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Dynamic criterion for the formation of surface water-blooms
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Abstract Surface water-blooms (SWBs) is usually explained as a buoyant migration of blue-green

algae to the water surface under the conditions of reduced turbulence.

Wind-induced turbulent

mixing can cause considerable heterogeneity in the vertical concentration distribution of algal cells.
There exists a criterion below which cell buoyancy can overcome the turbulent mixing. Former
researchers regarded a certain wind speed as this criterion, but this wind speed differs in value. In this
research, we propose a new criterion, nondimensional entrainment number (En), which represents
the ratio of the intrinsic velocity of algal cells relative to the characteristic velocity of wind-induced
mixing. Observation in Taihu Lake demonstrates that this new criterion is more suitable for the
description of hydrodynamic effect on the formation of surface water-blooms. (© 2018 The Chinese

Society of Theoretical and Applied Mechanics.
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“Water-blooms” is a term of convenience applied to
an outbreak of phytoplankton cells well above average
for a given water body, while “surface water-blooms”
is restricted to the dense aggregations of buoyant phy-
toplankton cells that accumulate at the water surface
on occasions.® Numerous algal cells discolor the water,
form scum, produce unpleasant tastes and odors, affect
shellfish and fish populations or otherwise create a nui-
sance and seriously reduce water quality.

Surface water-blooms (SWBs) formation is ex-
plained as a buoyant migration to the water surface
under conditions of reduced turbulence.?* The algae
principally responsible for SWBs are mostly gas vacuo-
late cyanobacteria (blue-green algae), for example mi-
crocystis. Algal cells are uniformly distributed in the
water column with the action of turbulent mixing, but
migrate to the water surface to form dense surface scums
when mixing stops (as shown in Fig. 1).
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Scheme of the formation of SWBs.

Turbulent mixing in the upper water column is in-
duced mainly by wind. It has long been recognized that
wind speed plays a key role during the formation of
SWBs.> 7 Only if the wind speed is low enough can the
SWBs appear. Figure 2 shows a reduction of coefficient
of variance C'V of the vertical concentration distribu-
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tion of microcystis at different depths in Taihu Lake
with the wind speed increases.®”
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Fig. 2. Effect of wind speed on CV of the vertical distri-

bution of microcystis.

Field studies suggest that winds having speed higher
than 2-3 m/s are required to mix floating phytoplank-
ton cells (or colonies) away from the water surface.'®
But the value of this critical wind speed is still not a
consensus. Observations in Eglwys Nynyd indicate that
local concentrations of blue-green algae only appeared
at wind speeds below 4m/s,'! data from Lake Mendota
shows the highest daily average wind velocity observed
during a surface bloom was 2.68m/s,'? and the study
in Taihu Lake suggests 3.1m/s is a critical value.®

In this study, C'V of microcystis colonies with differ-
ent size is analyzed on the basis of an investigation taken
in Taihu Lake.” It is found that colonies with larger size
have a higher value of C'V at low wind speeds, and with
the wind speed increases, C'V of all colonies decreases
to a relatively low value (as shown in Fig. 3). The re-
sult indicates that colony size might be the reason why
critical wind speed is different in previous observations.

Wind-induced mixing that fully entrains a phyto-
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Fig. 3. Effect of colony size on C'V of the vertical distribu-
tion of microcystis.

plankton population will homogenize its vertical distri-
bution, but the degree of entrainment varies depend-
ing on the intrinsic velocity of the phytoplankton rela-
tive to the velocity of the turbulent motion. In a de-
tailed consideration of this relationship, Humphries and
Imberger!® introduced a quotient (¢ = U/(15V), where
U is the characteristic velocity of turbulent eddies that
transport the cells in the upper water column and V
is the modulus of the sinking or floating velocity of the
phytoplankton unit) to distinguish the extent of entrain-
ment. However, they did not give the detailed expres-
sion of this parameter ¢. Previous research used @ = 1
as the entrainment criterion, borrowing ideas from sand
settling study.'® But algae cell is different from sand
particle. Bloom-forming cells are usually buoyant while
sand particles are heavier than water. Moreover, the
velocity of sand particle is constant while the velocity
of algae cell is regulated by light.'* In previous studies,
the intrinsic velocity of the phytoplankton is treated as a
constant value, which is not suitable for the description
of the bloom-forming algae. The aim of this research is
to give a more accurate expression of this entrainment
quotient for bloom-forming algae.

Firstly, we rewrite the nondimensional parameter
which is used to distinguish the extent of entrainment
(hereafter, called entrainment number, En)

En=—. (1)

In the gas-vacuolate microcystis the presence of intracel-
lular gas-filled space lowers average density below that
of the surrounding water so that the organisms are pos-
itively buoyant. The intrinsic floating velocity is indi-
cated by the expression of Stokes’ Law®
2
V=28 e
9¢n

where g is the acceleration due to gravity, r is the radius
of a sphere of identical volume and density, Ap is the
density difference between the organism and water, ¢ is

Theor. Appl. Mech. Lett. 3, 042003 (2013)

the coefficient of form resistance, and 7 is the viscosity
of the water.

When wind speeds are moderate to low and the lake
is not loosing heat, the characteristic velocity of turbu-
lence (U) in the upper water column can be equated
to the water friction velocity (U*) estimated from the
wind speed as'®:'6

U x U* = U10 Capa, (3)

w

where p, is the air density, py is the water density, C, is
wind stress drag coefficient, and Ujg is the wind speed
at a height 10 m above the surface.

By substituting the Eqs. (1) and (2) into Eq. (3),
the entrainment number can be expressed as

o 9¢n UlO Capa
En = 29 12Ap\ pw )

The definition of entrainment number indicates that
when En is large, water velocities are large relative to
the intrinsic floating velocity of microcystis to entrain
the cells within the water motion so that turbulence
homogenizes the vertical distribution of the population.
When En is small, then the intrinsic floating velocity
of microcystis plays an increasing role in the popula-
tion distribution. En can be used to be the dynamic
criterion for the formation of SWBs.

To verify the relationship between SWBs formation
and this new criterion, Fig. 3 is revised by substituting
En for wind speed as the z-coordinate (as shown in Fig.
4). Comparing with that in Fig. 3 where wind speed is
the criterion, the points in Fig. 4 are more concentrated
suggesting that C'V is more related with En. Moreover,
CV decreases to a constant value with the increase of
En, showing the existence of a critical value over which
SWBs are not likely to appear.
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Fig. 4. Effect of En on C'V of the vertical distribution of
microcystis.

In summary, entrainment number is a better dy-
namic criterion for the formation of SWBs. Usually
blooms appear at low value of En when wind-induced



042003-3 Dynamic criterion for the formation of surface water-blooms

mixing is weak. In essence, the larger is the algae
and the greater its intrinsic flotation velocity, then the
greater is the turbulent intensity required to entrain it.
Large colonies of fast floating velocity are more likely to
accumulate at water surface to form a hazardous bloom
in lakes.
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