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Temporal decorrelations in compressible isotropic turbulence
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Temporal decorrelations in compressible isotropic turbulence are studied using the space-time correlation
theory and direct numerical simulation. A swept-wave model is developed for dilatational components, while the
classic random sweeping model is proposed for solenoidal components. The swept-wave model shows that the
temporal decorrelations in dilatational fluctuations are dominated by two physical processes: random sweeping
and wave propagation. These models are supported by the direct numerical simulation of compressible isotropic
turbulence, in the sense that all curves of normalized time correlations for different wave numbers collapse into
a single one using the normalized time separations. The swept-wave model is further extended to account for a
constant mean velocity.
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A milestone in isotropic and homogeneous turbulence is
the random sweeping hypothesis [1,2]. The random sweeping
hypothesis proposes a temporal decorrelation process in
incompressible isotropic turbulence and a simple model for
space-time correlations of velocity fluctuations [1]. These
results are examined theoretically [3–5] and verified experi-
mentally [6] and numerically [7,8]. The space-time correlation
models are used to predict the scalings of wave number
or frequency energy spectra in turbulent flows [9–12]. The
decorrelation processes are also relevant to the non-Gaussian
statistics [13] and intermittency [14]. Their further applications
can be found in turbulence generated noise [15]. The recently
increasing studies on compressible isotropic turbulence raise
such a question on the effects of compressibility on decorrela-
tion processes [16–18]. In this Rapid Communication, we will
study the decorrelation processes in compressible isotropic
turbulence and propose a model for space-time correlations of
dilatational components.

A compressible turbulence is associated with two charac-
teristic velocities: fluid velocity and sound speed, whereas
an incompressible one is only associated with fluid veloc-
ity. Therefore, the decorrelation processes in compressible
turbulence are very different from the incompressible one.
A space-time correlation is the essential quantity to measure
the decorrelation processes in turbulent flows. Three typical
models exist for space-time correlations in turbulence theory.
The first one is, as stated above, the random sweeping model
for incompressible turbulence [1]. We will show that it cannot
characterize the dilatational components in compressible tur-
bulence. The second one is the Taylor frozen flow model [19].
It has been shown that this model is not a good approximation
for dilatational components [20]. The third one is the linear
wave propagation model [20]. This model has been used for
dilatational components when compressible turbulence has a
dominating mean velocity. However, it does not decrease with
increasing temporal separation, which violates the nature of
correlation functions.

In this Rapid Communication, we will develop a space-time
correlation model for compressible isotropic turbulence. This
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is achieved by the Helmholtz decomposition: a velocity field
can be split into the solenoidal and dilatational components.
A swept-wave model will be developed for the dilatational
components, while the solenoidal components are expected to
follow the random sweeping model. The swept-wave model
will be numerically validated and further used to elucidate the
decorrelation process in compressible turbulence.

We consider compressible and isotropic turbulence with
periodic boundary conditions. In this case, the Helmholtz
decomposition for velocity fields can be made as follows [10]:

u = us + ud , (1)

where us and ud are the solenoidal (i.e., incompressible) and
dilatational components, respectively. The harmonic compo-
nent is taken to be zero. We will investigate the temporal
decorrelations of solenoidal and dilatational components. The
temporal decorrelations can be measured by the space-time
correlations of velocity fluctuations,

R(r,τ ) = 〈u�(x,t)u�(x + r,t + τ )〉, (2)

or its equivalent forms in Fourier space,

R̂(k,τ ) = 〈û�(k,t)û�(−k,t + τ )〉. (3)

Here, r and k are the magnitudes of separation vector r and
wave-number vector k. The similar quantities Rs and Rd can
be defined for the solenoidal and dilatational components us

and ud , respectively. u�, us
�, and ud

� denote the components of
u, us , and ud along any axis.

We propose that a solenoidal component follows the
same decorrelation process as the random sweeping process
for incompressible isotropic turbulence: small eddies are
randomly convected or swept by energy-contained eddies,
where the contribution of dilatational components to the
energy-contained eddies is comparably small. The random
sweeping process can be described by a simple idealized
convection equation [1]:(

∂

∂t
+ vj

∂

∂xj

)
us

� = 0, (4)

where v = (v1,v2,v3) is constant in space and time and has
an isotropic and Gaussian distribution over an ensemble of
realizations. V = |v|/√3 is the rms of component velocity. Its
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solution in the Fourier space is given by

ûs
�(k,t) = ûs

�(k,0) exp[−i(k · v)t]. (5)

The normalized time correlation of the Fourier mode is
formulated as

cs(k,τ ) = R̂s(k,τ )

R̂s(k,0)
= exp

(
−1

2
V 2k2τ 2

)
. (6)

A dilatational component in compressible isotropic turbu-
lence propagates at the speed of sound relative to moving
fluids. This implies that the dilatational fluctuations are
swept by the energy-contained eddies. Therefore, the temporal
decorrelations in dilatational components are governed by two
dynamic processes: random sweeping and wave propagation.
The well-known linear wave propagation model [20] only
includes the wave propagation process. In order to account
for the random sweeping effect, we introduce a new term,
v · ∇, into the linear wave propagation equation and propose
the governing equation for dilatational fluctuations as follows:(

D2

Dt2
− ā2∇2

)
ud

� = 0, (7)

where ā is the mean speed of sound and

D

Dt
=

(
∂

∂t
+ v · ∇

)
=

(
∂

∂t
+ vj

∂

∂xj

)
. (8)

Here, v is the same flow field as in Eq. (4). The new term v · ∇
in Eq. (7) represents the random sweeping effect, which is
absent in the linear wave propagation model [20]. The solution
of Eq. (7) in Fourier space is given by

ûd
� (k,t) = ûd+

� (k,0) exp[−i(k · v)t − ikāt]

+ ûd−
� (k,0) exp[−i(k · v)t + ikāt], (9)

where ûd+
� and ûd−

� are the Fourier coefficients. The time
correlation of the Fourier mode is calculated as follows:

R̂d (k,τ ) = 〈
ûd

� (k,t)ûd
� (−k,t + τ )

〉
= 〈

ûd+
� (k,0)ûd+

� (−k,0)
〉〈exp[i(k · v)τ + ikāτ ]〉

+ 〈
ûd−

� (k,0)ûd−
� (−k,0)

〉〈exp[i(k · v)τ − ikāτ ]〉.
(10)

Here, the mode correlation R̂d (k,0) is denoted by
1
2 R̂d (k,0) = 〈

ûd+
� (k,0)ûd+

� (−k,0)
〉 = 〈

ûd−
� (k,0)ûd−

� (−k,0)
〉
.

Therefore, the normalized correlation function can be
expressed as

cd (k,τ ) = R̂d (k,τ )

R̂d (k,0)

= cos(kāτ ) exp

(
−1

2
V 2k2τ 2

)
. (11)

The swept-wave model (11) contains two factors: a wave
function and an exponential function. The first factor rep-
resents the wave propagation process, and the second one
represents the random sweeping effect. If the sweeping
velocity is zero, it becomes the linear wave propagation model.
In fact, the linear wave propagation model in compressible
isotropic turbulence is simplified as cos(kāτ ), which is the

TABLE I. Runs and parameters.

Run Reλ Mt V ā

256F1 84 0.42 0.24 0.98
256F2 78 0.33 0.23 1.2

inverse Fourier transformation of Eq. (19) in [20]. This cosine
function does not decay to zero as time separation increases.

We will use the data from direct numerical simulations
(DNS) of the compressible isotropic turbulence in a cubic
box to validate the swept-wave model. For this purpose, the
Navier-Stokes equations with periodic conditions are solved
using the same method as in Ref. [21], where an optimized
sixth-order compact method and a fourth-order two-step low
dissipation and dispersion Runge-Kutta scheme [22] are used.
The fluid is assumed to be a perfect gas with specific heat
ratio γ = 1.4 and Prandtl number Pr = 0.7. An external force
f(x,t) [23] and a uniform cooling in space are introduced into
the Navier-Stokes equations to maintain statistically stationary
states. The external force is obtained from its Fourier mode
f̂i = (δij − kikj /k2)ĝj for 1 � k � 3, where ĝj is generated
by independent Ornstein-Uhlenbeck processes [24]. Two cases
at 2563 grid resolution are performed with the resulting
parameters listed in Table I, where the sweeping velocities V

are very close but the mean sound speeds ā are different. Reλ is
the Taylor microscale Reynolds number, and Mt = √

3V/ā is
the turbulent Mach number. A total of 441 flow fields are taken
to calculate time correlations. We find that the dilatational
components need more time to reach the statistically stationary
states. The ensemble averaging in Eq. (3) is taken over the
wave-number shell k = |k| and time t [25]. In Figs. 1–4, we
will only present the results from DNS 256F2.

Figure 1 shows the correlation coefficients of solenoidal
modes for wave numbers k = 15,30, . . . ,75. Obviously, the
solenoidal modes decorrelate more quickly at larger wave
numbers than at small wave numbers. These results in Fig. 1 are
all plotted together in Fig. 2, with the horizontal axis defined
by the normalized time scale τV = V kτ . This normalization
causes excellent collapse of the correlation coefficients. The
collapse on the normalized time scale τV supports the random
sweeping hypothesis for the solenoidal components.
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FIG. 1. Normalized time correlations of solenoidal components
vs time separations for k = 15,30,45,60,75.
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FIG. 2. Normalized time correlations of solenoidal components
vs normalized time separations τV = V kτ for k = 15,30,45,60,75.

Figure 3 plots the normalized time correlations for dilata-
tional components. It is observed that the time correlations
of dilatational components decay with oscillations. This is
very different from solenoidal components where the time
correlations decay without any oscillation. These oscillatory
decays confirm that temporal decorrelations in dilatational
components are mainly determined by both random sweeping
and wave propagation.

Figure 4 presents the normalized correlation functions
versus the normalized time scale τV . The normalization leads
to the virtual collapse of all curves. The collapsed curves
verify the swept-wave model. We further plot the exponential
function exp(−0.5τ 2

V ). The exponential function acts as an
envelope of the collapsed curves for dilatational components.
This is in agreement with the swept-wave model.

The swept-wave model can be expressed as cd (k,τa) =
cos(τa) exp[−τ 2

a M2
t /6] in terms of the scale-similarity vari-

able τa = ākτ . We further introduce a rescaled correlation
function cd∗(k,τa) = cd (k,τa) exp[−τ 2

a (M2
t1 − M2

t )/6], where
Mt1 is the turbulent Mach number of DNS 256F1. Therefore,
cd∗(k,τa) = cos(τa) exp[−τ 2

a M2
t1/6] holds for different turbu-

lent Mach numbers. In other words, the rescaled correlation
cd∗(k,τa) is invariant for both DNS 256F1 and 256F2. Figure 5
plots the rescaled correlation functions cd∗(15,τa) from DNS
256F1 and 256F2. It is found that those two curves are well
collapsed. Those results again support the swept-wave model.
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FIG. 3. Normalized time correlations of dilatational components
vs time separations for k = 15,30,45,60,75.
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FIG. 4. Normalized time correlations vs normalized time separa-
tions τV = V kτ for k = 15,30,45,60,75.

We can further calculate the space-time correlations of
dilatational components using the Fourier transformation of
R̂d (k,τ ) from wave-number space to the spatial one:

Rd (r,τ )=
∫ ∞

0
R̂d (k,0) exp

(
−1

2
V 2k2τ 2

)
cos(kāτ )

sin(kr)

kr
dk.

(12)

Equation (12) can be extended to account for a constant mean
velocity. Without loss of generality, the mean velocity is chosen
in the direction of x1 and denoted as (U1,0,0). Applying the
coordinate transformation (y1 = x1 − U1t,y2 = x2,y3 = x3)
to Eq. (7), we obtain

Rd (r,τ ) =
∫ ∞

0
R̂d (k,0)exp

(
−1

2
V 2k2τ 2

)

× cos(kāτ )
sin[k(r − U1τ )]

k(r − U1τ )
dk. (13)

In comparison with the linear wave propagation model,
model (13) contains an additional exponential function that
is responsible for the random sweeping effect. It also confirms
that Taylor’s frozen flow model is not a good approximation to
the space-time correlation of dilatational components. Wilczek
and Narita [26] consider the random sweeping model with
constant mean velocity. The present model is consistent with
their results.
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FIG. 5. Rescaled correlation functions vs normalized time sepa-
rations τa = ākτ for k = 15.
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In summary, we find that solenoidal and dilatational com-
ponents in compressible isotropic turbulence display different
decorrelation processes: a dilatational component is dominated
by both random sweeping and wave propagation, while a
solenoidal component is dominated by the random sweeping
effect. We further develop a swept-wave model for dilatational
fluctuations. This model is distinct from the linear wave prop-
agation model since it includes the random sweeping process.
The DNS data validate the swept-wave model for compressible

isotropic turbulence. Future work is to extend the swept-wave
model from compressible isotropic turbulence to turbulent
shear flows using the contour approximation approach [27,28].
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