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a b s t r a c t

Metal-organic frameworks (MOFs) exhibiting high surface area and tunable pore size own

broad application prospects. Compared with existing MOFs, MOF-5 [Zn4O(bdc)3] is a

promising hydrogen storage material due to high H2 uptake capacity and thermostability.

However, further wider applications of MOF-5 have been limited because atmospheric

moisture levels cause MOF-5 instability. MOF-5 and multi-walled carbon nanotubes

(MWCNTs) hybrid composite (denoted MOFMC) can enhance stability toward ambient

moisture and improve hydrogen storage capacity. In this paper, the MOFMC, which has an

interpenetrated structure with high mesoporosity, was synthesized. The MOFMC is

denoted as Int-MOFMC-meso. It stored 2.02 wt% H2 at 77 K under 1 bar, which is higher

than the MOF-5 with similar structure and the earlier reported MOFMC material. Moreover,

the Int-MOFMC-meso can also show more excellent performance of thermostability and

moisture stability than the MOF-5 with similar structure.

Copyright ª 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.
1. Introduction positions are essentially the same except for the peak in-
In the past decade, metal-organic frameworks (MOFs), which

exhibit high surface area, low density and tunable pore size

[1e4], have inspired great interest because they can own

broad application prospects such as gas storage, sorption,

optics and catalysis [5e10]. MOF-5 [Zn4O(bdc)3; bdc ¼ 1,4-

benzenedicarboxylate], which possesses a zeolite-like frame-

work, has come up with fairly high H2 capacity and the most

thermostable [11e14]. Compared with existing MOFs, MOF-5

is a promising hydrogen storage material [15]. The crystal

structure and pore texture properties of MOF-5 giving rise to

different adsorption properties are affected by different ap-

proaches [16], but measurements show that their XRD peak
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tensities [17]. Recent studies showed that the interpenetrated

MOF-5 material possesses a higher hydrogen storage capacity

than the non-interpenetrated MOF-5 at 77 K under 1 bar. The

performance of MOF-5 is improved by the interpenetrated

structure to a certain extent. However, harsh conditions of

MOF-5 for sorption or storage H2 and moisture instability are

both important challenges for further wider applications. In

this respect, a hybrid composite is noticed. The hybrid com-

posite prepared by incorporation of acid-treated multi-walled

carbon nanotubes (MWCNTs) into MOF-5 (denoted MOFMC)

can exhibit enhanced specific surface area, increased H2

storage capacity, and improved stability in the presence of

ambient moisture, compared with MOF-5 [18]. This research
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presents a new approach for enhancing performance of MOFs.

Recently, Yang et al. studied the effects of the structural

modifications on the H2 storage capacity for different MOF-5s

and synthesized the non-mesoporous MOFMC with the

interwoven structure [19]. Experiment results showed that the

non-mesoporous MOFMC with the interwoven structure

increased H2 storage capacity compared to the conventional

MOFMC. However, the peak at 8.4� in the XRD patterns implies

partial collapse of this interwoven MOFMC without meso-

pores [13,18,20].

Generally speaking, construction of MOF-5 with the struc-

ture of homogeneous micropore is commonly concerned.

Recent investigation implied that the combination of micro-

pores and mesopores was favorable for hydrogen storage of

MOF-5 [21,22]. In this study, we synthesized the new MOFMC

material denoted as Int-MOFMC-meso, which has inter-

penetrated structure with high mesoporosity. It can store

2.02 wt% by volumetric method hydrogen at 77 K under 1 bar,

which is higher than the amount stored 1.52 wt% by the

conventional MOFMC. Moreover, the Int-MOFMC-meso also

shows high thermostability and stability toward ambient

moisture compared with the MOF-5 with similar structure.
2. Experimental

2.1. Reagents and chemicals

Zinc nitrate hexahydrate (Zn(NO3)2$6H2O) (XiLong Chemical

Co., Ltd.), terephthalic acid (Sinopharm Chemical Reagent Co.,

Ltd.), N,N0-dimethylformamide (DMF) (XiLong Chemical Co.,

Ltd.), Triethylamine (TEA) (XiLong Chemical Co., Ltd.), Multi-

walled carbon nanotubes (MWCNTs) (>95%, diameter: from

50 nm to 100 nm, Nachen S&T Ltd.), 4A-type molecular sieve

(Sinopharm Chemical Reagent Co., Ltd.), and anhydrous

chloroform (Beijing Chemical Plant)were usedwithout further

purification.

2.2. Preparation of functionalized MWCNTs

MWCNTswere functionalized by acid treatment in (1:3) HNO3/

H2SO4 mixture, followed by ultrasonication for 4 h at 333 K.

The reaction mixture was diluted with ultrapure water until

the suspension pH was nearly neutral. Then the suspension

was centrifugated. The MWCNTs were collected and dried at

373 K.

2.3. Preparation of the interpenetrated MOF-5 with
mesopores

Zn(NO3)2$6H2O (5.60 mmol) and terephthalic acid (H2BDC,

2.12 mmol) were dissolved in 50 mL of dehydrated DMF sol-

vent. Triethylamine (TEA, 550 mL) was added into the mixture

and white products were filtrated immediately. The trans-

parent solution quickly transferred to a 100 mL glass vial and

sealed. The glass vial was then heated to 378 K for 24 h. After

the reaction, the vial was cooled down to the room tempera-

ture naturally. The powders were collected and washed

thoroughly with DMF. After that, the powders were immersed

in chloroform for 7 days. During the process, the solvent
was decanted and replenished every two days. The prepared

MOF-5 powders were dried under vacuum at 428 K for 24 h.

2.4. Preparation of the Int-MOFMC-meso

Zn(NO3)2$6H2O (5.60 mmol) and terephthalic acid (H2BDC,

2.12 mmol) were dissolved in 50 mL of dehydrated DMF sol-

vent. Triethylamine (TEA, 550 mL) was added into the mixture

and white products were filtrated immediately. Then 50 mg

acid-treated MWCNTs were added into the transparent solu-

tion and stirred for 24 h. The black solution was quickly

transferred to a 100 mL glass vial and sealed. The following

steps are the same as the steps in the processes of MOF-5.

2.5. Characterization

The morphologies of sample were obtained using a HITACHI-

S4300 scanning electron microscope (SEM) and a Nikon DIA-

PHOT 300 optical microscope. X-ray diffraction (XRD) pattern

of sample was obtained on a Rigaku Ultima IV X-ray diffrac-

tometer with a Cu Ka1 radiation source (k ¼ 1.54056 �A) oper-

ated at 40 kV and 40 mA at a scanning step of 0.01� in the 2q

range 5�e40�. Thermal behavior of the sample was examined

using TA TGA Q5000IR under N2 stream with a heating rate of

5 �C/min from room temperature to 600 �C. Nitrogen adsorp-

tion/desorption analysis was measured using a Micromeritics

ASAP 2020M apparatus. Before themeasurement, the samples

were heated at 403 K for 10 h. The hydrogen adsorption

measurement (volumetric method) was measured at 77 K

under 1 bar pressure using the same gas sorption apparatus.
3. Results and discussion

Fig. 1 shows the SEM and optical micrographs of the as-

prepared MOF-5 and the Int-MOFMC-meso. Fig. 1(a) exhibits

the optical image of the as-preparedMOF-5. Fig. 1(b) shows the

optical micrographs of the as-prepared Int-MOFMC-meso. Its

morphology is characterized by well-defined cubic crystals

20e150 mm in width. The as-prepared black Int-MOFMC-meso

cubic crystal indicates that large numbers of CNTs were

incorporated into MOF-5. The as-prepared MOF-5 is observed

by SEM image, as shown in Fig. 1(c). Fig. 1(d) displays SEM

micrographs of the as-prepared Int-MOFMC-meso. The inter-

penetrated structure defined by Han et al. is that the frame-

works are maximally displaced from each other by shifting

the second framework exactly one half of the pore size in the

x, y, and z directions [23]. According to the definition, the

morphologies of the as-prepared MOF-5 and the Int-MOFMC-

meso might be result from the interpenetration.

XRD investigation for the as-prepared MOF-5 and the Int-

MOFMC-meso crystalline powder are reported in Fig. 2. The

intensity of peaks and their sharpness imply high crystallinity

of two samples, as shown in Fig. 1. The XRD pattern of the Int-

MOFMC-meso is similar to the as-prepared MOF-5 crystalline

phase, thus confirming that MWCNTs incorporation did not

disturb or destroy the interpenetrated MOF-5 crystal structure

[18]. The diffraction peaks from the MWCNTs supporters

cannot be observed, becauseMWCNTswas swamped by high-

intensity MOF-5 peaks. According to Chen et al., the
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Fig. 1 e Optical photos of (a) the interpenetrated MOF-5 with mesopores and (b) the Int-MOFMC-meso samples, SEM images

of (c) the interpenetrated MOF-5 with mesopores and (d) the Int-MOFMC-meso samples.
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intensities of the XRD peaks of MOF-5 are crucial to estimate

the interpenetrated structure, especially the intensities of the

peaks at 6.8�, 9.7� and 13.6�. The high intensity ratio of the XRD

peak at 13.8� to the peak at 6.8� (referred to as the R2 value) can

be used to predict the interpenetrated structure, especially

when the R1 value (the ratio of the intensity of the peak at 9.7�

to that at 6.8�) is low [17]. The reference [17] also shows that

different methods of preparation result in various R2 value.

The MOF-5 and MOFMC reported in this paper possesses high

R2 and relative low R1 which means that they have inter-

penetrated structure.
Fig. 2 e Powder X-ray diffraction patterns of the

interpenetrated MOF-5 with mesopores and the

Int-MOFMC-meso.
Fig. 3 shows that moisture stability tests on the inter-

penetrated MOF-5 with mesopores and the Int-MOFMC-meso

were achieved in humid air. Fig. 3(a) confirms that XRD peak of

the Int-MOFMC-meso did not change even after 6 days in

humid air. Fig. 3(b) shows that a new XRD peak of the as-

prepared MOF-5 appeared at around 8.4�, when it exposed to

humid air for 2 days. The presence of the peak at 8.4� implies

partial collapse of the structure of the as-prepared MOF-5

[13,18,20]. The peak at around 8.4� relative intensity increased

and some new XRD peaks appeared with exposure time,

indicating acceleration of decomposition. Therefore, the Int-
Fig. 3 e Powder X-ray diffraction patterns for (a) the Int-

MOFMC-meso and (b) the interpenetrated MOF-5 with

mesopores exposed to static humid air conditions for 0.5 h,

2 days and 6 days.
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Fig. 5 e (a) N2 adsorption and desorption isotherms of the

Int-MOFMC-meso. (b) The micropores distribution of the

Int-MOFMC-meso calculated by HeK method. (c) The

mesopores distribution of the Int-MOFMC-meso calculated

by BJH method.
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MOFMC-meso possesses moisture stability of under ambient

conditions due to incorporation of MWCNTs into MOF-5

crystals [18].

The TGA curves of the interpenetrated MOF-5 with meso-

pores and the Int-MOFMC-meso are reported in Fig. 4. Because

the interpenetrated MOF-5 with mesopores and the Int-

MOFMC-meso have the similar decomposition process, the

Int-MOFMC-meso as an example shows decomposition pro-

cess. Firstly, the Int-MOFMC-meso exhibits a 1.9% weight loss

below 80 �C, which is assigned to desorption of surface

adsorbed water. Then no weight loss of DMF solvent is

observed in the range 80e240 �C, owing to no residual DMF

solvent in the pores after activation. Generally, zinc hydroxide

(Zn(OH)2) can be dehydrated at 125 �C [17], the TGA confirms

that zinc species does not exist in Int-MOFMC-meso. Finally, a

weight loss of about 51% takes place and corresponds to the

structural decomposition. MWCNTs in the Int-MOFMC-meso

enhance thermal stability compared to the MOF-5 with

similar structure, as confirmed by a rise in decomposition

temperature from 470 to 495 �C.
Fig. 5 showsN2 adsorption/desorption isotherm at 77 K and

1 bar and the pore size distributions (PSDs) of the Int-MOFMC-

meso. Fig. 5(a) indicates a sharply increasing step before

0.01 P/P0 and then a quick saturation step at low pressure, and

the type H3 hysteresis loop at higher relative pressure [24].

The results imply that micro- and mesopores coexist in the

Int-MOFMC-meso, and the type of hysteresis loop indicates

the existence of narrow slit-like intercrystalline void [25e28].

Fig. 5(b) and (c) exhibit size distributions of micro- and mes-

opores. Generally, the pore size can be decreased by the

interpenetrated structure because the micropore size of the

non-interpenetrated MOF-5 is larger than 1 nm [29]. Fig. 5(b)

shows that the micropores mainly focus on the range of

0.52e0.8 nm, which indicates interpenetrated structure in the

Int-MOFMC-meso. Fig. 5(c) confirms that the PSDs of meso-

pore are wide. The Langmuir surface area of the Int-MOFMC-

meso is about 1035 m2 g�1, which is low to the reported

3550 m2 g�1 of MOFMC by Yang. The BrunauereEmmette-

Teller (BET) surface area of the Int-MOFMC-meso is about
Fig. 4 e TGA curves of the interpenetrated MOF-5 with

mesopores and the Int-MOFMC-meso samples.
805m2 g�1, which is low to the reported 2900m2 g�1 of MOFMC

by Yang. Generally, the low SSA of MOF-5 material is either

due to pore filled by zinc species or solvent, the inter-

penetrated structure [30], or the mesopores in the material

[15]. The low R1 of XRD in Fig. 2 can imply pores of the Int-

MOFMC-meso without or with small amounts trapped zinc

species or solvent [30]. Fig. 4 further confirms there is no zinc

species and solvent in pores of the Int-MOFMC-meso. There-

fore, the main reason resulting in low SSA of the Int-MOFMC-

meso is not pore-filling but interpenetrated structure and high

mesopores.

Hydrogen adsorption contrast curves between the inter-

penetrated MOF-5 with mesopores and the Int-MOFMC-meso

samples at 77 K under 0e1 bar are given in Fig. 6. The result
Fig. 6 e Hydrogen adsorption contrast curves between the

interpenetrated MOF-5 with mesopores and the Int-

MOFMC-meso samples at 77 K under 1 bar.
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shows that the adsorption reached 2.02wt%at 77Kunder 1 bar

of the Int-MOFMC-meso, which is greater than theMOF-5with

similar structure and the earlier reported 1.52 wt% of the con-

ventionalMOFMCwithoutmesopores by Yang under the same

conditions [18]. It is well known that the interpenetrated

structure is more effective in hydrogen uptake than the non-

interpenetrated MOFs [31,32]. Fig. 5 shows that micropores

0.52e0.8 nm in diameter formed from the interpenetrated

structure have a greater distribution in the Int-MOFMC-meso,

which is favorable for hydrogen storage. Moreover, MWCNTs

play an important role in enhancing the hydrogen uptake for

MOF-5 [18]. Inaddition,mesoporesdonotdestroy thehydrogen

uptake of as-prepared Int-MOFMC-meso, which is more likely

due to the strong hydrogen physisorption resulting from the

unsaturated metal sites on the surface of intercrystalline

mesopores. This can also be invoked to imply the presence of

hydrogen storage peak over 2 wt% in the hydrogen adsorption

spectrum.
4. Conclusions

In conclusion, we have synthesized the newMOFMCmaterial,

which possesses interpenetrated structure and hierarchical

nanopores. Compared to theMOF-5with similar structure and

the reported MOFMC material, our sample includes high

mesoporosity and hydrogen storage (2.02 wt% at 77 K and

1 bar) was considerably improved. The Int-MOFMC-meso ex-

hibits better thermostability and moisture stability than the

MOF-5 with similar structure.
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