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a b s t r a c t

In the present article, the governing nonlinear nonlocal elastic equations are obtained for a monolayer
graphene with an initial curvature and the related softening and hardening bending stiffness is
analytically calculated. The effects of large deformation, initial curvature, discreteness and direction of
chiral vector on the bending stiffness of the monolayer graphene are discussed in detail. A behavior more
complex than previously reported in the literature emerges. It is found that the bending stiffness of
graphene strongly depends on the initial configuration, showing not obvious maxima and minima, and
suggesting the possibility of a smart tuning.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Graphene, the thinnest two-dimensional material, has attra-
cted remarkable considerations since it was first isolated. Its
unique electrical, mechanical and thermal properties enable gra-
phene to be used for the development of superconductive devices
for the micro-electro-mechanical system (MEMS), the nano-
electro-mechanical system (NEMS) and bioengineering applica-
tions [1]. High stiffness, strength and enhanced electrical con-
ductivity of the graphene sheets may result in composites with
tailored physical and mechanical properties [2,3].

Determining the elastic properties and response behaviors of
graphene sheets have been one of the most hotly disputed areas in
recent years. A great deal of research has been conducted to
explore the promising properties of graphene sheets by different
approaches. The analysis methods of the nanostructures may be
classified into four main categories; experiments [4,5], first prin-
ciples of quantum mechanics [6,7], molecular simulations (MM)
[8,9] and continuum modeling [10,11].

Since experiments and quantum mechanical simulations are more
difficult and expensive, it could be more convenient to model
graphene with other methods. Huang et al. [12] established an
ll rights reserved.

: +98 3426226617.
ehzadeh), nicola.
analytical approach to bypass atomistic simulations and determined
the tension and bending rigidities of graphene and carbon nanotube
directly from the interatomic potential. They obtained the thickness
and elastic properties and also showed that the bending rigidity is not
constant and depends on the type of loading. Pugno [13] calculated
stiffness reduction of graphene and nanotubes due to the presence of
defects, with specified size, shape, and number. Lu et al. [14]
calculated the elastic bending modulus of a graphene layer based
on an empirical potential for solid-state carbon atoms. They noted an
intrinsic coupling between bending and in-plane strain for graphene
sheets rolled into carbon nanotubes and shown a slight nonlinearity
and anisotropy in material properties of these structures. Jiang et al.
[15] developed a Tersoff–Brenner potential for modeling a graphene
sheet by non-linear interactions. They concluded that a large piece of
graphene can be regarded as a thin plate by considering the non-
linear effects in the strain components. Scarpa et al. [16] studied the
out of plane bending behavior of single layer graphene sheets
subjected to point loading by using an atomistic-continuum model.

It should be noted that the atomistic methods are limited to
systems with a small number of molecules and atoms and are
therefore restricted to small-scale modeling. Hence, development of
appropriate continuum models for nanostructures is an important
issue. Arroyo and Belytschko [17,18] presented two pioneering
works for directly extending the Born rule to the case of crystalline
films one atom thick deforming in higher dimensional spaces. They
constructed continuum models for one atom thick crystalline film.
The Born rule was extended to a film deformation and they showed
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Fig. 1. A schematic geometry of a monolayer graphene under pure bending.
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that with an exponential map for finite deformation, the behavior of
a continuum membrane mimics the MMmodel. Cadelano et al. [19]
proposed a nonlinear form for constitutive stress–strain relations
and calculated the nonlinear elastic moduli for both small and large
deformations. Lu and Huang [20] presented a theoretical framework
of nonlinear continuum mechanics for two-dimensional graphene
sheets under both in-plane and bending deformation. They
obtained the cylindrical bending for a initially flat graphene sheet
by setting the tube radius equal to length/2π in order to uncouple
the bending and stretching.

Recent studies have shown significant size-effects in the mechan-
ical properties of nano-structures [21,22]. The classical continuum
theories, on the other hand, lack the capability of representing such
effects since they do not include any internal length scale. Conse-
quently, these theories are expected to fail when the specimen size
becomes comparable with the internal length scale(s) of the
material. Therefore, continuum models need to be extended to
consider the scale effect in nanomaterial studies. This can be
accomplished through proposing nonlocal continuum mechanics
models [23,24]. Nonlocal elasticity theory accounts the small scale
effect by specifying the stress at a reference point as a functional of
the strain field at every point in the body. Chen et al. [25] showed
that the modeling of nano-structures based on the nonlocal con-
tinuum theory is physically reasonable from the atomistic viewpoint
of lattice dynamics and molecular dynamics simulations. Recently,
lots of studies have been carried out on the analysis of nano-
structures by using the nonlocal elasticity theory [26–28].

It was shown in literature that the bending rigidity of a nano-
structure is not a constant and depends on the type of loading
[12,29]. Also, bending stiffness plays an important role for defining
the structural stability and mechanical parameters of structures.
Moreover, when the graphene sheet rolls into a cylindrical carbon
nanotube, the effects of curvature and orientation of chiral vector
on the bending stiffness become significant and should be studied.
Here, the bending stiffness of a monolayer graphene sheet is
calculated using an analytical approach. Since in most cases the
stress free configuration of the graphene sheets is not in the
completely flat mode, the monolayer graphene is assumed to have
an initial curvature. The nonlinear strain–displacement relations
are considered to account large deformations. Also, the anisotropic
material properties are considered for monolayer graphene. The
nonlinear sized-dependent governing equilibrium equations are
obtained using the minimum of total potential energy and the
bending stiffness of the monolayer graphene under one directional
pure bending is analytically calculated. Finally, the effects of initial
curvature, chiral angle and cylindrical curvature on the bending
stiffness of the graphene layer are thus quantified.
2. Sized-dependent equations of a monolayer graphene

Consider a single layered graphene sheet under pure bending
moments in the x-direction (Fig. 1). The graphene sheet is modeled
as a thin orthotropic continuum plate with a thickness h and the
coordinate system is located at the middle of the plate in the
reference state. The displacement components of an arbitrary
point of the sheet can be expressed as

~u ¼ uðx; yÞ−z ∂wðx; yÞ
∂x

~v ¼ vðx; yÞ−z ∂wðx; yÞ
∂y

~w ¼wðx; yÞ þwðx; yÞ ð1Þ
where w is the initial displacement of the midplane in transverse
direction. The initial displacement may occur due to an existing
imperfection in the graphene layer or because of energy
minimization of the graphene. Also, there is an initial configura-
tion in folded and crumpled graphene sheets. In these cases, the
graphene layer has no complete initial flat shape. Since the
graphene is more flexible in the transverse direction, it is more
likely to experience large deformation under a specific load. Also,
because of its high in-plane stiffness, the in-plane stretching forces
play an important role and cannot be neglected. The nonlinear
relations of strain–displacement can be described as

εij ¼
1
2

∂ui

∂xj
þ ∂uj

∂xi

� �
þ 1

2
∂um

∂xj
∂um

∂xj

� �
ð2Þ

For moderately large deformations, linearized expressions for the
curvature are still valid while the in-plane forces redistribute due to
deflections. With the Foppl–Von Karman approximation, the geo-
metrically nonlinear effects arise only from the large rotations that
accompany large deflections. Based on this assumption, the strain–
displacement relations for displacement (1) can be expressed as [30]

εx ¼
∂ ~u
∂x

þ 1
2

∂ ~w
∂x

� �2

εy ¼
∂ ~v
∂y

þ 1
2

∂ ~w
∂y

� �

γxy ¼
∂ ~u
∂y

þ ∂ ~v
∂x

þ ∂ ~w
∂x

∂ ~w
∂y

ð3Þ

with this expression, the square derivatives of in-plane displace-
ments neglect with respect to square derivatives of transverse
displacement. Also, it is assumed that the graphene sheet is stress
free at the undeformed configuration and the initial displacement
does not cause the strain at the initial state, i.e. the square derivative
of initial curvature is neglected. By considering this assumption and
using Eqs. (1) and (3), the strain–displacement relations can be
obtained as

εx ¼ εx0 þ zκx
εy ¼ εy0 þ zκy

γxy ¼ γxy0 þ zκxy ð4Þ

where in-plane strains and curvature parameters are defined as
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It is also clear that the magnitude of higher order terms with
respect to zκx, zκy and zκxy are considered negligible in the
treatment. At the initial configuration, the displacement compo-
nents ðu; v;wÞ and their derivatives are zero, thus the strain
components vanish and therefore the graphene layer is stress free
at reference state with an initial deflection.

Expressing the strain and potential energies of the graphene
and using the theory of minimum total potential energy, the
nonlinear classical equilibrium equations can be obtained. Since
the dimensions of the monolayer graphene is in the range of
nanometer, it is not reasonable to use the classical equilibrium
equations. As the length of a structure is reduced in the range of
nanometer, the influence of the long range interatomic and
intermolecular forces become significant and cannot be neglected.
The classical continuum mechanics cannot capture this effect and
therefore would not produce accurate results for size-effects.

In order to consider the small scale effect of interatomic
interactions, the nonlocal elasticity theory can be used. According
to nonlocal elasticity, the stress in a definite point in a body
depends not only on the strain in that point but also on those in
the others. Nonlocal continuum mechanics allows one to account
for the small length scale effect that becomes significant when
dealing with nanostructures. Eringen [23] showed that the non-
local stress tensor ðsnlÞ can be related to local stress tensor ðsÞ by
the following differential form:

snl−τ2l2e∇
2snl ¼ s; τ¼ e0li=le ð6Þ

where e0li is a small scale parameter, e0 is a constant appropriate
to each material for adjusting the model to match the reliable
experimental results, li is an internal material characteristic length
such as C–C bond length, le is the external structural characteristic
length and ∇2 is the Laplacian operator [31]. The important
advantage of the Eringen approach is that its constitutive relations
are differential equations instead of integral equations. In this
approach, Fourier transforms of the constitutive moduli are
expanded into power series of the wave number and then the
integral operators are replaced with differential ones for slow
varying field [24]. Also, in this model additional boundary condi-
tions do not appear.

The based equations of nonlocal elasticity have been obtained
based on the simple lattice model for isothermal elastic solids
consist of discrete atomic mass points attached to each other by
springs [24]. Therefore, the nonlocal elasticity theory was derived
from the discrete nature of lattice dynamic and can capture the
small sized effects. Hence, although the classical plates theory is
not appropriate for analysis of nano-structures, the results of the
modified plate model by the nonlocal elasticity theory can become
closer to accurate results.

Considering the small scale effect and using the theory of
minimum potential energy, the nonlocal equilibrium equations
can be obtained as
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where pðx; yÞ is the external pressure and is zero in our problem.
By multiplying both sides of the above equations by ð1−ðe0liÞ2∇2Þ
and considering relation (6), yields
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where Nx, Ny, Nxy are the in-plane resultant forces and Mx, My, Mxy

are the resultant moments of monolayer graphene.
Due to the hexagonal structure of the unit cells in graphene

sheets, it can be considered as an orthotropic material especially
for large deformations. For a two-dimensional orthotropic mate-
rial, the local stress tensor can be related to the strain tensor as
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Components Qij ði; j¼ 1;2;6Þ are the elastic properties of the
graphene sheet. These components depend on the direction of the
chiral vector. By indicating with θ the angle between zigzag and
x-direction (Fig. 1), the elastic components can be defined as

Q11
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Q26

2
6666666664
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7777777775
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where E11 and E22 are respectively the Young modulus in zigzag
and armchair directions and ν is the Poisson ratio. Also, s and c
denote sin θ and cos θ respectively (in which θ¼ 0 represents a
zigzag graphene sheet and θ¼ π=2 corresponds to an armchair
graphene layer).

Expressing the resultant forces and moments in terms of strain
components, yields

N

M


 �
¼

½A� ½B�
½B� ½D�

" #
ε0
κ


 �
ð11Þ

where ½A� and ½D� are called the matrices of stretching and bending
stiffness, respectively and ½B� is the matrix of stretching–bending
coupling stiffness, namely

ðAij;Bij;DijÞ ¼
Z h=2

−h=2
Qijð1; z; z2Þdz ð12Þ

Obtaining the force and moments resultants for an anisotropic
graphene sheet and introducing the stress function φ as

Nx ¼
∂2φ
∂y2

; Ny ¼
∂2φ
∂x2

; Nxy ¼ −
∂2φ
∂x∂y

ð13Þ

and considering the small scale effect, the equilibrium equations
(8) are converted into the following equation:
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¼ 0 ð14Þ

where Dn

ij ¼Dij−BijA
n

ijBij in which An is the inverse of matrix A. The
compatibility equation of the strain components of the middle
surface is written as [30]
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Using Eq. (11), the strains components can be expressed in

terms of the stress function as
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Substituting Eq. (16) into compatibility Eq. (15) and using Eq.

(13), yields
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Eqs. (14) and (17) are the starting equations for studying the
nonlinear behavior of graphene sheets. Also, the in-plane displa-
cement components can be expressed in terms of the transverse
deflection and stress function by the help of Eqs. (5), (13) and (16)
as

u¼
Z x
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Z y
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Thus, by determining the transverse displacement and stress

function, the in-plane displacements can also be defined.
3. Bending stiffness of a monolayer graphene

Let us consider a monolayer graphene that is subjected to
bending moments in the x-direction (longitudinal direction) and
have free edges in the y-direction (lateral direction). For large
values of moments, this problem implies a nonlinear large defor-
mations and it does not have simple solution. Here we would like
to obtain the value of the required moment to create a specific
type of deformation. Since every cross section of the graphene will
deform identically in this type of problem, it is reasonable to focus
on the central portion of the graphene layer that is away from the
applied moments. In this region, the variation of the transverse
deflection with respect to the lateral coordinate y is independent
of the longitudinal coordinate x. Moreover, at the central portion
of the graphene sheet, the applied moments can be assumed to
cause a constant curvature in the longitudinal direction. Accord-
ingly, the transverse deflection is assumed to be in the following
form:

wðx; yÞ ¼w1ðyÞ þ
x2

2Rx
ð19Þ

where Rx is the known radius of curvature in the longitudinal
direction ðκx ¼ 1=RxÞ. Also, w1ðyÞ shows the variation of the
transverse displacement on the lateral direction.

The initial deviation of the graphene from its flat configuration
can be considered as a mild half-wave type. Here, the initial
imperfection in the graphene is taken to be in the form of

wðx; yÞ ¼ x2

2Rx
þ y2

2Ry
ð20Þ

where the parameters Rx and Ry represent the longitudinal and
lateral radii of initial curvature. Substituting the above relations
into Eqs. (14) and (17), yields
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It should be noted that the components of stretching-bending
coupling stiffness matrix are zero for a monolayer graphene sheet.
As stated before, our attention concerns in the region away from the
applied moments and thus the longitudinal curvature is constant
and the cross sections deform nearly uniformly in the longitudinal
direction. Therefore, it is quite reasonable to assume that the stress
variation is independent from the longitudinal coordinate
ðNx ¼NxðyÞÞ. In addition, it is clear that the magnitude of terms of
higher order with respect to zκx, zκy and zκxy are considered
negligible in the treatment and the lateral or minor curvature is
small compared to the longitudinal or major curvature along the
moments direction ðð∂2w1=∂y2Þ=5 ð1=RxÞÞ. Employing these simpli-
fications and using Eqs. (13) and (21), it can be obtained

Nx ¼ −
1
Rx

þ 1
Rx0

� �
1
An

11
w1ðyÞ−

1
2An

11RxRy0
y2 þ C1yþ C2 ð22Þ

Since the geometry and loading of the graphene are symmetric
with respect to coordinate directions, the unknown variable C1 is
zero. Substituting Eq. (22) into Eq. (21a), yields

Dn

22
∂4w1

∂y4
−
2R

2
xRy þ 2R2

xRy þ 4RxRxRy

2An

11R
2
xR

2
xRY

ðe0liÞ2
∂2w1

∂y2
þw1

� 	

þ R
2
x þ RxR

2An

11R
2
xR

2
xRY

ðe0liÞ2 þ y2
h i

−
Rx þ Rx

RxRx
C2 ¼ 0 ð23Þ

Solving the above equation and using Eq. (19), the transverse
deflection of a symmetric graphene sheet can be obtained as

wðx; yÞ ¼ C3sinhðReðλÞÞ sin ðImðλÞÞ þ C4coshðReðλÞÞ cos ðImðλÞÞ
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þRxð2ðe0liÞ2 þ y2Þ
2RyðRx þ RxÞ

þ x2

2Rx
ð24Þ

where λ is the root of characteristic equation (23) (Re and Im
represent the real and imaginary parts, respectively). It should be
noted that the summation of Eq. (24) and Eq. (20) defines the total
transverse deflection of the monolayer graphene.

In order to obtain the unknown coefficients C2, C3 and C4, the
free boundary conditions at the edge of the graphene in the
y-direction should be imposed. The boundary conditions can be
written as

Nnl
y ¼Nnl

xy ¼
∂Mnl

y

∂y
þ 2

∂Mnl
xy

∂x
¼Mnl

y ¼ 0 at y¼ 7b=2 ð25Þ

in which the two first boundary conditions are identically satisfied
by an appropriate coefficient C2. It should be noticeable that forces
and moments in Eq. (25) are the nonlocal resultants, i.e.

Mnl
y −ðe0liÞ2∇2Mnl

y ¼My ð26Þ

Some studies in the literature neglect the local forces and
moments at the boundaries instead of nonlocal ones. In order to
find more accurate results, it is reasonable to impose the nonlocal
boundary conditions. To this end, it can be shown from Eq. (26)
that the nonlocal moment resultant can be written as

Mnl
y ¼My þ ðe0liÞ2∇2My þ ðe0liÞ4∇4My þ ðe0liÞ6∇6My

þðe0liÞ8∇8My þ⋯¼ ∑
n ¼ 0

ðe0liÞ2n∇2nMy ð27Þ

The resultant forces can also be expressed in this way
Nnl

y ¼ Σn ¼ 0ðe0liÞ2n∇2nNy. By applying the two last boundary condi-
tions in Eq. (25), the two unknown coefficients C3 and C4 can be
obtained and therefore the deflection of the monolayer graphene
can be calculated. Finally, the applied moment in the longitudinal
direction can be expressed as

M0 ¼
1
b

Z b=2

−b=2
∑

n ¼ 0
ðe0liÞ2n∇2nMy dy ð28Þ

It can be seen that the above explicit equation can be used to
determine what value of applied moment is necessary to produce
a given longitudinal curvature in a monolayer graphene. In order
to define the bending stiffness of the monolayer graphene, it is
only required to differentiate the applied moment in Eq. (28) with
respect to the longitudinal curvature ð∂M0=∂κxÞ. Also, it can be
shown that the total forces of edges in longitudinal direction can
be obtained by integrating Nx along the y-direction and is found to
be zero.
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4. Numerical results

In this section, the numerical results are presented for a
monolayer graphene with an applied curvature in the longitudinal
direction. The bending modulus of graphene layer was predicted
to be 1:46 eV from ab initio simulation [6] and 1:4 eV from the
Brenner potential [14]. In the present study, the following material
properties are considered for numerical modeling

_
D11 ¼ 0:234 nN nm¼ 1:46 eV;

_
D22 ¼ 0:229 nN nm¼ 1:43 eV;

ν12 ¼ 0:149; ν21 ¼ 0:145 ð29Þ

where
_
Dii is the bending modulus of graphene. The nonlocal

parameter is depended on the dimensions of the graphene and
it is assumed to be e0li ¼ 0:1b in numerical results where b is the
C–C distance.

For verification of the accuracy of the present results, a compar-
ison has been carried out with the results of the second-generation
Brenner potential for solid-state carbon atoms of a monolayer
graphene [14]. The initial configuration is assumed to be flat. The
variation of the bending moment per length is compared with the
results of molecular dynamics in Fig. 2 for both zigzag and armchair
graphene sheets. It can be seen that the present results are in good
agreement with the results of the molecular dynamics simulations
using the second-generation of the Brenner potential.

To find the bending stiffness of the monolayer graphene, the
slope of the bending moment per unit length with respect to the
longitudinal curvature is obtained. The variation of the bending
stiffness of the graphene sheet is shown in Fig. 3 for different
initial curvatures. It can be seen that the stiffness of graphene does
not always have hardening behavior and changes of stiffness are
significant for low and medium curvatures. Depending on the
initial configuration of the graphene, the bending stiffness may
also have a softening behavior. It can be seen that some graphene
sheets have the softening bending stiffness in some ranges of
curvature. When lateral and longitudinal initial curvatures are not
in the same directions, it can be found that the bending stiffness
usually decreases by increasing the longitudinal curvature. It can
be concluded that the introduction of an initial curvature con-
siderably changes the behavior of the graphene sheet and causes a
complex nonlinear behavior for bending stiffness. It is found that
the graphene can reach a condition in which further increase of
moments increases or decreases the bending stiffness of the
graphene with reference to its flat or initial state.

In order to understand the cause of the hardening or softening
behavior of bending stiffness, it is appropriate to depict the
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deformed shapes of a monolayer graphene for different values of
the applied moments and curvatures. The deformed shapes are
shown for an initially curved zigzag graphene ðRx0 ¼ Ry0 ¼ −2 nmÞ
for different values of curvature in Fig. 4. It can be found that for
this geometry of graphene, the stiffness has hardening behavior
for κxo0:7 nm−1 and after that it decreases for increasing the
curvature until κx ¼ 2 nm−1. Also, it has nearly the constant
stiffness for high values of curvature. As it can be seen in Fig. 4,
the applied moment tends to create an opposite curvature in the
longitudinal direction with respect to lateral direction for
κxo0:7 nm−1 and this causes an increasing of the moment of
inertia and thus of the stiffness. After that, the stiffness is reduced
due to flattening in the lateral direction. As the graphene becomes
flat in this direction, the moment of inertia of the cross section
about its neutral surface decreases and causes the decreasing of
the flexural rigidity. Another interesting result is that as the lateral
curvature changes its direction around κx ¼ 0:7 nm−1, an elastic
instability may occur and cause decreasing of the stiffness in
graphene. In addition, the graphene is converted to a cylindrical
= 0 nm−1
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= 2 nm−1
xκ

B
en

di
ng

St
iff

ne
ss

(n
N

nm
)

00.2

0.21

0.22

0.23

0.24

0.25

Fig. 5. The deformed shapes of monolayer graphene for dif
shape with nearly small lateral curvature for high longitudinal
curvatures. In this stage, the variation of the stiffness of graphene
is not significant. The tendency of graphene to become flat in
lateral direction is due to geometrical nonlinear effects.

The deformed shapes of the graphene sheet with opposite initial
curvatures ðRx0 ¼ −2 nm; Ry0 ¼ 2 nmÞ are also shown in Fig. 5. It can
be seen that this geometry of graphene has a softening behavior for
κxo0:6 nm−1. As it can be seen in Fig. 5, the applied moment makes
the graphene flat in the longitudinal direction for low curvatures
and because of this the stiffness decreases. Since the graphene
tends to reduce the lateral curvature after its particular value
ðκx ¼ 0:6 nm−1Þ, the stiffness increases by increasing the curvature.
As in the previous case, the stiffness converges to a nearly
asymptotic value when the lateral curvature diminishes.

In order to study the effect of chiral angle, the variation of the
stiffness versus the longitudinal curvature is depicted in Fig. 6 for
different directions of material. It can be seen that the highest
bending stiffness is in the zigzag direction and the effect of chiral
angle becomes more significant for higher curvatures.
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The bending stiffness versus the longitudinal curvature is
depicted in Fig. 7 for several initial curvatures. It can be seen that
the maximum bending stiffness occurs at different values of
curvature and it increases by decreasing the initial radii of
curvatures. However, we found that a monolayer graphene with
high initial curvatures in the same directions has the smallest
stiffness at low values of longitudinal curvatures.

Variation of the bending moment versus the small scale effect
is depicted in Fig. 8 for an initially flat monolayer graphene. It can
be seen that in this special case the bending moment ratio
increases by increasing the nonlocal parameter.
5. Conclusion

A study on the bending stiffness of the monolayer graphene
with an initial curvature has been presented. The small scale effect
has been considered using nonlocal elasticity. The deflection of the
graphene has been assumed to be large and an orthotropic
constitutive law has been used for the monolayer graphene. The
nonlinear equilibrium governing equations have been obtained
and solved analytically and an explicit formulation has been
defined for the bending stiffness of graphene. The effects of chiral
angle, initial curvature and large deflection on the bending
stiffness of graphene sheet have been shown. The bending stiff-
ness of the graphene strongly depends on the initial curvature
suggesting a more complex behavior than previously reported in
the literature. Local maxima and minima are obtained in the
bending stiffness versus curvature, suggesting the possibility of a
smart tuning.
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