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Abstract: Violent free surface flows with strong fluid-solid interactions can produce a tremendous pressure load on structures, resu- 
lting in elastic and even plastic deformations. Modeling hydro-elastic problems with structure deformations and a free surface break- 
up is difficult by using routine numerical methods. This paper presents an improved Smoothed Particle Hydrodynamics (SPH) 
method for modeling hydro-elastic problems. The fluid particles are used to model the free surface flows governed by Navier-Stokes 
equations, and the solid particles are used to model the dynamic movement and deformation of the elastic solid objects. The impro- 
ved SPH method employs a Kernel Gradient Correction (KGC) technique to improve the computational accuracy and a Fluid-Solid 
Interface Treatment (FSIT) algorithm with the interface fluid and solid particles being treated as the virtual particles against their 
counterparts and a soft repulsive force to prevent the penetration and a corrective density approximation scheme to remove the nume- 
rical oscillations. Three typical numerical examples are simulated, including a head-on collision of two rubber rings, the dam break 
with an elastic gate and the water impact onto a forefront elastic plate. The obtained SPH results agree well with experimental obse- 
rvations and numerical results from other sources. 
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Introduction 
Violent free surface flows with strong fluid-stru- 

cture interactions are widely observed in hydrodyna- 
mics and ocean engineering. They can produce a tre- 
mendous hydro-pressure load on the solid structures 
and cause the structure to deform elastically or even 
plastically. They are usually referred to as hydro-ela- 
sticity and hydro-plasticity. For example, under extre- 
me weather conditions, the rolling and breaking up of 
the water surface can produce strong slamming effects 
on hull structures, offshore platforms and nearby bui- 
ldings, and can further lead to local damages and glo- 
bal instability of the structures. The large amplitude 
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liquid sloshing in oil or Liquefied Natural Gas (LNG) 
ships can result in a very high impact pressure on the 
container, which can damage the hull walls and fur- 
ther lead to the leakage of oil, and even capsize ships. 
Therefore, how to effectively model the strong fluid- 
solid interaction in hydro-elasticity is very important 
for applications in hydrodynamics and ocean enginee- 
ring. 

For modeling the fluid and solid dynamics, 
among the grid based numerical methods, the Finite 
Difference Method (FDM), the Finite Volume Method 
(FVM) and the Finite Element Method (FEM) are 
most frequently used. They are currently the dominant 
methods in numerical simulations for solving practical 
problems in engineering and science. Despite the great 
success, the grid based numerical methods suffer from 
difficulties, which limit their applications in many 
types of complicated problems such as the hydro-ela- 
stic problems with violent deformation and even break 
up of the free surfaces, and movement and deforma- 
tion of the solid structures. For Lagrangian grid-based 
methods such as FEM, a grid is attached on, moves 
and deforms with the moving objects. It is therefore 
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easy to obtain the time-history of the movement and 
convenient to treat or track the moving features such 
as the free surfaces and the deformable interfaces. 
However it is very difficult to treat a large deforma- 
tion due to possible mesh entanglement. In contrast, 
for Eulerian grid based methods such as FDM and 
FVM, a computational grid is fixed on the computa- 
tional domain and there is no problem to treat large 
deformation. However, it is very difficult to treat or 
track the moving features and special algorithms are 
usually necessary, which are usually complicated and 
can induce errors. 

For modeling Fluid-Structure Interaction (FSI) 
problems, both Eulerian and Lagrangian methods are 
usually used. Typical approaches include the Coupled 
Eulerian Lagrangian (CEL) and the Arbitrary Lagra- 
nge Eulerian (ALE). The CEL approach employs both 
the Eulerian and Lagrangian methods in separate (or 
with some overlap) regions of the problem domain. 
One of the most common practices is to discretize 
solids in a Lagrangian frame, and fluids (or materials 
behaving like fluids) in a Eulerian frame. The Lagra- 
ngian region and the Eulerian region continuously in- 
teract with each other through a coupling module in 
which the computational information is exchanged 
either by mapping or by special interface treatments 
between these two sets of grids. The ALE is closely 
related to the rezoning techniques for the Lagrangian 
mesh, and aims to move the mesh independently of 
the materials so that the mesh distortion can be mini- 
mized. It is in a very quick development and is widely 
applied to problems with large deformation and strong 
FSIs. Unfortunately, even with the CEL and ALE for- 
mulations a highly distorted mesh can still introduce 
severe errors in numerical simulations. 

During the last decades, effort has been focused 
on the development of the next generation computa- 
tional methods, the meshfree methods, such as the 
Moving Particle Semi-implicit (MPS)[1] method and 
the Smoothed Particle Hydrodynamics (SPH)[2] 
method. In the MPS, the governing equations are tran- 
sformed into those of interactions among moving par- 
ticles, and a semi-implicit algorithm is used to model 
the incompressible flows through solving the Poisson 
equation of pressure, while the other terms are explici- 
tly calculated. The MPS method is widely applied to 
modeling free surface flows. The smoothed particle 
hydrodynamics is another popular meshfree, Lagra- 
ngian, particle method with some attractive features. 
The field variables (such as the density, the velocity, 
and the acceleration) can be obtained through discreti- 
zing the governing equations into a set of particles. 
The connectivity between particles is established as a 
part of the computation and can vary with time. 
Therefore, the SPH allows a straightforward handing 
of a very large deformation. The SPH was successfu- 
lly used in solving multi-phase flows[3], heat condu- 

ction[4], elastic dynamics[5], liquid sloshing[6] and un- 
derwater explosion problems[7]. However, there are 
still some problems that need to be solved in the con- 
ventional SPH method, such as the stress instability, 
the low accuracy and the solid boundary treatment[8]. 
Also there are few papers dealing with the FSI pro- 
blems by using the SPH method. 

In this paper, an SPH model is built for simula- 
ting hydro-elastic problems with strong FSIs. The 
SPH model involves an improved particle approxima- 
tion scheme and an enhanced fluid-solid interface 
treatment algorithm. In this purely meshfree model, 
the fluid particles are used to model the free surface 
flows governed by Navier-Stokes equations, and the 
solid particles are used to model the movement and 
deformation of the moving solid structures. The inte- 
rface fluid and solid particles are treated by the virtual 
particles of their counterparts with consideration of 
the interaction of the neighboring fluid and solid parti- 
cles as the fluid-solid interaction. 
 
 
1. Equations of motion 
 
1.1Governing equations 

The governing motion of the fluid flow and the 
solid dynamics in the isothermal condition can be de- 
scribed by the following continuity and momentum 
equations 
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where ix , iv , if ,   denote the position, the velocity, 

the external force and the density, respectively. The 
stress tensor i j  can be decomposed into the isotropic 

and deviatoric parts as 
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where p  is the isotropic pressure, i j  is the deviatoric 

viscous stress, and i j  is the Kronecker tensor. 

For a Newtonian fluid such as water, the viscous 
shear stress is proportional to the rate of shear strain 

i j  ( =i j i j  ,   is the dynamic viscosity), and i j  
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For the elastic solid objects, the change rate of i j  is 

given by 
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where s  is the shear modulus, i jD  and i j  are the 

components of the rates of the deformation tensor and 
the rotational tensor, respectively. They can be written 
as: 
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To solve the equations of motion, the concept of 

artificial compressibility is used to model both the in- 
compressible fluids and solids as slightly compressi- 
ble ones using an artificial equation of state. A com- 
monly used artificial equation of state is 
 

2
0 0= ( )p c                               (8) 

 
where 0  is the reference density, and it is taken as 

the initial density of the corresponding material. 0c  is 

the sound speed. For a fluid, 0 0= /c    (where   

is the compressibility modulus of the fluid), and for a 

solid, 0 0= /c K   (where K  is the bulk modulus of 

the solid). 
 
1.2 SPH approximations and equations of motion 

An SPH formulation is derived mainly in two 
steps, the kernel approximation and the particle appro- 
ximation. The kernel approximation is to represent a 
function and its derivatives in a continuous form as an 
integral representation, and the approximation is based 
on the evaluation of the smoothed kernel function and 
it derivatives. In the particle approximation, the com- 
putational domain is first discretized by representing 
the domain with a set of the initial distribution of the 
particles representing the initial setting of the problem. 
Then the field variables on a particle are approximated 
by an averaged summation of the particles in the sup- 
port domain[9]. Therefore, a function and its derivative 
can be described in the following form: 
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where ( )af x  is the approximate value of particle 

a , ( )bf x  is the value of ( )f x  associated with parti- 

cle b , ax  and bx  are the corresponding position vec- 

tors, m  is the mass, h  is the smooth length, N  is 
the number of the particles in the support domain, W  
is the smoothed function. Using this method, the con- 
tinuity and momentum equations can be described as 
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where =ab a bv v v . 

By combining Eq.(3) with Eq.(12), the final mo- 
mentum equation can be obtained as 
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2. Numerical aspects 
 
2.1 Kernel gradient correction 

Hydro-elastic problems with strong FSIs are 
usually associated with changes and breakups of the 
free surfaces. When the wave front violently impacts 
the solid structures, the water particles can splash 
away from the bulky fluid, and then fall onto the 
bulky fluid. The changes and breakups of the free sur- 
faces as well as the splashing and the falling of the 
water particles lead to a highly disordered particle dis- 
tribution, which can seriously influence the computa- 
tional accuracy of the SPH approximations. Hence an 
SPH approximation scheme of higher order accuracy 
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and insensitive to the disordered particle distribution 
is necessary. 

It is known that the conventional SPH method 
suffers from a low accuracy as it cannot exactly repro- 
duce the quadratic and linear functions, and even can- 
not exactly reproduce a constant, especially for dis- 
orderly distributed particles and truncated boundaries. 
During the last decade, different approaches were pro- 
posed to improve the particle inconsistency and hence 
the SPH approximation accuracy[2]. Most of them in- 
volve the reconstruction of a new smoothed function 
or a corrective matrix to satisfy the discretized consi- 
stency conditions. However, these approaches are 
usually not satisfactory for modeling hydro-elastic 
problems because the reconstructed smoothed fun- 
ction and the corrective matrix can be partially nega- 
tive, leading to negative physical variables such as ne- 
gative density and energy. In this work, we use a mo- 
dified scheme for approximating the kernel gradient 
(kernel gradient correction, or KGC). In the KGC 
technique, a modified or corrected kernel gradient is 
obtained by multiplying the original kernel gradient 
with a local reversible matrix ( )iL r , obtained from 

Taylor series expansion. In two-dimensional spaces, 
the new kernel gradient of the smoothed function 

C
i i jW  can be obtained as: 
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where =ji j ix x x , =ji j iy y y . It is found that the 

SPH particle approximation scheme with kernel gra- 
dient correction is of second order accuracy. Another 
advantage is that it is convenient to implement KGC 
in the conventional SPH equations of motion as only 
the kernel gradient is corrected, and there is no need to 
significantly change the structure of the SPH compu- 
ter programs and procedures of the SPH simulations. 
 
2.2 Artificial viscosity and artificial stress 

In the SPH simulation, the artificial viscosity 

ab  and the artificial stress n
i jabR f  are often added 

into the pressure term. The corrected momentum 
equation can be written as 
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The artificial viscosity can diffuse the sharp va- 
riations in the flow and dissipate the energy of high 
frequency terms. Here the Monaghan type artificial 
viscosity ( )  is added to the physical pressure term 
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  and   are constants. The factor = 0.1 i jh  is in- 

serted to prevent the numerical divergences when two 
particles are approaching each other. 

For modeling the elastic solid objects, the parti- 
cles are prone to clump together, and cause non-physi- 
cal fractures in the material as in a tensile instability[9]. 
Therefore, an artificial stress[5] is used to remove or 
alleviate the tensile instability and it can be written as 
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To obtain the value of i jR  in particle a , the principal 

stresses must be calculated from the following equa- 
tions 
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The transition variable R  is calculated by the equa- 
tion 
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And finally, the artificial stress can be calculated as 
 

2 2= +
xx yyxx
a aaR c R s R                         (24) 

 

2 2= +
xx yyyy
a aaR s R c R                         (25) 

 

= ( )
xx yyxy
a aaR sc R R                         (26) 

 
2.3 Fluid-solid interface treatment 

The Solid Boundary Treatment (SBT) and the 
implementation of the solid boundary conditions are 
major challenges in the SPH simulation[10]. In order to 
model the solid boundary for moving rigid bodies or 
fixed solid walls, a coupled dynamic SBT (CD-SBT) 
algorithm was developed[11]. In the CD-SBT algorithm, 
two types of virtual particles (the repulsive particles 
and the ghost particles) are used to represent the solid 
obstacles. The repulsive particles are located right on 
the solid wall and can produce a suitable repulsive 
force on the approaching fluid particles near the solid 
boundary. Ghost particles are distributed in the obsta- 
cle area outside the solid boundary. The CD-SBT al- 
gorithm involves a soft repulsive force between repu- 
lsive particles and approaching fluid particles, and a 
higher order scheme to approximate the information 
of the virtual particles. Therefore it is effective to pre- 
vent the fluid particles from penetrating the solid 
walls and to avoid the pressure oscillation then to en- 
sure an accurate pressure load[11]. 

As mentioned earlier, there were few paper dea- 
ling with the fluid-structure interactions by using the 
SPH method, and the fluid-solid interface is usually 
treated by using some kind of interface force. The in- 
terface force is usually dependent on the interface cur- 
vature, so the tangential and normal directions need to 
be calculated. It is usually difficult to do so in the par- 
ticle methods such as the SPH and the MPS. 

In this work, we further extend the CD-SBT al- 
gorithm for the treatment of the fluid-solid interface 
and the algorithm is called the coupled dynamic fluid- 
solid interface treatment (CD-FSIT). First in this CD- 
FSIT algorithm, a soft, distance-dependent, pairwise 
repulsive force is applied along the centerline of the 
neighboring pairs of the fluid and solid particles to 
prevent them from penetrating each other. The repu- 
lsive force is the same as the repulsive force in the 
CD-SBT algorithm[11] and can be written as: 
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where r  is the distance between two particles, and 
d  is the initial distance of two adjacent particles. 

This soft repulsive force can prevent the unphysical 
particle penetration without obvious pressure disturba- 
nces as in the previous interface treatment algorithms 
with highly repulsive forces. 
 

 
 
 
 
 
 
 
 
 
 
 
Fig.1 Illustration of the CD-FSIT algorithm: interface fluid and 

solid particles are treated by virtual particles and their 
counterparts 

 
 

 
 
 
 
 
 
 
 
 
 
Fig.2 Illustration of the head-on collision of two rubber rings 
 

Secondly, in this CD-FSIT algorithm, the inte- 
rface fluid and solid particles are represented by the 
virtual particles and their counterparts as shown in 
Fig.1. Specifically, for a particle A (triangle in Fig.1) 
in the elastic solid region, the approximation of the 
physical variables on particle A is dependent on nei- 
ghboring solid particles (filled circles in the support 
domain) and possible neighboring fluid particles (dot- 
ted circles in the support domain) if particle A is loca- 
ted at the interface area. The neighboring fluid parti- 
cles are used as the virtual particles for particle A. In 
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Fig.3 Simulation snapshots of the head-on collision of two rubber rings 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 Horizontal (a) and vertical (b) displacements of particles 

A and B 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.5 Illustration of dam-break with an elastic gate at the exit 
 
approximating the density of particle A, Eq.(11) can- 
not be directly used as it is valid only for particles 
from the same materials. For approximations with par- 
ticles from different materials, the possible large den- 
sity inhomogeneity may produce a large numerical os- 
cillation in the interface region. Therefore, in the inte- 
rface region, the density change rate (in the continuity 
equation) can be corrected by the density ratio of the 
solid particles to the fluid particles as follows 
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Fig.6 SPH simulation snapshots and experimental observations 
 

It is clear that in Eq.(31), if particle b  is from the 
same material as particle a  (here a  is the same as 
particle A in elastic solid objects), as a b  , Eq.(31) 

approaches Eq.(11). If particle b  is a neighboring 
fluid particle, its contribution to d / da t  ( b ab am  v  

)abW  is underestimated as the mass (or density) of 

particle b  is lower than that of particle a . Adding a 
corrective term of /a b   can help to balance the un- 

derestimation of the density change rate from particle 
b . The same idea applies to the numerical approxima- 
tions of the interface fluid particles, and the density 
change rate of a certain fluid particle should be corre- 
cted by the density ratio of the fluid particles to the 
solid particles. 

In summary, the CD-FSIT algorithm includes a 
soft repulsive force between approaching interface 
fluid and solid particles to prevent unphysical particle 
penetrations in the interface region, and a corrective 

density approximation scheme to remove the possible 
numerical oscillation due to a large density inhomoge- 
neity. It can be demonstrated later on that this CD- 
FSIT algorithm is effective to model hydro-elastic 
problems. 
 
 
3. Numerical examples 
 
3.1 Head-on collision of two rubber rings 

The effectiveness of the improved SPH in mode- 
ling incompressible fluid flows was previously de- 
monstrated in a number of applications[12,13].  Here, 
in order to validate its effectiveness in dealing with 
the movement and the deformation of elastic solid ob- 
jects, the head-on collision of two rubber rings is mo- 
deled firstly. Figure 2 shows the illustration of the 
head-on collision of two rubber rings. The two rubber 
rings are made of the same material with the same 
geometric dimensions and physical properties. The 
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head-on impacting speed is 50 m/s, and the relative 
velocity is 100 m/s. The inner and outer radii of the 
rubber rings are 0.03 m and 0.04 m, respectively, and 
the initial distance between the centers is 0.09 m. The 
density of the rubber is 1 010 Kg/m3, the shear modu- 
lus is 81.6 10  Pa, and the initial sound speed is  
852 m/s. About 18000 particles are used with an ini- 
tial particle spacing of 0.0005 m. The time step is 
taken as 0.5×10–7 s, and the coefficient of the artificial 
stress is taken as = 0.3e , = 4q . 

Figure 3 shows the simulation snapshots of the 
head-on collision of two rubber rings using the impro- 
ved SPH method. The obtained SPH results agree well 
with those obtained by Yang[14] who used a Lagra- 
ngian mesh method. As shown in Fig.3, as two rubber 
rings approach and impact each other, a large defor- 
mation occurs, and the initial circular ring in the inte- 
rface area is quickly flattened (Fig.3(b)). As the stress 
wave propagates in the two rubber rings, the initial 
circular rings are elongated vertically and turn to be 
elliptic (Fig.3(c)). Due to the elastic nature of the solid 
objects, the two rubber rings tend to bounce back, gra- 
dually restore their original shape (Figs.3(d) and 3(e)) 
and are further elongated horizontally (Fig.3(f)). The 
elongation in vertical and horizontal directions lasts 
several periods with a gradually decayed amplitude, 
while the two rubber rings finally restore their original 
circular shape. 

To further investigate the head-on collision pro- 
cess, the positions of particles A and B (see Fig.2) are 
tracked. Figure 4 shows the horizontal and vertical 
displacements of particles A and B. It is clear that 
during the head-on collision process, particles A and 
B stay on the horizontal line (Fig.4(b)). Right after the 
sudden collision, particles A and B stay at the same 
position (with small oscillations) for a long period of 
time to accumulate deformation. Later on, as the two 
rubber rings tend to bounce back and separate from 
each other, particle A moves along the negative dire- 
ction and particle B moves along the positive direction. 
The obtained horizontal displacements of particles A 
and B are therefore anti-symmetric. 
 

3.2 Dam break with an elastic gate 
In this case, a dam break is modeled, in which an 

elastic gate is placed at the exit (see Fig.5). The water 
pressure from the dam break can cause movement and 
deformation of the elastic plate. The improved SPH 
method is used to simulate this typical hydro-elastic 
problem. As shown in Fig.5, the top of the gate is cla- 
mped and the bottom is free. The height and width of 
the water are 0.14m and 0.1 m, respectively. The ela- 
stic gate is 0.079 m high and 0.005 m thick. The den- 
sity and compressibility modulus of water are       
1 000 Kg/m3 and 2×106 N/m2, respectively. The den- 
sity, the bulk and shear moduli of the elastic gate are  

1 100 Kg/m3, 2×107 and 4.27×106 N/m2, respectively. 
In the simulation, the time step is 2.5×10–6 s, the coe- 
fficient of the artificial stress is taken as =e 0.3, =q 4, 

and about 22 000 particles are used. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7 Horizontal (a) and vertical (b) displacements of the free 

end of the elastic gate 
 

 
 
 
 
 
 
 
 
 
Fig.8 Time history of water level 
 

Figure 6 shows the SPH simulation snapshots 
and the corresponding experimental observations. It is 
shown that before the dam break, both the water and 
the elastic gate are in a still state. After the sudden re- 
moval of the clamp, under the static water pressure, 
the elastic gate will deform and gradually open. The 
contained water is discharged from the gate and this 
leads to a large displacement of the elastic gate with a 
large water current out of the exit. Figure 7 shows the 
horizontal and vertical displacements of the free end 
of the elastic gate in the experimental observations. It 
is noted that with the movement of the elastic gate, 
more water flows out of the exit with a larger pressure 
load on the elastic gate, which further increases the 
movement and the deformation of the elastic gate until 
maximal displacements are reached. Later as the water 
height reduces, the pressure load on the elastic gate 
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also reduces, leading to smaller displacements. Figure 
7 shows the peak values both in the horizontal and 
vertical displacements. Figure 8 shows the compari- 
sons of the water level from the SPH simulation and 
the experimental observation. It is obvious that for 
both displacements and water height, the obtained 
SPH results agree well with experimental observa- 
tions[15]. 
 
3.3 Water impact onto a forefront elastic plate 

This example involves the water flow from a 
dam break impacting onto a forefront elastic plate. 
Idelsohn et al.[16] modeled the same problem using the 
Particle Finite Element method (PFEM). Figure 9 is 
an illustration of the problem setup. The height and 
the width of the water are 0.292 m, 0.146 m, respecti- 
vely, and the elastic gate is 0.08 m high and 0.012 m 
thick. The density of the elastic gate is 2500 Kg/m3 
with a bulk modulus of 60.33 10  N/m2 and a shear 
modulus of 0.5×106 N/m2. In the SPH simulation, the 
time step is 5.0×10–6 s, and about 15 000 particles are 
used. 
 

 
 
 
 
 
 
 
 
 
 
 
Fig.9 Illustration of the water impact onto a forefront elastic 

plate 
 

Figure 10 shows the simulation snapshots from 
the PFEM (left) and the SPH (right) at different in- 
stants. Figure 11 shows the time history of the horizo- 
ntal displacement of the free end of the elastic plate. 
From Fig.10 and Fig.11, at about 0.14 s, the dam 
break flow impacts the elastic plate, causing its move- 
ment and deformation. At about 0.26 s, the displace- 
ment of the elastic plate reaches a maximum value. 
Later as the water level gradually reduces, the pre- 
ssure impact on the elastic plate also reduces, leading 
to smaller displacements. At further later stages, as the 
water particles bounce back from the right solid wall, 
and move leftwards in the container, the elastic plate 
has negative displacements (moves leftwards). It is 
clear that for both the flow pattern and the displace- 
ment of the elastic plate, the obtained numerical resu- 
lts from the present SPH method in general agree well 
with those from PFEM[16]. At very late stages (T   

0.6 s), there are some discrepancies, basically due to 
the complex turbulence and cavity effects. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.10 Simulation snapshots from PFEM (left) and SPH (right) 

at different instants 
 

 
 
 
 
 
 
 
 
 
Fig.11 Horizontal displacement of the free end of the elastic 

plate 
 
 

4. Conclusion 
This paper presents an improved SPH method for 

modeling hydro-elastic problems with violent free sur- 
face flows and strong fluid-structure interactions. The 
improved SPH method involves an improved numeri- 
cal approximation scheme of the kernel gradient cor- 
rection and an enhanced fluid-solid interface treatment 
algorithm. This purely meshfree method can well de- 
scribe the deformation and the breakup of the free sur- 
faces, and the movement and the deformation of ela- 
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stic solid objects. The KGC technique improves the 
computational accuracy especially for disorderly dis- 
tributed particles and truncated boundaries. The cou- 
pled dynamic fluid-solid interface treatment algorithm 
can well deal with the FSI without unphysical particle 
penetration and numerical oscillations. The effective- 
ness of the SPH model is demonstrated by three 
numerical examples, including the head-on collision 
of two rubber rings, the dam break with an elastic gate, 
and the water impact onto a forefront elastic plate. 
The obtained results agree well with results from other 
sources. 
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