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The collective behavior of multiple shear bands was investigated under in situ four-point
bending tests of a Zr-based bulk metallic glass (BMG) over a wide range of sample scales.
The self-organization of shear band pattern, characterized by shear band spacing and shear
offset, is observed with the variation of sample size and bend curvature, which presents
significant size effect and tension–compression asymmetry. To unveil these fundamental
behaviors, an analytical model for the evolution dynamics of multiple shear banding is
developed for BMGs. In this model, both micro-structural evolution and pressure sensitiv-
ity are taken into account by introducing a new law for the stress softening of BMGs within
the framework of continuum mechanics; the collective evolution of shear bands is
regarded as the coupling result of the structural softening, the momentum diffusion, and
the energy conservation. Applying the proposed theoretical model to the bending deforma-
tion of BMGs, the analytical solutions of shear band spacing, shear offset and failure strain
are obtained. The fundamental behaviors of multiple shear bands are uncovered, in line
with the experimental observations: notable scaling laws are found in the evolution of
shear band spacing and shear offset, and the inhomogeneous size effect of plasticity is
revealed by a transition from weak to strong size-dependence of failure strain with
decreasing sample thickness. To be further, a competing map of shear band nucleation
and propagation is established based on energy dissipation. The underlying mechanism
of these size dependent behaviors of multiple shear bands in BMGs is found to be ascribed
to the energy dissipation competition between the nucleation and propagation of shear
bands.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Bulk metallic glasses (BMGs) constitute an emerging class of materials with excellent properties envisaged for functional
and structural applications (Greer and Ma, 2007; Johnson, 1999; Schuh et al., 2007; Trexler and Thadhani, 2010; Wang,
2012). However, at temperatures well below the glass transition and at high stresses, BMGs undergo inhomogeneous defor-
mation by concentrating severe plastic strain into nanoscale shear bands (Argon, 1979; Dai, 2012; Dai et al., 2005; Falk and
Langer, 1998; Han et al., 2009; Huang et al., 2002; Jiang and Dai, 2009; Jiang et al., 2008a; Spaepen, 1977; Steif et al., 1982;
Subhash and Zhang, 2007; Wu et al., 2011; Yang et al., 2005). These localized regions act as precursors to crack formation,
rendering very limited ductility before catastrophic failure. Not until recently, the shear band multiplication has triggered
increasingly intense scientific and technological interest of scientists, due to its remarkable enhancement of plasticity
(Conner et al., 2003; Cui et al., 2010; Jiang et al., 2008c; Liu et al., 2005b; Miracle et al., 2011; Ravichandran and Molinari,
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2005; Ruan et al., 2011; Sun et al., 2010a; Zhang et al., 2008). Up to now, significant advances have been achieved to under-
stand the nature of shear banding, however mainly focusing on the individual shear band. The fundamental problems on
multiple shear banding, referring to the collective evolution dynamics and significant size sensitivity, still remain unclear.

Multiple shear bands early emerged in dynamic deformation of crystalline materials, such as explosion (Meyers et al.,
2001; Nesterenko et al., 1998; Xue et al., 2002), impact (Meyers et al., 2003) and high-speed machining (Burns and Davis,
2002; Molinari et al., 2002; Ye et al., 2013). The evolution of multiple shear bands presents the features of self-organization,
revealed by their characteristic periodic spacing (Meyers et al., 2001; Meyers et al., 2003; Nesterenko et al., 1998; Xue et al.,
2002, 2004). In BMGs, shear band multiplication can be realized by introducing structural heterogeneity (Chen et al., 2008;
Das et al., 2005; Hays et al., 2000; Hofmann et al., 2008; Liu et al., 2007; Yao et al., 2006), adopting constrained loading
modes (Conner et al., 2003; Cui et al., 2010; Jiang et al., 2008c; Liu et al., 2005b; Ravichandran and Molinari, 2005; Xie
and George, 2008; Yang et al., 2005; Zhang et al., 2005), or controlling the sample size and the machine stiffness (Bharathula
et al., 2010; Cheng et al., 2009; Han et al., 2009). In the multiplication process, both shear band nucleation and growth are
involved. The former triggers the production of new shear bands, concerned with the shear band direction (Gao et al., 2011)
and spacing (Conner et al., 2004); the latter will speed the failure of BMGs, relating to the propagating mode (Cao et al., 2009;
Jiang and Dai, 2011; Jiang et al., 2008c) and velocity of shear bands (Ruan et al., 2011; Song and Nieh, 2009; Wright et al.,
2009) or the deformation accommodated (Jiang et al., 2007). The shear bands may operate in an intermittent, stick–slip
mechanism with repeated cycles of initiation, propagation, and arrest, verified by typical serrations observed in the stress
signal (Jiang et al., 2008b; Klaumünzer et al., 2011b; Song et al., 2008; Sun et al., 2010a). Analogous to those observed in
crystalline metals, multiple sets of shear bands in BMGs are organized in characteristic patterns, where the shear band spac-
ing and offset vary with sample dimension, global strain, strain rate, and normal stress (Conner et al., 2004; Jiang et al.,
2008c; Yang et al., 2006; Zhang et al., 2008). Strong size effect has been revealed in the evolution of shear band patterns
of different size samples (Conner et al., 2003; Ravichandran and Molinari, 2005). Reduction of material size decreases the
shear band spacing and even causes a transition from shear localization to homogeneous deformation when the size is re-
duced to hundreds of nanometers (Greer and Hosson, 2011; Guo et al., 2007; Jang et al., 2011; Volkert et al., 2008; Yoo et al.,
2012).

Great efforts have been made in characterizing multiple shear bands. Several prevailing theories for predicting shear band
spacing have been developed, which are original for multiple thermoplastic shear bands of crystalline metals. Based on
Mott’s early analysis for dynamic fracture (Mott, 1947), Grady and Kipp (1987, 1992) developed a dynamic model for shear
band spacing, where the band spacing on average is assumed to be equal to the width of an unloaded rigid region controlled
by momentum diffusion. Lately, this theory has been extended by including the elastic strain energy (Grady, 2011). Consid-
ering shear bands arising from small growing disturbances in an initial homogeneous deformation, Wright and Ockendon
(1996) proposed that the wavelength with the maximum rate of growth will tend to dominate and correspond to the most
probable minimum spacing for shear bands. Then, Molinari (1997) modified the Wright-Ockendon (WO) model by adding
strain hardening. Batra and Wei (2006) later derived analytical expressions of band spacing for general rate-hardening,
strain-hardening material. Through integration along the characteristic lines, Zhou et al. (2006b) developed a numerical
methodology adequate for analyzing the self-organized multiple adiabatic formation process in a thermo-visco-plastic mate-
rial. They confirmed that the Grady–Kipp momentum diffusion theory is valid in predicting the mature stage of shear band
spacing while the spacing between nucleating shear bands follows the perturbation theory due to Wright and Ockendon
(Zhou et al., 2006a). Rather than strain/temperature perturbations or momentum diffusion, Meyers et al. (2001) proposed
that microstructural inhomogeneities determine the initiation sites and thus shear band spacing. Thereafter, Xue et al.
(2002) considered the shielding in the band nucleation and the competition among bands during the propagation stage
by a two-dimensional model, which well explains the self-organization behavior of shear bands when they grow into two
dimensional patterns. Recently, the evolution of shear band spacing and offset in BMGs was well described by considering
a strain relaxation in the vicinity of the shear band (Conner et al., 2003) or through comparison of the energy dissipated along
shear bands with the macroscopic dissipation (Ravichandran and Molinari, 2005). Based on momentum diffusion, Zhang
et al. (2008) developed a thermo-mechanical model for the evolution of shear band spacing in BMGs under dynamic loading.
It takes the normal stress dependence of yield stress and the associated viscosity change within the shear band region into
account. These pioneer works provide an important foundation for a better understanding of multiple shear banding in
BMGs.

Although the precise physical picture of how it originates from the internal structure remains elusive, it is well accepted
that the shear banding of BMGs occurs as a consequence of formations and self-organizations of flow events (Chen, 2008;
Schuh et al., 2007; Sun et al., 2010a; Wang, 2012). Those flow events are essentially local arrangements of atoms around free
volume sites, termed shear transformation zones (STZs) or flow defects (Argon, 1979; Falk and Langer, 1998; Johnson and
Samwer, 2005; Pan et al., 2008; Spaepen, 1981; Sun et al., 2010a; Sun et al., 2010b; Zhao et al., 2012). The transition from local
plastic events to macroscopic shear-band instability is dominated by the stress-driven free volume softening and assisted by
thermal softening (Dai et al., 2005; Gao, 2006; Gao et al., 2007; Huang et al., 2002; Jiang and Dai, 2009; Lewandowski and
Greer, 2006; Yang et al., 2006; Zhang et al., 2008). Due to this micro-mechanism of inhomogeneous deformation, the macro-
scopic yield behavior of BMGs is found not to obey the classical pressure insensitive forms but shows a significant pressure
sensitivity (Donovan, 1989; Flores and Dauskardt, 2001; Fornell et al., 2009; Hsueh et al., 2008; Ott et al., 2006; Schuh and
Lund, 2003; Sun et al., 2010b). Considering the free volume caused dilatancy and pressure sensitivity, Anand and Su (2005,
2007) proposed a finite-deformation constitutive model and numerically captured major features of shear banding and
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stress–strain response of BMGs. Coupling both thermal and mechanical effects, Thamburaja and Ekambaram (2007) accu-
rately modeled the deformation behavior of BMGs at different ambient temperatures within the supercooled liquid region.
Thereafter, the sample size effect on the shear localization process in BMGs was also predicted by a non-local, thermodynam-
ically consistent constitutive model proposed by Thamburaja (2011). The unique structural evolution induces the particular
properties of shear banding in BMGs. Moreover, it is found that plastic deformation in BMGs via multiple shear bands versus a
single dominant one greatly relies on the energy release during shear banding (Cheng et al., 2009; Han et al., 2009; Yang et al.,
2010).

Momentum, energy and structural evolution are regarded as three fundamental factors to control the dynamics of multiple
shear banding in BMGs, i.e. the nucleation of shear band (Dai, 2012; Dai et al., 2005; Jiang and Dai, 2009) and the propagation
of shear band (Jiang and Dai, 2011). However, how does shear band develop into a self-organized pattern under the control of
momentum, energy and structural evolution? How does material size exactly play in the dynamic deformation process? And
most importantly, what are their underlying mechanisms? These critical questions have not yet been resolved. Toward this
end, the authors have carried out systematic experiments of a typical Zr-based BMG under in situ four-point bending. Further-
more, a theoretical model accounting for size effect and pressure sensitivity has been developed to describe the dynamic evo-
lution of multiple shear bands and unravel its energy mechanism. The manuscript is organized as follows: in Section 2 we
briefly narrate the experimental procedure to conduct four-point bending tests on BMGs and the important features of shear
band patterns. The analytical model for dynamic evolution of multiple shear bands and the solutions of the bending system
are given in Section 3. Section 4 presents a detailed discussion on the evolution of shear band spacing and shear offset and its
inherent scaling laws. The critical failure strain and size effect of plasticity are discussed in Section 5. Section 6 uncovers the
underlying physics of multiple shear banding. In Section 7 we make salient conclusions of our present investigation.
2. Experimental procedure and observations

The dynamic evolution of multiple shear bands was systematically investigated under in situ four-point bending tests of a
typical BMG, Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit-1). The samples were machined into specimens (35 mm in length and 2 mm in
width) in different thicknesses (0.35 mm, 0.5 mm, 0.7 mm, 1.0 mm, and 1.2 mm). For microscopic observation, the deformed
regions of the sample were polished. In situ four-point bending tests were performed with a scanning electron microscope
(SEM, FEI-Sirion NC microscope) equipped with a loading stage at a velocity of 0.033 mm/min at room temperature. The fine
pattern of the shear bands was examined in situ by SEM during the bending process.

As illustrated in Fig. 1, primary shear bands nucleate at the external boundary of the specimen and propagate inside the
sample, organizing a periodical distribution along a certain direction. Secondary shear bands develop along the length of the
primary shear bands, particularly below the area of the shear offset. Once a shear band is activated, its propagation or slip
Fig. 1. SEM micrographs of Vit-1 sample under bending: 1.2 mm thick sample with bend radius of 15 mm (a), 10 mm (b), 5 mm (c); 1.0 mm thick sample
with bend radius of 5 mm (d).
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generates shear step (offset) with respect to its neighbors, as shown along the external boundaries. The shear band pattern
evolves with the increase of the bend curvature. As an example, Fig. 1(a)–(c) shows the shear band patterns of specimens of
1.2 mm in thickness at different bend radii (i.e. 15 mm, 10 mm, 5 mm). With increasing the bend curvature, the shear band
spacing decreases first due to the appearance of new bands until a final, steady value is reached. The similar trend was also
observed in Ti alloy through the radial collapse of a thick-walled cylinder (Xue et al., 2002). With bend curvature increasing,
shear offset grows to be more distinct. Clearly, shear band multiplication evolves with plastic strain in company with nucle-
ation and growth of shear bands.

The dynamic evolution of multiple shear bands is strongly size and pressure dependent. The shear band patterns for sam-
ples with different thicknesses (1.2 mm, 1 mm) are respectively shown in Fig. 1(c) and (d) at the same bend radius (5 mm).
On both tensile and compressive surfaces, the shear band spacing decreases with decreasing the sample thickness, consistent
with those previous experimental and simulation observations (Conner et al., 2003; Yang et al., 2006). The thinner sample
usually produces denser shear bands, resulting in a better ductility. This size effect is also embodied in shear offset. Under
the same bend curvature, in a thick sample shear offset is usually more significant than that in a thin sample. It implies that
severer plastic deformation is accommodated by a single shear band in thicker sample, since fewer shear bands are created.
To be noted, the shear band patterns on tensile and compressive surfaces are not symmetrical. The shear bands initially
propagate at �55� with respect to the free surface in tensile part, while in compressive part a cluster of primary shear bands
with a general inclination angle of 40� to the free surface is found. The asymmetrical deviation of shear band angle from 45�
is right consistent with that of failure angles observed in uniaxial loading (Chen et al., 2011; Jiang et al., 2008a). During the
evolution, the shear band spacing and offset on the tensile side tend to be larger than those on the compressive side. It con-
firms the pressure-sensitivity of plastic flow in BMGs (Flores and Dauskardt, 2001; Fornell et al., 2009; Hsueh et al., 2008; Ott
et al., 2006; Schuh and Lund, 2003; Sun et al., 2010b).

General features of multiple shear banding during the evolution are found, both shear band spacing and offset decrease
with decreasing the sample thickness; shear band spacing decreases while shear offset increases with increasing the bend
curvature. The observed shear band spacing and offset actually obey scaling laws, which will be elucidated specifically in the
following discussion. In addition, the asymmetrical character of shear banding is reflected by the direction, length and den-
sity of shear bands, due to the pressure dependence of plastic deformation in BMGs.
3. Analytical model for evolution dynamics of multiple shear banding

Two basic processes, i.e. shear band nucleation and growth, are involved in the evolution of multiple shear banding. Nucle-
ation takes place at the selective activation sites along certain paths; growth occurs with the competition among bands. Dif-
ferent from the thermoplastic shear bands in crystalline metals (Aifantis, 1987, 1995; Bai and Dodd, 1992; Batra and Lear,
2005; Chen and Batra, 1999; Dodd and Bai, 2012; Meyers, 1994; Wright, 2002; Zbib and Aifantis, 1988, 1992; Zbib and Jubran,
1992), structural or free volume softening precedes thermal softening as the origin of shear banding in BMGs (Dai, 2012; Dai
and Bai, 2008; Dai et al., 2005; Gao, 2006; Gao et al., 2007; Huang et al., 2002; Jiang and Dai, 2009; Lewandowski and Greer,
2006; Thamburaja and Ekambaram, 2007; Yang et al., 2006; Zhang et al., 2008). With the new nucleation and growth of shear
band, the shear band spacing and offset vary and result into different patterns as those observed in experiments. In this sec-
tion, a theoretical model for the evolution dynamics of multiple shear banding is established, which analyzes the evolution of
the characteristic lengths and energy dissipation of multiple shear banding in BMGs.
3.1. Governing equations

Complicated shear band patterns are usually found in BMGs under complex stress states, while parallel shear bands are
mainly produced in unaxial or bend loading. Herein, we focus on the latter case to draw some fundamental and general
understanding of multiple shear banding. As observed from our experiments, the shear bands in tensile part show a periodic
and parallel distribution, although they are not strictly equally distributed. As for the compressive part, shear bands are
dense and full of branches, not so regular as observed in the tensile part. The shear bands on the compressive surface usually
don’t present a definite angle because of the cooperative effects of material inhomogeneity and stress state. However, the
primary shear bands still display a general shear direction about 40� in our experiments and around 45� in those of others
(Conner et al., 2003; Gao et al., 2011). A typical pattern of multiple shear bands is illustrated in Fig. 2. Parallel shear bands
with certain spacing k are distributed along a direction, as these primary shear band patterns found in compression or bend-
ing test. In this model, some reasonable assumptions are made. First, only primary shear bands are taken into account, the
secondary and other shear bands which also contribute to the plastic deformation are considered to be negligible compared
with the primary ones (Ravichandran and Molinari, 2005); Second, instead of every individual shear band spacing, the aver-
age shear band spacing is focused for it comprehensively represents shear band density or number. The plastic deformation
accommodated or energy dissipated is dominantly determined by the number of shear band. Here we neglect the shear band
difference and assume that the parallel shear bands are uniformly distributed and equivalent, analogous to those work of
Conner et al. (2003, 2004) and Ravichandran and Molinari (2005). Since the experiments show not ideally uniform shear
band patterns (see Fig. 1), average shear band spacing is calculated to enable a comparison with theory. It is worthy to note
that, these assumptions will also miss some valuable information, such as the other systems of shear bands (e.g. the



Fig. 2. Schematic of shear band evolution model and corresponding velocity and stress fields from (a) the incipience of shear band to (b) the mature stage of
shear band.
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secondary shear bands) and the deformation disparity in shear banding due to material inhomogeneity. In that case, possible
mechanisms connecting to the microstructural inhomogeneity should be taken into account (Meyers et al., 2001; Nesterenko
et al., 1998; Xue et al., 2002). In the dynamic shear band evolution, three fundamental factors govern the nucleation or prop-
agation of shear bands in BMGs, i.e. free volume, momentum, and energy. The increment of free volume causes a decrease of
viscosity, which enables the initiation of shear bands and facilitates their development; momentum diffusion adjacent to a
shear band leads a stress relaxation in the layer and then produces a shield against new creation of shear bands; the whole
process follows the energy conservation and the minimum energy principle.

The nucleation and coalescence of free volume decreases the flow stress of BMGs and further leads to shear localization.
The material in the vicinity of the shear band unloads as momentum (velocity) diffuses. Momentum diffusion is regarded to
be the governing mechanism of the shear band spacing in the evolution of multiple shear bands (Grady, 1992, 1994; Grady
and Kipp, 1987; Jiang and Dai, 2011; Ye et al., 2013; Zhang et al., 2008). As illustrated in Fig. 2, a shear band residing at x = 0 is
assumed to be zero thickness due to its very small thickness compared to neighboring features (Dai and Bai, 2008; Jiang
et al., 2010; Li et al., 2002). The shear band initiates along the slip plane x = 0 at time t = 0. The shear stress inside the shear
band relaxes due to stress softening and the material unloads on both sides to a shear relaxed region of size x ¼ �n at time t
while in the regions x > n and x < �n it still remains plastic; the relaxed region moves in a uniform velocity V (see Fig. 2(a)).
When the shear stress inside the shear band relaxes to zero, the whole domain would relax and a mature shear band devel-
ops at a shear offset wc (see Fig. 2(b)). Material response is assumed to be rigid-plastic with the body deforming at strain rate
_c and flow stress s0. To be noted, the real material should be elastic–plastic. Provided the velocity of stress-release (even the
propagation velocity of the elastic–plastic interface) is significantly lower than the elastic wave velocity (Lee, 1967), includ-
ing elasticity in this analysis does not greatly alter the fluxes of energy and momentum into the shear band region, especially
at strain rate higher than 103/s (Grady, 1992; Grady, 2011). Except for the very early time response, which is elastic, the accu-
racy of rigid-plastic solution suffices for present study.

Corresponding to the time at which the rigid-plastic interface is at a position n, the momentum of the body per unit area
can be calculated as
Py ¼ q _cn2 þ
Z x

n
q _cxdx; ð1Þ
where q is the material density. The motion of the shear relaxed region can be obtained by equating the time rate of momen-
tum in Eq. (1) to the misbalance of the shear stress as
q _cn _n ¼ s0 � s; ð2Þ
where s is regarded as a function of the shear displacement w, the time rate of such displacement _w and some internal state
variables Ii ði ¼ 1;2;3; . . .Þ, and is given as (Jiang and Dai, 2011),
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s ¼ sðw; _w; IiÞ: ð3Þ
The shear displacement in the shear band at the boundary x ¼ 0 is expressed as
w ¼
Z t

0

_cndt: ð4Þ
Combining Eqs. (2)–(4) yields a system of ordinary differential equations,
_n ¼ dn
dt
¼ s0 � sðw; _w; IiÞ

q _cn
; ð5Þ
_w ¼ dw
dt
¼ _cn; ð6Þ
subject to the initial conditions nð0Þ ¼ wð0Þ ¼ 0. The relation between w and n can be thus derived as
dn
dw
¼ s0 � sðw; _w; IiÞ

q _c2n2 : ð7Þ
The resolutions of n and w can be obtained from Eqs. (6) and (7) for a given expression of s. Considering symmetry and no
interaction between adjacent shear bands, twice the distance n will be the minimum separation (shear band spacing k) be-
tween adjacent shear bands.

Assuming that the depth and the length of shear band are b and l respectively, the dissipation energy for an individual
shear band can be expressed by
ESB ¼ bl
Z w

0
s dw: ð8Þ
From the viewpoint of energy dissipation, the total dissipation of inhomogeneous deformation in BMGs is contributed by
the primary shear bands, and the other systems (e.g. the secondary and ternary shear bands). The energy dissipated along
shear bands can be equivalent to the macroscopic dissipation W calculated by the conventional elasto-plastic theory, as
did by Ravichandran and Molinari (2005). That is, the dissipated energy W in the macro plastic region equals the total energy
dissipated along shear bands including primary EI and others Eoth. The analysis is made for the unit length (Dx ¼ 1), the rela-
tion can be expressed by
EI þ Eoth ¼W : ð9Þ
Considering the primary shear bands play a dominant role in the whole energy dissipation, the second term in the left
hand of Eq. (9) is neglected as assumed above. Therefore,
EI �W: ð10Þ
The dissipation along an individual primary shear band is measured by ESB and the number of bands per unit length is
denoted by
NSB ¼ 1=k: ð11Þ
The whole energy dissipated along the primary shear band is described as
EI ¼ NSBESB: ð12Þ
The softening law of shear stress with free volume is derived by combining the micro-structural evolution with the con-
tinuum mechanics, due to the following considerations. For conventional material, there are two types of failure models. One
is phenomenological and empirical, which can build a good correlation with experiments by including the effect of strain
rate, temperature, hydrostatic pressure and etc. (Johnson and Cook, 1985; Khan and Liu, 2012a, b; Khan et al., 2012). The
other is rooted from different physical foundations, including micro mechanically motivated failure criteria (LeRoy et al.,
1981; McClintock et al., 1966; Rice and Tracey, 1969), the damage model within the framework of continuum damage
mechanics (Bruhns and Schiesse, 1996; Chaboche, 1988, 2008; Lemaitre, 1985; Murakami and Ohno, 1981; Voyiadjis and
Kattan, 1992, 2005), and the Gurson type model (Gurson, 1977; Needleman and Tvergaard, 1984; Wen et al., 2005). At mac-
roscopic scale, BMGs exhibit inherent pressure sensitivity and shear-dilatancy during plastic deformation, which usually
renders a non-associated flow. The yield surface of BMGs should decrease with the increase of free volume until the com-
plete loss of load-carrying capacity. This is actually quite similar to the void evolution mechanism in the continuum mechan-
ics. One of the best known micro-mechanical models is due to Gurson (1977) with modifications by Needleman and
Tvergaard (1984), Tvergaard (1981, 1982), it studies the plastic flow of a void-containing material and establishes a yielding
function reflecting the softening effect due to the presence of voids. In BMGs, ‘‘free volume’’ as the topological disorder, can
be simply considered as randomly distributed atomic scale voids in material. Treating these voids to be spherical, the yield
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function of Gurson is reasonably extended to BMGs by taking into the pressure sensitivity of the matrix. Moreover, the free
volume evolution is under the control of the stress-induced free volume creation and the free volume annihilation due to struc-
tural relaxation and diffusion (Dai et al., 2005; Huang et al., 2002; Jiang and Dai, 2009; Thamburaja and Ekambaram, 2007).

For a pressure-independent material containing spherical voids, the GTN model uses the yield function (Gurson, 1977;
Needleman and Tvergaard, 1984)
F ¼ re

ry

� �2

þ 2q1tf cosh
3rm

2ry

� �
� q1tf
� �2 � 1 ¼ 0; ð13Þ
where re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3sijsij=2

p
¼

ffiffiffiffiffiffiffi
3J2

p
(sij ¼ rij � rmdij) is the effective stress, rm ¼ rii=3 is the mean stress, tf is the current fraction

of voids, equivalent to free volume concentration, ry is the yield stress of the matrix, and q1 is a constant introduced by
Tvergaard (1981, 1982). When the void fraction reaches 1=q1, material will lose load carrying capacity. The above criterion
can be rewritten as below
re

ry

� �2

¼ 1� q1tf cosh
3rm

2ry

� �� �2

� cosh2 3rm

2ry

� �
� 1

� �
ðq1tf Þ2: ð14Þ
For simplicity, we neglect the minor term ðcosh2ð3rm=2ryÞ � 1Þðq1tf Þ2 in Eq. (14), as tf � 1 for BMGs. Note that the ori-
ginal GTN model considers the von Mises matrix. The macroscopic pressure sensitivity of yielding comes from the pressure
dependence of voids. However, the pressure-sensitive yielding has also been found in the matrices of porous materials (Jeong
and Pan, 1995; Lazzeri and Bucknall, 1993). BMGs can be considered as a void-containing material by treating free volume as
randomly distributed atomic scale voids. On the one hand, the free volume presents pressure dependence as traditional voids
or cavities, from the viewpoint of geometry; on the other hand, the yielding of ‘‘matrix’ (excluding the geometrical free vol-
ume) is also pressure-dependent due to its topological disorder. In crystalline solids, unit glide of a dislocation does not re-
quire significant dilatation. Due to the long-range disorder structure, BMGs cannot find a slip plane when they experience
shear deformation. As a result, the plastic flow units in BMGs (i.e. shear transformation zones) change into a loose configu-
ration with a considerable dilatation (Dyre et al., 1996; Jiang and Dai, 2007). The inherent dilatation is found to be the major
reason of the pressure sensitivity of plastic flow in BMGs (Schuh et al., 2007; Sun et al., 2010b). In order to involve this pres-
sure sensitivity of flow, we introduce an additional pressure-dependent term i.e. arm, into Eq. (14) for a proper description of
BMGs. The yield criterion is therefore established in the form of
U ¼
ffiffiffiffi
J2

p
þ arm �

ryffiffiffi
3
p 1� q1tf cosh

3rm

2ry

� �� �
¼ 0; ð15Þ
where a is the pressure sensitive factor. This new criterion (15) is analogous to the Drucker–Prager criterion, but takes the

free volume softening into account. We define the initial free volume in BMGs to be t0 ¼ ½T � Tref þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT � Tref Þ2 þ d2T

q
�=2d1

utilizing the Cohen–Grest model (Grest and Cohen, 1981; Yang et al., 2006; Zhang et al., 2008), where T is the initial tem-
perature, d1, d2, and Tref are material parameters. The shear strength for tf ¼ t0 is then calculated to be

r0 ¼ ryð1� q1t0 coshð3rm=2ryÞÞ=
ffiffiffi
3
p

. So, Eq. (15) can be written as
U ¼
ffiffiffiffi
J2

p
þ arm � r0ð1� bKÞ; ð16Þ
where K ¼ tf � t0 is the free volume increment, and the free volume softening coefficient b ¼ 1=ðsechð3rm=2ryÞ=q1 � t0Þ.
The free volume evolution within the shear band can be expressed as the following equation (Dai et al., 2005; Huang et al.,

2002; Jiang and Dai, 2009; Thamburaja and Ekambaram, 2007),
_tf ¼ Dfr2tf þ f; ð17Þ
where Df is the diffusion coefficient of free-volume concentration and f is the net generation rate of free volume. According to
the self-consistent dynamic free volume model (Johnson et al., 2002), the net generation rate of the free volume is
f ¼ -ðtR _ep

e �K=ðre=ðG _ep
eÞÞÞ, where - is a material parameter of order unity, tR is a free-volume creation function defining

the free volume produced by a unit shear strain and is given by GK=rss (rss is the effective stress at steady state) (Yang

et al., 2006), _ep
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 _ep

ij
_ep

ij=3
q

( _ep
ij ¼ _ep

ij � _ep
kkdij=3) is the effective plastic shear strain rate, re is the effective stress, and G is

the shear modulus at room temperature. The first term in the right hand side, tR _ep
e , assumes that the free volume creation

is proportional to the plastic strain rate, whereas the relaxation process is described by the second term.
The free-volume softening within the shear band leads to a particular stress-displacement behavior, which can be as-

sumed as a linear relationship for the release of shear stress with increasing shear displacement for simplicity (Grady,
1992; Ye et al., 2013; Zhang et al., 2008),
sðwÞ ¼ s0 1� w
wc

� �
; ð18Þ
where the critical shear offset wc is required to form a mature shear band, ahead of which the stress relaxation is related to
the shear displacement with the softening law (16) expending a finite amount of energy in the process. When it is reached,
the shear stress within shear band reduces to zero. Combining Eqs. (16) and (18), we can derive that w ¼ bKwc . Here bK mea-
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sures the evolution degree of shear band. In fact, as to the multiple shear banding of crystalline metals in high speed
machining (Molinari et al., 2002; Ye et al., 2013), an index for the evolution degree of shear band has also been found (Ye
et al., 2013). According to Eq. (8), the dissipated energy ESB is obtained as
ESB ¼ bl
Z w

0
s0 1� w

wc

� �
dw ¼ blð1� bK=2ÞbKs0wc: ð19Þ
Introducing Eq. (19) into Eq. (12), we have
EI ¼
blð1� bK=2ÞbKs0wc

k
: ð20Þ
On the other hand, applying Eq. (18) into Eq. (7), we can derive that
n3 ¼ 3
2

s0

q _c2

w2

wc
: ð21Þ
Introducing Eq. (21) into Eq. (6), the expression for w is obtained as
w ¼ 1
18

_cs0

q
t3

wc
; ð22Þ
and then n is expressed by
n ¼ 1
6

s0

q
t2

wc
: ð23Þ
At the time t, shear band slips a displacement of w and the momentum diffuses to a distance of n. When bK ¼ 1, indicative
of a zero stress within shear band, t reaches a critical time tc and the shear offset develops to wc . Considering symmetry and
no interaction between adjacent shear bands, the shear band spacing k, as the minimum separation between adjacent shear
bands, can be estimated by 2n= sin h. Thus, using Eqs. (22) and (23) and w ¼ bKwc , the shear band spacing can be derived as
k ¼ 12b2K2wcs0

q _c2

 !1=3,
sin h: ð24Þ
Combining Eqs. (10), (20), and (24), we obtain the shear band spacing and offset, respectively, as
k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12bKW

blqð1� bK=2Þ _c2 sin3 h

s
; ð25Þ

w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12bKW3

b3l3qð1� bK=2Þ3s2
0

_c2 sin3 h

vuut ; ð26Þ
where the shear band spacing and the shear offset are related to the free-volume softening factor bK, the dissipated energy
W , and the strain rate _c. The shear angle h is also included in the analytical expressions. Its asymmetry between tension and
compression would cause the asymmetrical evolution of shear band spacing and shear offset. The critical shear offset is then

obtained in the form of wc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
96W3

c=b3l3qs2
0

_c2 sin3 h
q

by setting bK ¼ 1 and W ¼Wc . Wc is the energy dissipation of mature

shear bands. The present model can investigate multiple shear banding for BMGs under a range of constrained loading con-
ditions. To be noted, the macroscopic dissipations W and Wc depend on specific configuration, involved with material
dimension and loading state. Analytical solutions of them can be derived in some simple stress states (i.e. unaxial loading
or bending), but in the other complicate situations (i.e. indentation), it may be difficult to estimate. Next, the behavior of
multiple shear bands in a typical bending deformation of BMG is discussed by applying this model, the analytical solutions
for shear band spacing, shear offset and energy dissipation are obtained.

3.2. Solutions of the bending system

In the above model (Section 3.1), the macroscopic dissipation W relies on specific material and loading condition. Accord-
ing to the four-point bending experiments, plane strain conditions prevail for thin plates. We consider an initially straight
beam of unit length and rectangular cross-section with thickness 2h, and width b, as illustrated in Fig. 3. It is recognized that
the shear bands initiate at the external boundaries of the beam and propagate in the plastically deforming region. Parallel
shear bands grow inwards towards the neutral axis at an angle hT or hC and terminate at the elastic plastic boundary. The
shear bands on tensile side of the beam exhibit different spacing and inclination angles from those on compressive side,
as observed in the current experiments. A typical shear band in a beam under bending is shown in Fig. 3, with the associated
coordinate system, x1 � x2 (x1-axis being in the direction along the band and x2-axis being normal to the band). The spacing



Fig. 3. Schematic of the primary shear band pattern with uniform spacing kT and inclination angle hT on tensile side and kC and hC on compressive side.
Stress state in the cross-section of the beam beyond yield is illustrated.
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kT on tensile side and kC on compressive side of the primary shear bands are taken as uniform. wT and wC are the slip
displacements due to plastic shearing along a shear band.

One-dimensional Bernoulli–Euler beam theory is used here. Plane cross-sections remain plane and normal to neutral axis
remain normal during deformation. The small strain theory is employed. Due to lacking strain hardening capability, BMGs
are assumed to be elastic-perfectly plastic. Assuming the stress-free boundaries conditions at y ¼ �hC and y ¼ hT and the
plane strain state, the components of the stress and strain tensors in the frame Oxyz of Fig. 3, satisfy ryy ¼ 0, rzz ¼ vrxx,
rij ¼ 0 ði – jÞ and ezz ¼ eij ¼ 0 ði – jÞ. According to the yield criterion (see Eq. (16)), the critical stresses on tensile and com-
pressive sides to cause material yielding are respectively
rT
xx ¼ rs=DT ; ð27aÞ

rC
xx ¼ �rs=DC ; ð27bÞ
where the yield stress rs ¼ r0ð1� bKÞ, DT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ v2 � vÞ=3

p
þ að1þ vÞ=3 and DC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ v2 � vÞ=3

p
� að1þ vÞ=3. In the

elementary beam theory, the total axial strain exx varies linearly in the thickness direction y, i.e. exx ¼ y=R ¼ ky, where R
and k are respectively the bend radius and the bend curvature. Because rxx ¼ E0exx ¼ E0kyðE0 ¼ E=ð1� v2ÞÞ, we can conclude
the location of the elastic–plastic boundary both on tensile and compressive sides, respectively, as hT

0 ¼ rs=kE0DT and
hC

0 ¼ rs=kE0DC . Note that the regions, y 6 �hC
0 and y P hT

0, are the ‘‘plastic zones’’ of the beam. Because of the pressure sen-
sitivity, the beam experiences non-symmetric bending beyond yield. The neutral axis y ¼ 0 does not situate in the middle of
the sample, and it can be found hT ¼ jhC � ðj� 1=jÞhC

0=2 (j ¼ DT=DC) by requiring the total in-plane force acting in the
beam to be zero. Using the stress–strain relation, the strain within the plastic regions can be obtained, including the elastic
term and the plastic term, i.e. exx ¼ rs=DT E0 þ ep

xx for hT
0 6 y 6 hT and exx ¼ �rs=DCE0 þ ep

xx for �hC
6 y 6 �hC

0 , where ep
xx is the

plastic strain parallel to the x-axis.
The shear stress within the shear band can be related to the normal stress given by the beam theory,
s� ¼ r�xx cos h� ¼ s�0ð1� bK�Þ; ð28Þ
where the superscript ‘‘⁄’’ denotes ‘‘T’’ on tensile side or ‘‘C’’ on compressive side, the critical shear stress s�0 ¼ r0 cos h�=D�.
From the macroscopic point of view, the total dissipation may be evaluated by considering the plastic beam theory. Accord-
ing to this theory, the deformation in the plastic region is regarded to be homogenous and the free-volume softening is far
smaller than that within the localized shear bands. Therefore, K within the plastic region is ignorable and rs � r0. Consid-
ering the plastic work is entirely dissipated, the dissipation in the plastic region is
W ¼
Z

yP0 or y60
r�xxe

p
xxdV ¼ b

r0

D�

Z h�

h�0

ep
xxðyÞdy ¼ bkðh� � h�0Þ

2r0

2D�
: ð29Þ
We note that, both elastic and plastic responses are considered in the bending deformation, whereas, a rigid-plastic re-
sponse is assumed in the momentum diffusion analysis as discussed before. These two are actually not conflicted in the pres-
ent study. First, momentum diffusion plays effect in the deformation stage when material already yields and experiences
considerable plastic flow, and the elastic deformation becomes a minor term. Second, the fluxes of energy and momentum
into the shear band should not be markedly altered by including the elasticity when the velocity of stress-release is signif-
icantly lower than the elastic wave velocity. In this case, the elastic response can be neglected in the momentum diffusion.
An energy balance is then established by assuming that energy dissipated by plastic deformation in pure bending is equal to
that dissipated by shear bands. Applying Eq. (29) and l� ¼ ðh� � h�0Þ= sin h� into Eqs. (25) and (26), we obtain the shear band
spacing and offset in tensile part and compressive part, respectively, as
k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6r0bK�kðh� � h�0Þ
qð1� bK�=2ÞD� sin2 h� _c2

s
; ð30Þ
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w� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r0bK�ðkðh� � h�0ÞÞ

3

2qð1� bK�=2Þ3D� cos2 h� _c2

s
: ð31Þ
These length scales rely on material properties, sample size, bend curvature, and strain rate as well. Usually, the local
strain rate _c is hard to be obtained directly from experiments. For quasi-static bending test, the strain rate depends on
the material parameters and loading conditions (k; _k). Since material parameters are constant for a given material, the strain
rate can be expressed as _c ¼ f ð _k=kÞ through dimensional analysis. For simplicity, it is supposed _c as a linear function of _k=k. It
can be further derived that _k=k ¼ �kdR=dt, where dR=dt is the time rate of the bend radius and is constant in the current
experiments. Therefore, the strain rate can be given as _c ¼ vk, where v is a proportionality parameter only depending on
material properties. In the following, we have a detailed discussion on the evolution behavior of multiple shear bands in
BMGs under bending, and a comparison between theory and experiments is made.
4. Evolution of shear band spacing and shear offset and its scaling laws

In this section, the close dependence of shear band spacing and shear offset on sample thickness, bend curvature, and
further the bending ratio (thickness versus bend radius), obeying notable scaling laws, for Vit-1 BMG is discussed both from
theoretical analysis and experiments. What’s else, the obvious tension–compression asymmetry due to pressure sensitivity
is described. The mechanical and material constants for Vit-1 BMG are given as (Lu et al., 2003; Yang et al., 2006):
E ¼ 96 GPa, r0 ¼ 1 GPa, q ¼ 6120 kg=m3, v ¼ 0:36, a ¼ 0:1, and hT ¼ hC ¼ h can be approximated. To determine the factor
v, we introduce a typical group of experimental data into Eq. (30): h ¼ 0:5 mm, k ¼ 1=5 mm�1, kT ¼ 68 lm, hT ¼ 55	,
kC ¼ 65 lm, hC ¼ 40	. Then it is obtained that bKT=½ð1� bKT=2Þv2� � 8:4
 10�10 ðs2=m2Þ and
bKC=½ð1� bKC=2Þv2� � 4:2
 10�10ðs2=m2Þ. KT is usually larger than KC , and the both are reasonably set of the order
� 10�3 during the steady plastic flow (Yang et al., 2006). b is estimated to be � 102 as shear resistance is completely lost
when K � 10�2. v is then educed to be of the order � 104 m/s. The local strain rate _c is calculated to be � 106 s�1, within
the scope of local strain rate 103 � 109 s�1 encompassing the macroscopic loading rates from quasi-static to dynamic range
(Zhang et al., 2008). These results will be utilized for the following discussion.

Fig. 4(a) and (b) demonstrates shear band spacing as a function of bend curvature for Vit-1 samples of constant thickness
(0.35,0.5,0.7,1.0, and 1.2 mm), both for tensile and compressive sides. A common trend is observed for all the curves. The
initial shear band spacing does not emerge until a critical bend curvature is reached. At this bend curvature, material yields
and the inhomogeneous deformation via shear banding occurs. At the beginning, the shear bands usually have a maximum
spacing to each other due to the least shear bands nucleated. With the increase of bend curvature, new shear bands would
appear and a decrease of shear band spacing follows. To be noted, the shear band spacing changes more dramatically at the
initial stage, which suggests shear band prefers to nucleate at this period. With decreasing sample thickness, the shear band
spacing decreases and the slopes of curves become flatter gradually. We can see that the thinner sample always corresponds
to a smaller spacing, indicating a greater number of shear bands or a better capability of shear band multiplication. These
theoretical predictions capture well the experimental results as marked by open symbols. These experimental data of shear
band spacing were measured by averaging the number of shear bands over the same length. This decrease in the shear band
spacing with increasing plastic strain was also reported by Bei et al. (2006) through various amounts of compression on
Zr-based BMGs. Meanwhile, the opposite change trend of spacing with bend curvature, i.e., the shear band spacing steadily
increases with increasing bend curvature for constant sample thickness, was observed by Conner et al. (2004). The corre-
sponding theories were established to describe this phenomenon (Conner et al., 2003, 2004; Ravichandran and Molinari,
2005). There are two possible reasons to cause these distinct results. First, the extension in the tensile part would enlarge
shear band spacing when no new shear bands come out, this effect is especially significant at large bend curvature. We
see that the bend curvatures of Conner et al. (2003, 2004) (i.e. 1/3 mm�1 � 2 mm�1) are generally bigger than those of
our experiments (i.e. 1/15 mm�1 � 1/3 mm�1); Second, new shear bands may be inclined to nucleate at the initial stage
or at a relatively small bend curvature, as discussed above. That is, shear band density probably increases greatly at the
beginning but hardly changes after a certain bend curvature. The both change trends of spacing with global strain were cap-
tured by Meyers and co-workers (Xu and Meyers, 2012; Xue et al., 2002) for titanium and Ti alloy. They attributed the in-
crease of shear band spacing to the dead shear bands which may be merged into the large plastic deformation of surrounding
area. However, this annihilation of shear bands in BMGs is not observed in the current experiments. Despite the similar
dependence on bend curvature, the shear band spacing on the compressive side (Fig. 4(b)) is relatively smaller than that
on the tensile side (Fig. 4(a)).

As widely reported (Chen and Lin, 2010; Conner et al., 2004; Ravichandran and Molinari, 2005), the shear band spacing
in constrained geometries is proportional to a characteristic sample dimension. The constant of proportionality may de-
pend on material composition (Cui et al., 2010) and loading state (Sergueeva et al., 2005; Subhash and Zhang, 2007).
The shear band spacing is plotted as a function of sample thickness in Fig. 5, for tensile and compressive sides respectively.
Fig. 5(a) shows that shear band spacing enlarges with increasing sample thickness under different curvature radii
(3 � 15 mm). A scaling law is found that the shear band spacing varies directly as the square root of the thickness for
a given bend radius. Take the red solid curve (under bend radius of 15 mm) for example, the shear band spacing decreases
slowly with the reduction of sample thickness at first. However, when the thickness comes close to 0.5 mm, the shear



Fig. 4. Shear band spacing as a function of bend curvature under different sample thicknesses, (a) for tensile side and (b) for compressive side. The
unconnected symbols denote the average shear band spacing derived from the current experiments.
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band spacing drops very quickly. This trend indicates that the size effect of shear band spacing is not homogeneous,
although it is generally reasonable to take shear band spacing to be �1/10 of a dimension, as first reported by Conner
et al. (2003, 2004). The quick drop of the shear band spacing implies that a large number of shear bands can emerge below
a critical thickness, in other words, a homogeneous plastic deformation can be expected when a sample is small enough.
Indeed, this has been realized in the compression (Greer and Hosson, 2011; Jang et al., 2011; Volkert et al., 2008) and ten-
sion (Guo et al., 2007) of BMG nano-pillars. The experimental data for Vit-1 are plotted as open symbols. Apparently, the
observed shear band spacing agrees well with the theoretical prediction. Fig. 5(b) plots shear band spacing versus thick-
ness on the compressive side. These shear bands in compression show a similar change in spacing with sample thickness.
However, the shear band spacing on the compressive side is generally smaller than that on the tensile side under the same
condition, in line with those observed in experiments. It is known that shear banding is a mechanism of inelastic defor-
mation taking place within the plastic zone. The size of plastic zone should therefore closely relate to the shear band spac-
ing. As seen in Eq. (30), the spacing is scaled with the plastic zone size hT � hT

0 on tensile side and hC � hC
0 on compressive

side. Attributed to the pressure sensitivity, hT � hT
0 is usually larger than hC � hC

0 , which thus leads to a wider spacing in
tensile part than that in compressive part.

Shear offset can range from several nanometers to around hundred microns depending on sample dimension and loading
condition (Conner et al., 2004; Flores and Dauskardt, 2006; Kim et al., 2002; Wright et al., 2001). Under quasi-static bending,
the variation of the shear offset with bend curvature on the tensile side for different thicknesses (0.35,0.5,0.7,1.0, and
1.2 mm) is shown in Fig. 6(a). We note that the shear slip is activated when a critical bend curvature is reached, analogous
to those found in shear band spacing. The thicker sample is, the bigger bend curvature is required to create an initial shear
displacement or trigger a shear band. Fig. 6(a) also describes that, with the increase of bend curvature, the shear offset grows.
Moreover, it grows more slowly in a thinner sample than that in a thicker sample. This implies that single shear band would
propagate faster in a thick sample and easily form crack. The shear offset on the tensile side for a given curvature radius
(3,5,10,15 mm) for beams of varying thickness is shown in Fig. 6(b). The shear offset varies with the three-seconds power



Fig. 5. Shear band spacing as a function of sample thickness under different bend radii, (a) for tensile side and (b) for compressive side. The theoretical
prediction shows a good agreement with the experimental results (marked by unconnected symbols).
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of the thickness and it can range from nanometers to microns for Vit-1 BMGs. The magnitude of shear offset reflects the plas-
tic deformation contained by a shear band. Usually, the big shear offset, indicative of highly localized strain, is adverse to
macro-plasticity.

To be further, the expression of shear band spacing and shear offset (Eqs. (30) and (31)) can be normalized. Then, the
dimensionless shear band spacing k�=R and shear offset w�=R can be expressed as the functions of the bending ratio h�=R.
The general dependence of shear band spacing and shear offset on bending ratio can be therefore obtained, as depicted in
Fig. 7, both for tensile and compressive parts. This helps us to have an overall understanding of the coupling effect of sample
thickness and bending curvature on multiple shear banding. Shear band spacing and shear offset are positive only when the
bending ratio or macro-strain is above a critical value for material yielding, as discussed previously. The increase trend with
bending ratio is both found in the normalized shear band spacing and offset. We note that, the non-normalized shear band
spacing can show an opposite trend since it is increased with increasing sample thickness but decreasing bend curvature.
The tension–compression asymmetries of shear band spacing and shear offset are obviously reflected. In contrast to the min-
or asymmetry of shear band spacing, it can be found that this asymmetry of shear offset becomes stronger with increasing
bending ratio. The shear bands in tensile part normally propagate faster than those in compressive part due to the opposite
constraints. This priority is particularly true with the increase of bending ratio, which tells that the cracking of BMGs com-
monly initiates from the tensile part.
5. Critical strain at fracture and size effect of plasticity

From the evolution of shear band spacing and shear offset, as discussed in the above section, we estimate the plastic capa-
bility of BMGs indirectly. In this part, the macro-plasticity will be judged directly by a critical strain at which cracks initiate
and result in material fracture. As mentioned previously, the shear band develops into a mature one through stress softening



Fig. 6. (a) Shear band offset on the tensile side varies with bend curvature for different sample thicknesses; (b) Shear band offset on the tensile side varies
with sample thickness for fixed bend radius (3,5,10,and 15 mm).

Fig. 7. Dependence of the normalized shear band spacing and shear offset on bending ratio for both tensile and compressive parts.
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and its shear resistance is completely lost when w� ¼ w�c or bK� ¼ 1. When the shear offset in the mature shear band exceeds
a critical value Du, the shear band is assumed to transform into a mixed mode crack (Mode I and II) (Conner et al., 2003;
Ravichandran and Molinari, 2005). Setting the shear offset w� (see Eq. (31)) equal to Du at bK� ¼ 1, Eq. (31) can be viewed
as an algebraic equation for h�0. By denoting 1� ¼ h�0=h�, the physically relevant solution to the cubic Eq. (31) can be expressed
as
1� ¼ 1þ ðða3=27þ a2=4Þ1=2 � a=2Þ1=3 þ ð�ða3=27þ a2=4Þ1=2 � a=2Þ1=3
; ð32Þ
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where the non-dimensional parameter a ¼ Du2E0D�=Ar0h�2 and A ¼ 12r0=ðqD�v2 cos2 h�Þ. The critical strain along the axial
direction at the free boundary when a crack forms in the shear band can be obtained as e�c ¼ exxðy ¼ h�Þ ¼ e�y þ e�p, where
e�y ¼ rs=ðD�E0Þ is the elastic strain at yield point and the plastic strain to fracture is expressed as
Fig. 8.
predict
color in
e�p ¼ Du2=½Ah�2ð1� 1�Þ2�: ð33Þ
See Eq. (32), 1� is a complicated function of material properties and the sample thickness. In order to have better under-
standing of the ductility, the expression (33) is expanded in a Taylor series for two special cases, which is of practical interest.
For large að� 1Þ, corresponding to a small h� for a given material, the plastic strain to fracture satisfies
e�p � Du2=ðAh�2Þ: ð34Þ
For small að! 0Þ or a large h�,
e�p � Du2a�2=3=ðAh�2Þ ð35Þ
Apparently, the size dependence of the plastic strain is not constant but varies from h��2=3 to h��2 with decreasing sample
thickness. In smaller sample, a more significant size effect presents. Without losing the generality, the plastic strain in the
tensile part is focused since it usually governs the macro-plasticity of BMGs. Here Du is assumed to be an order of 10 lm
according to Conner et al. (2003), to enable an effective comparison with their experimental results. The plastic strain to frac-
ture in tension as a function of sample thickness for Du ¼ 10 lm is depicted as a red solid line in Fig. 8. We can see that the
plastic strain increases dramatically with decreasing sample thickness below a thickness of about 1 mm (i.e. e�p / h��2). The
strong size sensitivity of smaller sample enables a greatly enhanced plasticity by decreasing sample thickness (Chen et al.,
2010; Jang et al., 2011; Song et al., 2009) . The thickness of 1 mm is also regarded as a ductile-to-brittle transition thickness
for Vit-1 (Conner et al., 2003; Ravichandran and Molinari, 2005; Wu et al., 2011). With the further reduction of sample size,
the plastic deformation keeps growing, during which a transition from localized to homogeneous deformation may occur at a
critical size around hundreds nanometers (Jang et al., 2011; Volkert et al., 2008; Yoo et al., 2012). The analytical predictions
show a good agreement with the experimental data for Vit-1 and other similar compositions compiled by Conner et al.
(2003). On the other side, the slope of curve becomes less steep and the size sensitivity of plastic strain is weakened with
sample thickness increasing. When the sample thickness is bigger than 10 mm, minor plastic strain presents before cracking,
and the size sensitivity of plasticity reaches a relatively small value, i.e. e�p / h��2=3. This obvious transition of size depen-
dence of plasticity in BMGs should be closely related to their intrinsic deformation behavior, i.e. shear band nucleation or
propagation. To be noted that, the value of Du for our samples is around 50 lm. The plastic strain to fracture as a function
of sample thickness for Du ¼ 50 lm is also illustrated as a blue solid line in Fig. 8. We see that the both prediction lines show
the same change trend, but the blue one for bigger Du presents a better capability of plastic deformation.
6. Mechanism map of size-dependent multiple shear banding

As for single shear banding, one considers that shear occurs simultaneously across the entire shear plane, termed shear
displacement jump mechanism (Klaumünzer et al., 2011a; Maaß et al., 2011; Song et al., 2008; Song and Nieh, 2009); the
other favors that shear band nucleates at a potential site and propagates progressively across the shear plane (Cheng
et al., 2009; Han et al., 2009; Jiang and Dai, 2011; Jiang et al., 2008c; Liu et al., 2005a; Yang et al., 2010). The latter scenario
Plastic strain to fracture as a function of sample thickness respectively for Du ¼ 10 lm (red solid line) and Du ¼ 50 lm (blue solid line).The analytical
ion is shown along with experimental data (Conner et al., 2003) for Vit-1 and other similar compositions. (For interpretation of the references to

this figure legend, the reader is referred to the web version of this article.)
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analogous to crack propagation is found in the current experiments. Multiple shear banding is a complicated inhomogeneous
deformation, as a result of collective behavior of shear band nucleation and propagation. Two fundamental and intriguing
characteristics of it have been discovered: the notable scaling laws in the evolution of shear band spacing and offset (Sec-
tion 4), and the inhomogeneous size effect of the accommodated plastic strain (Section 5). How to understand these
phenomena? What’s the underlying governing mechanism of multiple shear banding? Next, we attempt to answer these
questions from the energy dissipation point of view.

As defined earlier, EI is the energy dissipated in the shear bands, which is contributed by shear band growth (relating to
shear offset) and nucleation (relating to spacing). In the evolution process, the shear band spacing and offset would adjust to
minimize the dissipation energy. The domain of interest focuses on both the tensile and compressive parts of bending. Using
Eqs. (20), (30), and (31), we can derive the total dissipation energy needed to increase a unit shear offset,
C�w ¼
@E�I
@w�
¼ bvr0 cos h�

D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1� bK�=2Þ3

6bK�E0
� h�

h�0
� 1

� �s
; ð36aÞ
and the energy needed to decrease a unit shear band spacing,
C�k ¼ �
@E�I
@k�
¼ bvr2

0 sin h�

D�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1� bK�=2Þ

24bK�E03
� h�

h�0
� 1

� �3
s

; ð36bÞ
which respectively measure the difficulty for shear band growth and nucleation. Setting C�w ¼ C�k, we obtain the critical
sample thickness
h�c ¼ ð1þ 2 cot h�ðD�E0=r0Þð1� bK�=2ÞÞh�0 ð37Þ
At this thickness, both dissipated energy equals to
C�0 ¼ bv cos h�ð1� bK�=2Þ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qr0 cot h�

3bK�D�

s
ð38Þ
The competition of shear band nucleation and propagation can therefore illustrated by a competing map of the both dis-
sipation energies C�w and C�k. The process requiring smaller dissipated energy would be easier to arise and take a dominant
role.

The energy dissipated for a unit change of shear band spacing (in blue curve) or shear offset (in red curve) in dependence
of the sample thickness h� (for a given h�0) is elucidated in Fig. 9. The both energies increase monotonously with the growth of
sample thickness, displaying different increasing rates. We see that, the curve for shear band growth increases faster before
h� ¼ h�c , indicating that shear band propagation needs more energy to be activated. In this case, shear band nucleation would
be more active than propagation, the shear band spacing would be therefore a smaller value in a thinner sample as those
shown in Fig. 4. The two curves intersect at h� ¼ h�c where the dissipation energy for the two processes both equal C�0. In this
situation, shear band nucleation and growth should have the equal chance during the inhomogeneous deformation. When
h� > h�c , the energy dissipated for nucleation overtakes that needed for shear band growth, indicating shear band propagation
would be easier to take place than nucleation. This is also reflected by the shear offset which is usually bigger in a larger
sample than in a smaller one (see Fig. 6). The apparent transition from shear band nucleation to propagation is quite con-
Fig. 9. Competing map of shear band (SB) nucleation and growth in dependence of sample thickness.
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sistent with the change of plastic strain with sample thickness (see Fig. 8). Compared with shear band propagation, shear
band nucleation shows a stronger dependence on sample thickness (see Fig. 9). The bigger size effect of plasticity in smaller
sample should be due to the stronger size sensitivity of shear band nucleation. Oppositely, when sample is big enough, the
production of new shear bands would be restrained, and a propagating shear band has less opportunity to stop due to small
energy required. This continuous propagation may further reduce the value of C�w due to continuous free volume creation.
Consequently, the nucleation of a shear band may directly lead to catastrophic failure. In this sense, the fracture of a large
sample is essentially controlled by the nucleation of shear bands, as these found by previous works (Chen et al., 2010; Greer
and Hosson, 2011). Whereas, the poor plastic strain and its weak size effect are mainly attributed to the fast shear band prop-
agation. Comparing the both cases in tension and compression, we find that the transition thickness hT

c is commonly smaller
than hC

c (Eq. (37)). This means that the deformation transition from shear band nucleation to propagation would first occur in
tension. In another word, for a same sample, shear band nucleation may be dominant in compressive part while shear band
propagation takes priority in tensile part. This is also verified by a large shear band spacing in tensile part compared with
that in compressive part (Figs. 4 and 5).

7. Concluding remarks

Generally, a theoretical model for the evolution dynamics of multiple shear bands in BMGs has been developed under the
coupling evolutions of free volume, momentum and energy. It derived the analytical solutions for shear band spacing, shear
offset and critical failure strain. Following fundamental features have been revealed both by the theoretical model and a sys-
tematic experiment of a typical Zr-based BMG under in situ four-point bend tests: (i) The notable scaling laws in the evo-
lution of shear band spacing and shear offset: shear band spacing is decreased with the increase of bend curvature, until
it reaches a constant value. Meanwhile, shear offset grows with the increase of bend curvature. On the other hand, both shear
band spacing and shear offset become smaller with decreasing the sample thickness. For a given curvature, the shear band
spacing and offset scale respectively as the square root and the three-seconds power of thickness. (ii) The inhomogeneous
size effect of plasticity: the size dependence of the failure strain is not constant but varies from h��2=3 to h��2 with decreasing
sample thickness. To uncover their underlying physics, a competing map of shear band nucleation and propagation has been
established based on energy dissipation. It is found that in a thin sample, the dissipation energy for shear band nucleation is
usually smaller than that for shear band growth. Therefore, new shear bands is easier to be produced while the shear band
propagation is impeded, in favor of multiple shear banding and good macro-plasticity. Moreover, the shear band nucleation
presents a stronger size effect than propagation. As the two processes play different roles in samples of different dimensions,
i.e., shear band nucleation dominates in small sample while shear band propagation controls plasticity in big sample, distinct
size effects of plasticity display.

Our study might offer a fundamental picture of collective evolution dynamics of multiple shear bands in BMGs and pro-
vide new insights into its inherent size and pressure sensitivity. It is worth noting that the present analytical model can be
used for a range of loading conditions not only the bend case. As for dynamic loading, the thermo effect on shear band evo-
lution should appear considerable and the coupled free volume-thermo softening need to be considered, which deserves a
further study in our later work.
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