u∗
p are velocities in the radius direction.

According to the Darcy’s Law, fluid in the porous medium is governed by

r∗−1(r∗u∗
p)r∗ + w∗

p,z∗ = 0, (3)

w∗
p = − K

μ
(p∗

p,z − ρg), (4)

p∗
p,r∗ = 0. (5)

The subscripts r*, z*, represent derivatives with respect to r*, z*, respectively. Pressure is assumed to
be constant across the boundary layer; and it is assumed that p∗

p = p∗ at the liquid-porous interface.
Solving the governing equations together with the pressure condition at the liquid-porous interface,
we obtain

w∗
p = − K

μ
(p∗

z − ρg). (6)

If W0 denotes the axial velocity scale, while L (which is proportional to a typical wave length) and
h0 (the mean thickness of the liquid film) denote the axial and radial length scales, respectively, in
the liquid film layer, then the pressure scale is

P ∼ μW0L

h2
0

, (7)

and velocity scale in the porous medium is

Wp ∼ K W0

h2
0

. (8)

If the pore space geometry is such that the flow is much slower than that of the liquid film, K
h2

0
� 1,

then the mean filter velocities are negligible, so that Eqs. (1) and (2) reduce to

βsn · ∇w∗ = w∗, (9)

u∗ = 0. (10)

The parameter βs =
√

K
α̂

. The reduced boundary condition Eq. (9) is similar to the Navier slip
boundary condition w∗ = lsn · ∇w∗. Here, ls is the effective slip length, which can be related to the
permeability K and the empirical dimensionless parameter α̂ of Beavers and Joseph’s21 boundary
condition by ls = βs.
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TABLE I. Typical values of α and permeability K.

α̂ 0.78 1.45 4.0

K (m2) 9.68 × 10−9 3.94 × 10−8 8.19 × 10−8

Introducing the length scale h0, the time scale h2
0/ν, the velocity scale ν/h0, and the pressure

scale ρν2/h2
0, the system is governed by the dimensionless continuity equation and momentum

equations

r−1(ru)r + wz = 0, (11)

Du

Dt
= −pr + ∇2u − u

r2
, (12)

Dw

Dt
= −pz + ∇2w + Re, (13)

where D
Dt = ∂t + u∂r + w∂z is the material derivative operator. For a prescribed Re = gh3

0
ν2 , one can

change the value of g in the micro-gravity environment.
At r = r0, dimensionless boundary conditions are

βwr = (1 − β

r0
)w, u = 0, (14)

where β = βs/h0, and r0 = r∗
0 /h0 is the dimensionless radius.

According to the work of Beavers and Joseph,21 the typical values of α̂ and K of the foam
metal are listed in Table I. In this paper, we consider a much wider range of permeability K. For
instance, for clean sand, in terms of unit m2, the permeability K is from a range of 10−12 to 10−9.
Pascal22 proposed that the dimensionless slip length β = βs/h0 ranges from 0 to 0.3. We follow
the work of Pascal22 and suggest that β can have a range of 0–0.4 as proposed by Ding and Liu.29

Liquids are considered to be composed of silicon oil, and the gravity acceleration can be changed
in micro-gravity environment. The range of values for parameters is listed in Table II. The radius
of porous cylinder is assumed to be much larger than the mean thickness of liquid film, and the
dimensionless radius r0 ≥ 5. Therefore, β/r0 � 1, hence, boundary conditions at the liquid-porous
interface can be approximately written as

βwr = w, u = 0. (15)

At free surface r = r0 + h(z, t), the non-dimensional stress balance conditions are

−p − 2[(wr + uz)hz − ur − wzh2
z ]

1 + h2
z

= 2H S, (16)

(uz + wr )(1 − h2
z ) + 2hz(ur − wz)

1 + h2
z

= 0. (17)

The dimensionless mean curvature 2H = 1
r1

+ 1
r2

, where 1
r1

= − 1
(h+r0)(1+h2

z )1/2 and 1
r2

= hzz
(1+h2

z )3/2 are

the two principal curvatures of the free surface. The non-dimensional surface tension S = σh0
ρν2 .

TABLE II. Typical values of this system.

Thickness (h0) Kinematic viscosity (ν) Gravity (g) Reynolds number (Re)

[10−4, 10−3] (m) [10−6, 10−5] (m2/s) [10−1, 10] (m/s2) [10−1, 10]
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r
5 5.2 5.4 5.6 5.8 6

0

2

4

6

8

10

β=0.2

β=0.4

β=0

FIG. 2. The profiles of the base velocities for Re = 10 and r0 = 5.

The dimensionless kinematic condition of the free surface r = r0 + h(z, t) is written in the
conservative form

ht + (h + r0)−1(
∫ h+r0

r0

wrdr )z = 0. (18)

The flow rate q is defined by
∫ r0+h

r0
rwdr .

The base state of velocity profile is parallel to the cylinder axis such that velocity in the radial
direction vanishes. The velocity in the axial direction obtained is as follows:29

W̄ = −Re

4
[(r2 − r2

0 ) − 2(r0 + 1)2 ln
r

r0
] − Reβ

2
[r0 − (r0 + 1)2

r0
]. (19)

Pressure p of base state is constant. Figure 2 shows the velocity profile of base state. In pre-
vious studies, it was well-known that the profile of base velocity greatly affects the stability of
flow system, such as Rayleigh’s inflection point criterion and Fjortoft’s criterion. Thus, it is nec-
essary to study the stability of the flow system. A normal mode analysis is achieved by decom-
posing x into x = X̄ + X exp (ikz + λt), where X̄ refers to the base state, and X is the infinites-
imal amplitude of a harmonic disturbance with wave number k and complex temporal growth
rate λ.

Linearization of the governing equations (11)–(13) leads to the eigenvalue problem,

r−1(rU )r + ikW = 0, (20)

λU = −Pr + L U − U

r2
− ikW̄U, (21)

λW = −ik P + L W − (ikW̄ W + W̄rU ), (22)

where the operator L = ∂2

∂r2 + 1
r

∂
∂r − k2.

At r = r0, boundary conditions for the eigenvalue problem are

βWr = W, (23)

U = 0. (24)
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At r = 1 + r0, the linearized boundary conditions for the eigenvalue problem are

P − 2Ur + [2ikW̄r + S(−k2 + 1

(r0 + 1)2
)]η = 0, (25)

ikU + Wr + W̄rrη = 0, (26)

λη + ikW̄η = U, (27)

where η measures the deformation of the free surface, which is much smaller than unit.
To resolve the eigenvalue problem, the Chebyshev collocation method is implemented, and the

results of the above linearized Navier-Stokes equations will be shown in Sec. III. In this paper, 20
terms of the Chebyshev polynomials are sufficient to provide adequate resolution with economic
consumption of computational cost.

III. INTEGRAL BOUNDARY LAYER MODEL

In this section, we derive the nonlinear evolution equations governing the thickness of the film
h and the flow rate q based on the Prandtl boundary layer equations.16 It is assumed that the velocity
in the radius direction u is much smaller than the axial component w. Furthermore, the inertia and
the viscous terms in Eq. (12) as well as the viscous term wzz in Eq. (13) are assumed to be of higher
order and can be neglected. Hence, fluids in the liquid layer can be governed by the dimensionless
Prandtl boundary layer equations:16

Dw

Dt
= −pz + 1

r
∂r (r∂rw) + Re, (28)

pr = 0, (29)

where velocity in the radius direction can be obtained from the continuity equation (11). In the
tangential stress balance condition (17), terms of order ∂z are neglected,

wr |r=r0+h = 0. (30)

The interfacial curvature is approximately written as

2H = hzz − 1

h + r0
. (31)

The term hzz is retained, which is motivated by large amplitude of waves, and the relatively large
interface gradients (Klikhandler et al.11 and Craster and Matar14). Equation (31) was proposed by
Lister et al.31 As the pressure dominates the viscous stress in Eq. (16), the normal stress balance
condition reduces to

p = −S(hzz − 1

h + r0
). (32)

Boundary conditions at r = r0 and the kinematic condition of the free surface r = r0 + h(z, t) are
the same as Eqs. (15) and (18), respectively.

To derive the evolution equations, the so-called von-Karman-Pohlhausen technique is applied.
Furthermore, the evolution equations for the film thickness h and flow rate q are derived by assuming
that the axial velocity w has the following profile:

w = q

φ(h)
[(r0 + h)2 ln

r

r0
− 1

2
(r2 − r2

0 ) − β(r0 − (r0 + h)2

r0
)], (33)

in which

φ(h) = (r0 + h)4

2
ln

r0 + h

r0
− [(r0 + h)2 − r2

0 ][3(r0 + h)2 − r2
0 ]

8
+ βh2(h + 2r0)2

2r0
. (34)
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Equation (33) satisfies the boundary conditions Eqs. (15) and (30). Multiplying Eq. (28) by r on both
sides, and integrating it between r0 and r0 + h, we obtain

∂q

∂t
+ ∂M

∂z
= h(2r0 + h)

2
[S(hzz − 1

h + r0
)z + Re − 2q

φ(h)
], (35)

where M = ∫ r0+h
r0

rw2dr = q2

φ2 F(h) and

F(h) = (r0 + h)6

2
ln2 r0 + h

r0
− (r0 + h)4

4
[(r0 + h)2 + 2h(2r0 + h)(1 − 2β

r0
)] ln

r0 + h

r0

+ h3(2r0 + h)3

2r2
0

β2 − h2(2r0 + h)2[2(r0 + h)2 + h(2r0 + h)]

4r0
β

+ h(2r0 + h)[6(r0 + h)4 + h(2r0 + h)(9r2
0 + 22r0h + 11h2)]

48
.

The kinematic condition (18) leads to another equation for h and q:

∂h

∂t
+ 1

h + r0

∂q

∂z
= 0. (36)

The evolution equations (35) and (36) are the integral boundary layer) model. When β = 0, the set
of governing equations (35) and (36) reduces to the model by Sisoev et al.15 and Shkadov et al.,16

but our scales are different from that of Sisoev et al.15 and Shkadov et al.16 When the radius
r0 → ∞, the governing equations (35) and (36) reduce to the equations of a falling liquid film on a
planar vertical porous wall.

A. Linear stability analysis

First, the evolution equations (35) and (36) have the following base solutions:

h̄ = 1, q̄ = Re

2
φ(1), (37)

where φ(1) = φ(h)|h = 1.
The linear stability of base solutions (37) is investigated by applying normal mode decomposition

of the following form:

[h, q] = [h̄, q̄] + [ĥ, q̂]eikz+λt , (38)

where [ĥ, q̂] are the amplitudes of infinitesimal disturbances.
Substituting Eq. (38) into Eqs. (35) and (36), and after linearizing, we obtain

λq̂ + ikM̂ = 2r0 + 1

2
{S[(ik)3 + ik

(1 + r0)2
]ĥ − 2q̂

φ(1)
+ Re

φ(1)
�ĥ}, (39)

(1 + r0)λĥ + ikq̂ = 0, (40)

in which

� = 2(r0 + 1)3[ln
r0 + 1

r0
+ 1

4
] − 1

2
(r3

0 + 7r2
0 + 9r0 + 3) + 2β(r0 + 1)(2r0 + 1)

r0
(41)

and

M̂ = Re2

4
F1ĥ + 4M1

Reφ(1)
(q̂ − Re

2
�ĥ) (42)

Downloaded 06 Jun 2013 to 159.226.231.34. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions
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with

F1 =3(r0 + 1)5 ln2 r0 + 1

r0
− 1

2
(r0 + 1)3[3(r0 + 1)2 + (2r0 + 1)(4 − 12β

r0
) − 4βr0] ln

r0 + 1

r0

+ 3(2r0 + 1)2(r0 + 1)

r2
0

β2 − 1

2r0
(r0 + 1)(2r0 + 1)[2(r0 + 1)2 + 5(2r0 + 1)]β

+ (r0 + 1)(2r0 + 1)(6r2
0 + 22r0 + 11)

8
.

The dispersive relation is given by

λ2 + Bλ + C = 0, (43)

where B = 4ikM1
Reφ(1) + 2r0+1

φ(1) and C = k2

1+r0
( Re2F1

4 − 2M1�
φ(1) ) + 2r0+1

2(r0+1) {S[k4 − k2

(1+r0)2 ] + ik Re�
φ(1) } with

M1 = M |h=1. There are two roots of Eq. (43), and are denoted as λ1, λ2. We assume that the
real part of λ1 is larger than that of λ2. Solving (43), we obtain

λ1 = −B + √
B2 − 4C

2
, λ2 = −B − √

B2 − 4C

2
. (44)

An effective growth rate λr is defined by the real part of λ1, λr = R(λ1), which describes the
exponent growth of the amplitude of disturbance wave. The cut-off wave number kc is defined for
the effective growth rate λr = 0. When the disturbance wave number k is in the range of (0, kc),
any small disturbance grows. The linear wave speed is defined by the imaginary part of eigenvalue,
c = −I(λ1)

k . Ding and Liu29 reported in their paper that surface tension was the major cause of the
interfacial instability, and the system became more unstable as the non-dimensional surface tension
S increased. In the following discussion, the influence of surface tension would not be discussed and
S is fixed.

The comparison of effective growth rate between the IBL model and the linearized Navier-Stokes
equations is shown in Figure 3. The results of two methods are in good agreement in the long-wave
range. Results of Ding and Liu29 showed that, for very small Re, i.e., Re � 1, the effective growth
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FIG. 3. The effective growth rate λr versus the disturbance wave number k. (a)–(c) r0 = 5; (d)–(f) r0 = 10. Solid lines are
by the IBL model, and dashed lines by the linearized Navier-Stokes equations. All the figures are plotted at S = 1000.
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rate was independent of Re, implying that the system was always unstable. Comparing Figure 3(a)
with Figure 3(b) (or Figure 3(d) with Figure 3(e)), it can be observed that the growth rate changes
slightly. It indicates that the interfacial instability is independent of Re when Re is very small.
However, when Re > 1, results of the Benney-type equation29 did not agree with the results of the
linearized Navier-Stokes equations even in the long-wave range, indicating that Re should be an
important factor of the dynamics of system when Re > 1.

When the Reynolds number Re ≥ 1, the influence of Re on growth rate is significant as shown
in Figures 3(c) and 3(f). It is observed that the larger the Re the more unstable is the system. Because
the surface waves are initiated by gravity, the larger the g the more unstable is the interface. Apart
from that, in Figure 3, it is shown that a larger β describes a larger growth rate of the most unstable
mode. The physical mechanism is explained here. Friction in the system plays a stabilization role
which decreases with increasing the value of β. Therefore, the system becomes more unstable for a
larger β. Ding and Liu29 assumed that, for a liquid film flowing down a permeable cylinder, if there
was no slip at the liquid-porous interface, then the permeable cylinder should be replaced by an
impermeable cylinder with a smaller radius r ≈ r0 − β. The comparison between Figures 3(a)–3(c)
and Figures 3(d)–3(f) indicates that the smaller the radius the more unstable is the system. Thus, the
system becomes more unstable for a larger β.

Figure 4 shows the linear wave speed c versus disturbance wavenumber k. It is observed that
when Re is very small, in the long wave range, the linear wave speed c is independent of k, and
the results agree with those of Klikhandler et al.11 and Ding and Liu.29 When Re approaches zero
and k exceeds a certain value, a bifurcation phenomenon is observed, i.e., there are two complex
conjugates c. However, the bifurcation phenomenon cannot be observed in Ding and Liu’s model.29

In the present paper, the lower branches in Figures 4(a) and 4(d) are not shown. When the Reynolds
number Re is moderate, i.e., Re ≥ 1, the bifurcation phenomenon disappears as seen in Figures
4(b) and 4(c), and 4(e) and 4(f). Figure 4 also shows that results of the IBL model are in good
agreement with the linearized Navier-Stokes equations, and the linear wave speed is promoted by
the permeability parameter β. To see the influence of r0 on the linear wave speed c, k is fixed at 0.2,
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FIG. 4. The linear wave speed c versus the disturbance wave number k. (a)–(c) r0 = 5; (d)–(f) r0 = 10. Solid lines are by the
IBL model, and dashed lines by the linearized Navier-Stokes equations. All the figures are plotted at S = 1000.
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FIG. 5. The linear wave speed c versus the disturbance wave number r0 for Re = 10, k = 0.2, and S = 1000. Solid lines are
by the IBL model, and dashed lines by the linearized Navier-Stokes equations.

and Re = 10. The results are plotted in Figure 5. It is shown that c slightly increases with r0, but will
not change when r0 is sufficiently large.

The marginal stability curve Re–kc is plotted in Figure 6, which clearly shows that the system is
unstable for all Re. In Figure 6, we observe that the results of the IBL model compare well with the
linearized Navier-Stokes equation when the Reynolds number is small. In Figure 6(a) when Re ≤ 2,
and in Figure 6(b) when Re ≤ 4, the IBL model agrees with the linearized Navier-Stokes equation
well. The results showed that the cut-off wave number not only depends on Re, but also depends on
β. It is also observed that the cut-off wave number kc increases with increasing β, which suggests
that instability of the system is enhanced by the permeability of porous medium. In the work of Ding
and Liu,29 the Benney-type model indicated that the cut-off wave number kc = 1

1+r0
was independent

of β and Re. Their results29 did not agree with the results of linearized Navier-Stokes equations.
By comparing Figure 6(a) with Figure 6(b), we observe that the liquid film is more unstable on a
cylinder with a smaller radius. While the marginal stability curves of β = 0 by IBL agree with those
obtained from the linearized Navier-Stokes equations, they start to deviate with the results of the
linearized Navier-Stokes equations as the value of β increases. This suggests our model is valid for
small Reynolds number when β > 0.
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FIG. 6. Neutral stability curves in the Re–k plane when S = 1000. Solid lines are by the IBL model, and dashed lines by the
linearized Navier-Stokes equations.
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B. Time-dependent evolution

This section presents the evolution of the interface subjected to a finite-amplitude harmonic
disturbance, so as to investigate the energy transfer from base flow to disturbance. The IBL model
is used to examine the linear stability analysis and study the nonlinear evolution of the problem
which provides the underlying nonlinear dynamics of flow system. The influence of the permeability
parameter β on the nonlinear dynamics of the flow system is investigated.

At the initial time, a small harmonic disturbance is imposed on the interface, while the flow rate
is not changed,

h(z, 0) = 1 + 0.1 cos
2π

L
z, q(z, 0) = q̄. (45)

The computation domain is z = [0, L]. The solutions of Eqs. (35) and (36) are approximated by finite
Fourier series,

h(z, t) =
N/2∑

−N/2

anei 2π
L nz + c.c, q(z, t) =

N/2∑
−N/2

bnei 2π
L nz + c.c. (46)

The second-order Runger-Kutta method is applied for automatic adjustment of initial increment
and for computation of the starting values. The dimensionless radius of porous cylinder is fixed at
r0 = 5, and the dimensionless surface tension is fixed at S = 1000.

We begin with the numerical study of evolution problem by setting Re = 0.0001 to investigate
the evolution of free surface under the action of surface tension. The length of computation domain
is fixed at L = 200. To resolve this problem, 128 Fourier modes were used. In Figure 7, the evolution
of the interfacial shape is plotted for different values of β. It can be seen that, for a larger β, the
evolution of interface shape is much quicker, indicating that the growth rate of disturbance is larger.
This phenomenon shows that the system is more unstable for a larger β. In Figure 7(a), numerical
results show that the film does not rupture for a long time. Lister et al.31 pointed out that it took
an infinitely long time for the film to rupture on the surface of a solid impermeable cylinder. In
Figures 7(b) and 7(c), rupture phenomenon is observed. Ding and Liu29 reported the rupture phe-
nomenon for β > 0 in their paper. Figure 8 shows the evolution of minimum and maximum
thicknesses of liquid film, indicating that the film ruptures at a faster rate for a larger β. Our results
are in good agreement with those of Haimovich and Oron30 for the non-oscillation case.

The interfacial shapes of liquid film for Re = 1 with different values of β are shown in
Figure 9. It is observed that there is only one principal hump in each figure. At each wave front,
there is a very small capillary wave. Such a wave is called “solitary wave.” The results show that the
larger the β the larger is the amplitude of wave. In Ding and Liu’s paper,29 such wave structures were
not studied. This wave presents a sliding droplet-like shape and is of particular interest.2 Further
discussion of the droplet-like wave will be presented in Sec. IV.

We further studied the nonlinear evolution of the system by setting Re = 10. 256 Fourier modes
are used, which provides adequate resolution of calculation. The finite-amplitude disturbance evolves
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FIG. 7. Profiles of the interfacial shape for different values of β. (a) β = 0, (b) β = 0.2, and (c) β = 0.4.
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FIG. 9. Profiles of the interfacial shape for Re = 1. (a) β = 0, (b) β = 0.1, and (c) β = 0.2.

z

h

0 50 100 150 2000

1

2

3

4
(a)

t=200

z

h

0 50 100 150 2000

1

2

3

4
(b)

t=190

z

h

0 50 100 150 2000

1

2

3

4
(c)

t=180

FIG. 10. Profiles of the interfacial shape for Re = 10. (a) β = 0, (b) β = 0.1, and (c) β = 0.2.

into a solitary wave as shown in Figure 10. The wave front oscillates much stronger than what is
observed in Figure 9. The oscillation behavior at wave front is not time-dependent which can be
promoted by the porous medium.26 Figure 10 shows that the larger the β the higher is the principal
hump. Ding and Liu29 did not observe such solitary waves of the Benney-type model because their
model neglected the inertia term in the streamwise momentum equation. Their model can only
describe the behavior of the system at very small flow rate, which indicates that the Benney-type
model29 fails to describe strong nonlinear phenomenon.

To illustrate the solitary wave solution of this system, we apply dynamical system theory. The
system of Eqs. (35) and (36) can be recast to a three dimensional dynamical system by defining a
phase space spanned by H = (h, hz, hzz). Solution of the dynamical system is homoclinic trajectory
in the phase plane as seen in Figure 11. As shown in Figure 11, the finite-amplitude disturbance
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FIG. 11. Homoclinic trajectory for Re = 10. (a) β = 0, (b) β = 0.1, and (c) β = 0.2.

evolves into a new state. Figure 11 also indicates that the oscillation at wave front is stronger for a
larger β. Actually, the oscillation at wave front is due to the nature of solitary waves. At the wave
front, the thickness of the film presents damped oscillations; while at the rear of the wave, it relaxes
to be constant without oscillations. Such oscillating behavior can also be promoted by increasing
the Reynolds number,32 if we compare the results in Figures 9 and 10. It was also found that for a
larger β, for example, β = 0.4, the rupture phenomenon was observed. However, this phenomenon
would not be discussed here.

IV. DROPLET-LIKE WAVES

This section discusses a unique phenomenon of Eqs. (35) and (36) which is shown in Figure 9.
The wave travels without deformation in a moving frame relative to the stationary coordinate at a
constant velocity c. The constant velocity c is studied in this section.

A. Shkadov scalings

The system is rescaled by using the Shkadov scalings as follows:

h∗ = Hh, r∗ = r0 + H y, z∗ = H

κ
z, w∗ = W0w, u∗ = κW0u, t∗ = H

κW
t, p∗ = ρW 2

0 p.

(47)
The variables with superscript * are dimensional parameters. H is the height of the thin film at far
upstream. W0 is the scale of velocity which refers to the mean velocity of base flow. κ is a stretching
parameter, κ2 � 1.

The rescaled nonlinear evolution equations are

qt + Mz = 1

5δε

(1 + εh

2
){h[hzzz + (

ε

κ(1 + εh)
)2hz + 1] − q

ϕ(1)

h2ϕ(h)
}, (48)

(1 + εh)ht + qz = 0, (49)

where ε = H/r0, δε = 9δϕ2(ε) with δ = 1
45ν2 ( ρg4 H 11

σ0
)1/3, and κ = ((45δ)2Ka−3)1/11 with K a = σ0

ρ(gν4)1/3 .

Ka is the Kapitza number. The flow rate q now is defined as q = ∫ h
0 (1 + εy)wdy. The expression

M = ∫ h
0 (1 + εy)w2dy = q2

16ε5h6ϕ2(h) F , where

F = 2(1 + εh)6 ln2(1 + εh) − (1 + εh)4[3(1 + εh)2 − 2 − 4βε2h(2 + εh)] ln(1 + εh)

+ 2ε5h3(2 + εh)3β2 − ε3h2[3(εh + 1)2 − 1](2 + εh)2β

+ [
17

12
(εh)6 + 17

2
(εh)5 + 75

4
(εh)4 + 55

3
(εh)3 + 15

2
(εh)2 + εh] (50)
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and

ϕ(h) = 4(1 + εh)4 ln(1 + εh) − [(εh + 1)2 − 1][3(εh + 1)2 − 1] + 4βε3h2(2 + εh)2

16(εh)3
. (51)

When β = 0, the model reduces to the model by Sisoev et al.15

B. Non-deformation solution

The non-deformation solution of Eqs. (48) and (49) is solved by introducing the traveling wave
transformation ζ = z − ct. Furthermore, we set h(z, t) = h(ζ ), q(z, t) = q(ζ ), and denote derivatives
with respect to ζ by primes. In the far upper stream ζ → −∞ and down stream ζ → +∞, the
following boundary boundary conditions are considered:

h → 1, q → 1. (52)

Integrating Eq. (49) with the boundary conditions (52), we obtain

q = c[
ε

2
(h2 − 1) + h − 1] + 1. (53)

Substituting the expression of q into the momentum equation (48), we obtain

h3h′′′ + G(c, h)h′ + H (h, c) = 0, (54)

where G(c, h) = 5δεh2

1+ εh
2

[c2(1 + εh) − Mh] + ( ε
κ(1+εh) )

2h3 and H = h3 − ϕ(1)
ϕ(h) {c[ ε

2 (h2 − 1) + h

− 1] + 1} with ϕ(1) = ϕ(h)|h = 1 and Mh = ∂ M
∂h .

In the phase space H = (h, h′, h′′), Eq. (54) has a singular point (1, 0, 0). Let us consider the
asymptotic behavior of the system near the singular point (1, 0, 0). Introducing h = 1 + ψ , where
ψ � 1, Eq. (54) is linearized near the singular point (h, h′, h′′) = (1, 0, 0). The linearization of term
H(h, c) gives

Ĥ = [3 + ϕh(1)

ϕ(1)
− c(1 + ε)]ψ, (55)

where ϕh(1) = ∂ϕ

∂h |h=1. For the fast waves, it is required that

c >
3 + ϕ1

1 + ε
, (56)

where ϕ1 = ϕh (1)
ϕ(1) . When ε → 0 and β = 0, the wave speed c > 3 which agrees with that of a falling

liquid film on a vertical planar surface.33

C. Numerical results

Let us consider c = 3+ϕ1

1+ε
+ e and h = 1 + eψ , and substitute the expressions of c and h into

Eq. (54), where e is a small positive number. After retaining the dominant term, we obtain

ψ ′′′ + Ḡψ ′ + eψ[(3 + ε(3 + ϕ1)(2ϕ1(1 + ε) − ε)

2(1 + ε)
)ψ − (1 + ε)] = 0, (57)

where Ḡ is the value of G(c, h) by setting c = 3+ϕ1

1+ε
and h = 1.

Using the following transformation:

ζ ′ = e1/3ζ, (58)

Eq. (57) is modified as

ψ ′′′ + ςψ ′ + ψ[(3 + ε(3 + ϕ1)(2ϕ1(1 + ε) − ε)

2(1 + ε)
)ψ − (1 + ε)] = 0, (59)

where ς = e−2/3Ḡ and is assumed to be of order O(1).
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Equation (59) can be recast to a three-dimensional dynamical system,

ψ ′
1 = ψ2, (60)

ψ ′
2 = ψ3, (61)

ψ ′
3 = −ςψ2 − ψ1[(3 + ε(3 + ϕ1)(2ϕ1(1 + ε) − ε)

2(1 + ε)
)ψ1 − (1 + ε)]. (62)

(0, 0, 0) is a singular point of this dynamical system. The linear behavior near this singular point is
investigated. After linearizing Eq. (59) near the singular point (0, 0, 0), we obtain

ψ ′′′ + ςψ ′ − (1 + ε)ψ = 0. (63)

The characteristic equation of Eq. (63) has one real root:

ω1 = 1

6
J 1/3 − 2a J−1/3, (64)

where a = ς and J = 108b + 12
√

12a3 + 81b2(b = (1 + ε)). In this paper, only solitary waves
are considered. Thus, ω1 is real and positive and the other two roots are complex conjugates with
negative real parts. Since ω1 > 0, the critical point (0, 0, 0) is unstable which defines a one-
dimensional unstable manifold in the phase space. While the real parts of the other two roots are
negative which defines a two-dimensional stable manifold in the phase space. Hence, the wave front
and the wave rear are not symmetrical. At the wave front, liquid film damply oscillates to h = 1 as
ζ → +∞, while at the wave rear, liquid film relaxes to h = 1 without oscillations as ζ → −∞.

There are two kinds of solutions of the linearized equation of Eq. (63). At the far upstream
region, the solution is given by

ψ = C1eω1ζ
′
, (65)

where C1 is a small positive constant. At far downstream, solution is given by

ψ = C2eω2ζ
′ + C3eω3ζ

′
, (66)

where C2 and C3 are small positive constants. So, the following conditions can be chosen as the
initial conditions for the dynamical system (60) and (61) when ζ ′ → −∞,

ψ1(0) = C1, ψ2(0) = C1ω1, ψ3(0) = C1ω
2
1. (67)

The dynamical system (60)–(62) is solved by the fourth-order Runge-Kutta method. C1 is fixed at
10−5. The integration is sensitive to the value of ς as mentioned by Pumir et al.12 The dichotomy
method was used to refine the value of ς to make ψ → 0 at far downstream domain.

Equation (54) is solved by a global Fourier pseudospectral expansion:

h =
N∑

−N

Hkei(2π/L)kζ . (68)

We used N = 400 Fourier modes to solve the problem. The Newton-Kantorovich iteration method
is used to solve the nonlinear problem. The initial values of h and c for iteration are chosen as h = 1
+ eψ and c = 3+ϕ1

1+ε
+ e.

The phase velocity c is normalized to c′ = cϕ(1) (Shkadov et al.16), and the results are shown
in Figure 12. It can be observed that the normalized phase velocity c′ increases with increasing β.

Figure 13 shows the interfacial shape and the phase orbit of a typical case. As observed, there
is only one hump, in the front of which there is a very small capillary wave. In Figure 13(a), the
interfacial shape of liquid film is very similar to the result in Figure 9. The numerical results show
that the normalized phase velocity increases with increasing permeability of the porous cylinder
indicating that the sliding effect enhances the instability of the system.
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FIG. 12. Normalized phase velocity c′ for the first kind solitary wave. (a) ε = 0.1, κ = 0.4; (b) ε = 0.2, κ = 0.4.
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FIG. 13. (a) One representative of the solitary wave; (b) the homoclinic orbit. The other parameters are ε = 0.2, β = 0.1, κ

= 0.4, c′ = 2.338986, δε = 0.007915, and Re = 0.3599.

V. CONCLUSION

This paper investigated the stability and dynamics of a liquid film flowing down a vertical
porous cylinder. Fluids in the porous cylinder were assumed to be governed by the Darcy’s law.
The Beavers-Joseph formula of boundary conditions at the liquid-porous interface was reduced to
Navier slip condition. Two coupled equations governing the film thickness h and flow rate q based
on the Prandtl boundary layer equations were derived to study the linear stability and nonlinear
evolution of the flow system. Results showed that the permeability of the porous cylinder enhanced
the instability of the flow system. It was observed that the cut-off wave number was increased as
the permeability and Reynolds number increased. Nonlinear evolution study showed that, for very
small Reynolds number Re, the rupture phenomenon was observed when permeability parameter
β > 0. The rupture time decreased with increasing β. For moderate Re, the interfacial shape presented
a solitary-wave structure. The oscillation behavior at the front of the solitary wave was promoted by
porous substrate. The rupture phenomenon for large β was observed.

The droplet-like wave phenomena were observed when Re = 1 by nonlinear evolution studies.
Further discussion on the droplet-like wave phenomenon in the liquid film was investigated by
introducing the Shkadov scalings and traveling wave transformation. The Newton-Kantorovich
method was employed to solve the reduced ordinary equation. Results showed that the nonlinear
phase speed of such droplet-like wave increased with increasing β.
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2 D. Quéré, “Thin films flowing on vertical fibers,” Europhys. Lett. 13, 721–726 (1990).
3 S. Zuccher, “Experimental investigations of the liquid-film instabilities forming on a wire under the action of a die,” Int.

J. Heat Fluid Flow 29, 1586–1592 (2008).
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