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A lift formula for a wing in a rectangular control volume is given in a very simple
and physically lucid form, providing a rational foundation for calculation of the lift
of a flapping wing in highly unsteady and separated flows at low Reynolds numbers.
Direct numerical simulations on the stationary and flapping two-dimensional flat
plate and rectangular flat-plate wing are conducted to assess the accuracy of the lift
formula along with the classical Kutta-Joukowski theorem. In particular, the Lamb
vector integral for the vortex force and the acceleration term of fluid for the unsteady
inertial effect are evaluated as the main contributions to the unsteady lift generation of
a flapping wing. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821520]

Il. INTRODUCTION

Low-Reynolds-number flight particularly flapping flight has recently attracted considerable at-
tention in the aeronautical communities due to the need of developing biologically inspired micro
air vehicles (MAV).!:? Therefore, animal flight, which has been traditionally studied by avian zo-
ologists, becomes immediately relevant to this engineering research. Natural flyers include birds,
insects, and bats. In bird flight, the Reynolds numbers based on the mean wing chord range from
10* to 10° while the Reynolds numbers for bat flight are 10°~10°. In contrast, the Reynolds num-
bers for insects are typically less than 5000. To understand unsteady flow fields around flying
birds and bats, particle image velocimetry measurements have been conducted in wind tunnels.>”’
Since the aerodynamic forces of a flying animal cannot be directly measured using a force bal-
ance, the Kutta-Joukowski (K-J) theorem has been used in these studies to infer the lift after the
circulation is estimated by integrating the vorticity field in a selected cross-section region near
wings or in wakes generated in flapping flight. The advantage of using the K-J theorem is its
simplicity, which is directly related to vorticty fields that can be measured by PIV. In particu-
larly, it allows estimation of the lift components contributed by certain distinct vortical structures
such as the leading-edge vortices. On the other hand, to calculate the lift, the K-J theorem has
served as an essential mechanism in vortex-based aerodynamics models for low-Reynolds-number
flapping flight.>#-!2 The classical aerodynamics models have been adapted further by incorporat-
ing some relevant flow phenomena like the leading- and trailing-edge vortices for additional lift
generation.'3-13

However, lift estimation using the K-J theorem based on PIV measurements in the wakes of
slowly flying birds (pigeons and jackdaws) gave a significantly lower value of the lift that cannot
support the bird weight. It is known as “the wake momentum paradox.” Recent PIV measurements
in the wakes of flying bats by Hubel et al.®7 also indicated that the lift estimated by using the
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K-J theorem is too low to support the bat weight at low flight speeds. It has been shown that the
K-J theorem is not satisfactory for lift estimation in unsteady and separated flows at low Reynolds
numbers although it has been popularly used in the field of biolocomotions. Therefore, it is highly
desirable to derive a lift formula to replace the K-J theorem in this field, which motivates the present
work.

The K-J theorem is probably the earliest and simplest expression directly relating the fluid-
mechanic force to the velocity-related quantities. The general force expressions have been compre-
hensively discussed by Saffman'® mainly in the framework of inviscid flows. From the Navier-Stokes
(NS) equations, various forms of the force expressions have been derived depending on how to trans-
form the pressure term to the velocity-related quantities.'’~2* In principle, a general lift formula can
be derived by directly projecting these general force expressions onto the direction normal to the
incoming flow. However, in this way, a compact form of the general lift formula has not been
achieved since these force expressions usually contains many terms as a consequence of eliminating
the pressure term.

The objective of this study is to give a simple but sufficiently accurate lift formula to replace
the K-J theorem for estimation of the lift in highly unsteady and separated flows associated with
flapping flight at low Reynolds numbers. The accuracy of the lift formula is quantitatively evaluated
through direct comparison with the lift calculated from direct numerical simulations (DNS) on
low-Reynolds-number flows over the stationary and flapping two-dimensional (2D) flat plate and
rectangular flat-plate wing. This paper is organized as follows. The lift formula is derived from the
NS equations for a rectangular control volume. Since the K-J theorem is just a reduced case of the lift
formula, the mechanisms neglected in the K-J theorem applied to unsteady flows are identified. The
numerical method, the immersed boundary method based on discrete stream function formulation,
and its validation are briefly described. Then, the flows over the stationary and flapping flat plate are
simulated, and the lift coefficients given by using the lift formula are directly compared with DNS.
Finally, the flows over the stationary and flapping rectangular flat-plate wing with the aspect ratio of
4 are simulated to further examine the accuracy of the lift formula in three-dimensional (3D) cases.
The advantages of the lift formula and the limitations of the K-J theorem applied to these flows are
discussed. The physical meanings of the inertial terms in the lift formula are further elucidated in
Appendix A and the examples of code validation are given in Appendix B.

Il. FORCE EXPRESSIONS
A. Fluid-mechanic force

In classical aerodynamics, the K-J theorem is derived in the 2D potential flow over a circular
cylinder with a given value of the circulation, and then it is extended to an airfoil via a conformal
transformation where the circulation is determined by applying the Kutta condition at the trailing
edge.’*? Further, in the Prandtl lifting-line theory, the K-J theorem is applied to a bounded vortex line
along the wing span to model the aerodynamic flow over a finite wing. Although the K-J theorem is
originally derived in the framework of the inviscid flow theory, the circulation is physically originated
from the viscous shearing motion in a boundary layer around an airfoil. Actually, the Kutta condition
represents the outcome of the generation of the circulation through viscous shearing. The application
of the K-J theorem is well founded for high-Reynolds-number attached flows over airfoils since the
flow outside a thin boundary layer can be considered to be inviscid. The circulation can be calculated
by integrating the vorticity field in a boundary layer in a suitably large integration domain covering
the upper and lower surfaces of an airfoil. However, in flight of small birds, bats, and insects, not
only the Reynolds numbers are usually much smaller but also the flow around a flapping thin wing
at high angle of attack (AoA) is highly unsteady and separated, generating energetic and organized
vortices such as the leading- and trailing-edge vortices. In fact, the lift generated by these vortices
in unsteady separated flows is necessary for low-Reynolds number animal flight. In this case, the
legitimacy of applying the K-J theorem has to be examined in the framework of the viscous flow
theory.
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FIG. 1. Schematic of a control surface around a body.

In an incompressible viscous flow, as shown in Figure 1, the force acting on a solid body is
given by

Fz—?g (—pn+r)dS=—,o/ adV—i—% (=pr+1)dS, (1)
B Vi =

where p is the pressure, 7 is the surface shear stress vector, @ = Du/Dt is the acceleration, p is the
fluid density, 0B denotes a solid boundary of the body domain B, V; denotes the control volume of
fluid, ¥ denotes an outer control surface in which the body is enclosed, and »n is the unit normal
vector pointing to the outside of a control surface. It is difficult to use Eq. (1) to infer the force in
measurements. It is not easy to measure surface pressure and skin friction fields in low-speed flows
even though pressure-sensitive paint measurement and global skin friction diagnostics are promising
to obtain the integrated forces.?®2” Therefore, a simple alternative force formula is desirable.

Substitutionof a = Du/Dt = du/dt + u - Vu = du/dt + ® x u + V(g*/2)into Eq. (1) leads
to

a
F:p/uxde—,o —udV—?g(p+,oq2/2)ndS+¢
vy v, 0t b b

7dS — p% (¢>/2) nds,
B

)
where u is the velocity, @ is the vorticity, and ¢ = |u|. The first term in the right-hand side (RHS)
of Eq. (2) is a volume integral of the Lamb vector u x @ that represents the vortex force.'® For
convenience, it is simply called the Lamb vector integral. The second term is a volume integral of
the local acceleration of fluid induced by a moving solid body for the unsteady inertial effect. The
third and fourth terms are the surface integrals of the total pressure P = p + p ¢*/2 and the surface
shear stress on the control surface ¥. The fifth term is the boundary term. In an inviscid irrotational
unsteady flow where the first, third, and fourth terms in Eq. (2) vanish, the remaining second and
fifth terms together are interpreted as the added mass force in ideal fluid mechanics. The fifth term
can be written as pVp (gVq) by using Gauss’ theorem, where V3 is the volume of the body and
(e)p is a domain-average operator defined as (e)p =V ! /, p ®dV. It is indicated in Appendix A
that for a thin wing the fifth term is small which is interpreted as the part of the added mass force
associated with the fluid virtually occupying the body domain B (a virtual fluid body). The physical
meanings of the second and fifth terms are further discussed in Appendix A.

Since the static pressure p in space is very difficult to measure, the third term related to p
in Eq. (2) should be transformed to the terms related to the velocity that is measurable. Different
approaches have been used to deal with the troublesome pressure term, which leads to various
force expressions.!’>* However, for a general control surface, eliminating the pressure term usually
results in more complicated expressions in which the physical meanings and relative contributions
of some terms cannot be easily elucidated. By introducing an auxiliary velocity potential satisfying
suitable boundary conditions and projecting the NS equations on the gradient of the potential, Quar-
tapelle and Napolitano,’® Howe,'® and Chang!” were able to extract the explicit pressure force from
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FIG. 2. Integral domains enclosing an airfoil or a wing.

the pressure term and decompose the force into several terms whose physical meanings become
clear. Although these types of the expressions are valuable from a theoretical viewpoint, they are not
easy to use for processing experimental data since the potential cannot be measured. The expressions
based on “derivative-moment transformations” of Wu et al.?? provide another way to investigate the
role of local flow structures on the force and moment.

B. Lift formula

In this work, we circumvent this pressure problem by selecting a rectangular control volume
to obtain a very simple lift formula. Consider a coordinate system (x, y, z) defined by the unit
orthogonal vectors (i, j, k) where i and k are the unit vectors parallel and normal to the freestream,
respectively, and j = k x i is the unit vector along the spanwise direction. The lift on a body
is given by L = F, = k - F. More specifically, as shown in Figure 2, a rectangular domain D is
selected as a control volume to simplify the lift expression. The unit normal vectors on the left
and right faces (sections) of the boundary dD are perpendicular to k, i.e., k - n = 0. Note that for
3D flows the unit vectors on the side faces of the control volume are also perpendicular to k, i.e.,
k - n = 0. Furthermore, if the top and bottom sections of dD are located so far away from the body
that the steady-state potential flow in forward flight is reached (i.e., P = p 4+ p¢*/2 — const.
according to the Bernoulli equation), the integrals on these sections are cancelled out. In this case,
the contribution of the troublesome third term (the total pressure term) of RHS of Eq. (2) to the
lift is zero. However, on a limited domain boundary 0D where the inviscid outer flow could be
disturbed by induction of unsteady vortical structures, the contribution of the total pressure term to
the lift does not completely vanish. The error associated with this perturbation will be discussed
later. Furthermore, for a sufficiently large boundary 0D, the viscous stress term k - T on the most
portion of D is zero except in a wake, and thus the contribution of the fourth term in RHS of Eq.
(2) to the lift is very small. The fifth term in RHS of Eq. (2), pVp (¢V¢q) g, can be readily evaluated
when the kinematics of a body is given.

After the total pressure and viscous stress terms on the outer boundary X are neglected, the
contributions of the other terms in RHS of Eq. (2) are retained, and as a result the lift is given by a
very simple formula,

L = pVpk - ((u x @)p — (du/dt)p) + pVsk - (qVq)g, 3)

where (o)) is the domain-averaged operator (e);, = D! /, pedV and D is a rectangular domain.
Compared to the K-J theorem, Eq. (3) is a more general lift formula which contains the two leading-
order terms: the Lamb vector integral for the vortex force and the local vertical acceleration for the
unsteady inertial effect. For a thin wing, the term pVp (¢V¢q)p is negligibly small compared to the
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first term in Eq. (3). The form of the Lamb vector integral and the local vertical acceleration allows
domain decomposition in which they can be expressed as a sum of the corresponding terms in sub-
domains. This is advantageous since the contributions of individual flow structures in sub-domains
to the lift can be directly distinguished and evaluated.

In two dimensions, the sectional lift is given by

L' = pD ((u,\.a)y>D — (Qu-/0t)p) + PV (q0q/0z) g . 4

where u = (u,, u.) is the fluid velocity vector, the x- and z-coordinates are in the freestream and
vertical directions, respectively, D denotes the domain area in two dimensions, and (e) becomes the
area-averaged operator in 2D. Rigorously speaking, the lift formula, Eq. (3) or (4), is valid only for
a rectangular control volume, which seems a considerably constrained case in theory. Nevertheless,
this does not limit the usefulness of Eq. (3) or (4) because a simple rectangular domain is often used
anyway for data processing in experiments and computations. Equation (4) is particularly suitable
for lift estimation in experiments since the two velocity components (i, u#,) on a streamwise Cross-
section and the spanwise vorticity w, are routinely measured using planar PIV in wind and water
tunnels.

To compare Eq. (4) with the K-J theorem, the local effective velocity (the vorticity-weighted
velocity) is defined as u.r = u,w,/{wy)p, where (w,)p is the area-averaged vorticity. Further, by
introducing the area-averaged effective velocity U,y = (uep)p, Eq. (4) can be written in a form
analogous to the K-J theorem

L' = pUessT — pD (du-/31) , + pVis (q34/02) 5. 5)

where I' = (w,)pD is the circulation. Unlike the classical K-J theorem L'x_; = pUsI', the domain-
averaged effective velocity Ugrather than Uy, is used in Eq. (5), which depends on not only the veloc-
ity and vorticity distributions around a body but also time in general. In addition, —p D {(du./0t)p +
pVp (qdq/0z) explicitly represents the unsteady inertial effect that is omitted by the K-J theorem.
For unsteady flows, application of the K-J theorem implies the quasi-steady-state assumption in
which L'k_;() is synchronized with ['(¢). This assumption is generally problematic, which could
lead to errors in the time-averaged magnitude and phase of the unsteady lift. To illustrate this point,
by introducing a velocity difference v(¢) = U, () — U that represents a certain perturbation ve-
locity, Eq. (5) gives L' (1) — Li_,(t) = pv(t)['(t) — pD (du./dt)p, + pVp (gdq/dz)p. Clearly, it
is indicated that L'(¢) and L'x_;(¢) could considerably differ in the phase, amplitude, and waveform of
the unsteady lift particularly when the velocity fluctuation v(¢) and the acceleration term are large.
The relation for the time-averaged lift is L’ — L'x_; = pvT — pD (du/dt), + pVi (qdq/9z)
where the bar — denotes the time-average.

In the above analysis, the contribution of the total pressure term in Eq. (2) to the lift vanishes when
the top and bottom boundaries of a sufficiently large rectangular domain reach to the steady-state
potential flow. However, the potential flow is disturbed by induction of unsteady vortical structures
generated by flow separation or a moving body. On the top and bottom boundaries of a relatively
small domain, the total pressure is a function of time, i.e., p + p ¢>/2 = const. + F(f) — pd¢/dt,
where ¢ is the velocity potential, and d¢/dt and F(¢) depend on the boundary conditions. In this case,
the total pressure term in Eq. (2) equals to the surface integral of the difference of the perturbation
term F(f) — pd¢ /0t between the top and bottom boundaries. Based on an analysis of the potential
flow perturbed by point vortices, the surface integral of this difference of the perturbation term decays
in a fashion of O(c/Y), where ¢ is the chord and Y is the vertical distance of the upper boundary
from the body. For a finite domain, this error should be estimated by numerical computations for
typical flows. The contribution of the total pressure term is evaluated quantitatively through DNS
for a stationary and flapping flat plate in Sec. IV. In computations, the top and bottom boundaries
of a rectangular domain are located at z/c = £6, where c is the chord of the plate. It is found that
the total pressure term fluctuates at the same frequency as the unsteady lift with a certain phase
shift, indicating that the error may be indeed caused by the perturbation induced by the unsteady
vortical structures. The relative error in the time-averaged lift due to neglecting the total pressure
term is less than 2%. In general, numerical simulations indicate that the contributions of the top and
bottom boundaries to the lift can be neglected when d/ (c sin«) ~ O(10) for the stationary plate and

B’
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d/ (2A) ~ O (10) for the flapping plate at the flapping Strouhal number of 0.3 are selected, where
d is the distance between the top/bottom boundary and the body, ¢ is the chord, « is the angle of
attack, and A is the flapping amplitude. Therefore, it is legitimate to ignore the contribution of the
total pressure term in Eq. (2) to the lift generation when a rectangular domain is sufficiently large.

C. The Kutta-Joukowski theorem

The classical K-J theorem is a reduced form of Eq. (5). In a steady 2D flow where (du./dt)p =
0 and Vg (g dq/dz)p = 0, a vorticity patch bounded in a finite region that is much smaller than the
rectangular control domain D is considered. The x-component velocity can be decomposed into u,
= U + Uy, where 1/, is the velocity induced by the vorticity patch along the x-coordinate that is

given by
)w) (‘5 n)
)= o ] G e ©

Therefore, since Uy = uxw,/{wy)p = Usowy/(wy)p + u Xa)y/ (wy)p, the domain-averaged effective
velocity is

o _ (z—mawy&, nayx,2)
Uesr = (tter)p = Uso 2n ol f f / f S — dédndxdz, (7)

where the integration domain in both (&, 1) and (x, z) is D. When the variables (&, n) and (x, z) are
interchanged, the factor z — 1 in Eq. (7) changes its sign. It is known that the integral in Eq. (7) must
vanish such that Uy = Us. In this case, the K-J theorem L'x_;(f) = pUs I is exactly recovered
from Eq. (5). The above deduction is similar to that given by von Karman and Burgers® for a bundle
of vortex lines. The derivation of the K-J theorem from a general theory of viscous flows has been
also given by Wu,**3! Wu et al.,>' and Schmitz and Chattot.>?

D. Drag

A sufficiently large rectangular domain D is considered as shown in Figure 2. Similarly, by
neglecting the small terms, the force in the freestream direction (drag plus thrust) on a body is given
by

d
Fx=i~F=,oi-/ uxde—pi-/ —udV—i-?g (p + pg*/2) nds. ®)
Vy Vy ot z

where i is the unit vector parallel to the freestream. The first term in RHS of Eq. (8) is the contribution
of the vortex force that physically contains the induced drag and the thrust generated by a flapping
wing. The second term is the contribution of the local acceleration in the freestream direction in
unsteady flows. For a thin wing, the fifth term in Eq. (2) is neglected. However, unlike the case of
lift, for a sufficiently large rectangular domain, the total pressure term (the third term) in RHS of
Eq. (8) cannot be neglected, and it can be expressed by an integral over a transverse plane S

Dp=/s [0 (g% —4a7) /24 (pso — p1) ] dS. 9)

Physically, this term represents the parasite drag. Since a pressure field is very difficult to measure,
it is preferred to transform the total pressure term in RHS of Eq. (9) to an expression based on a
velocity filed. A useful relation obtained from the NS equations is>

f (p+pq2/2)ndS=L?§ X X nxv,ds, (10)
x N_l x

where v, = du/dt — u x @ — v V>u and the dimensionality is defined as N = 3 for 3D or N = 2
for 2D. Therefore, the drag is expressed in terms of the measurable quantities u, du/dt, and w. For a
sufficiently large control surface where flow can be considered to be inviscid, the viscous diffusion
term can be neglected.
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lll. NUMERICAL METHOD AND SETTING

The 2D and 3D flows around a flat plate are simulated using an immersed boundary method
based on discrete stream function formulation developed by Wang and Zhang.?* The incompressible
Navier-Stokes equations with additional body forces and the continuity equation are used as the
governing equations

8u+ v v+1v2 + f (11)
— 4+ u-Vu=— u s
at P Re.

V-u=0, 12)

where u is the non-dimensional velocity, p is the non-dimensional pressure, and f is the non-
dimensional body forces representing the effects of the boundaries. The Reynolds number is defined
as Re, = Uc/v, where U is the upstream flow velocity, ¢ the chord length, and v the kinematic
viscosity. Equations (11)and (12) are solved on an unstructured Cartesian (Eulerian) mesh in the
framework of discrete stream function formulation. The plate is marked using a set of Lagrangian
points. The Eulerian mesh and Lagrangian points are coupled using the interpolation based on
discrete § function. The discrete form of body force f is determined implicitly by solving a linear
system to implement the non-slip boundary conditions on the surface of the plate.

The simulations are conducted in a domain of [—12, 20] x [—16, 16] in streamwise (x) and
vertical (z) directions for 2D flows, and [—12, 20] x [—16, 16] x [—16, 16] in streamwise (x),
spanwise (y), and vertical (z) directions for 3D flows. The center of the plate is positioned at the
origin. The unstructured mesh with hanging-node is used in the simulations to refine the mesh around
the plate. The minimum grid size used for the 2D and 3D flows are 0.01c and 0.02c, respectively.
The time step is selected to keep the maximum CFL number at 0.5 in the simulations. The maximum
CFL number is defined as

CF L. = max (uﬁ dt (dil + i)) , 1=1,2,3,..., number of face, (13)
where 1y is the normal component of the velocity at face i, and d; and d; the distances between the
centroid of face i and the centroids of its two neighboring cells, respectively. The uniform flow (U, 0,
0) is specified at the inlet, the free convection boundary condition is used at the outlet. The non-slip
boundary condition is set at the surface of the plate. The symmetric boundary conditions are used at
the other boundaries. The flow is uniform (U, 0, 0) at t = 0 before the plate instantaneously appears
atr=0".

To validate the present numerical method by comparing with the published results by Taira and
Colonius,** flows around an impulsively starting rectangular flat-plate wing with the aspect ratio AR
= 2 are simulated at different angles of attack (AoA, «) for the Reynolds number based on the chord
Re, = 100. The lift and drag coefficients of the flat-plate wing calculated as a function of AoA are
in good agreement with the numerical and experimental results obtained by Taira and Colonius.**
More details about the numerical method and its validations are given in our previous work.*> In
Appendix B, three additional examples of flows over stationary and moving flat plate are given to
compare our computational results with the existing experimental and numerical data.

IV. FLAT PLATE
A. Stationary plate

The sectional lift of a stationary flat plate (a flat-plate airfoil) is calculated by using the lift
formula L' = pU.pT" — pD (du-/dt)p + pVp {qdq/9dz) in comparison with the K-J theorem L'x_;
= pUxI". The domain D for the circulation integral and the lift formula is a sufficiently large area
on the cross-section plane (x, z). Figure 2 shows typical rectangular domains used here. The left
boundary is located at x/c = —1 upstream the leading edge, the right boundary at the trailing edge
and two locations in the wake, and the top and bottom boundaries at z/c = +6, where c is the chord. It
should be pointed that there is no theory to determine the domain used in calculating the circulation



093605-8  Wang et al. Phys. Fluids 25, 093605 (2013)

2 T T T T T
1.5F ,')l\ _____ T
S 1F -
0.5F1/  —-- (W K-J AT
........... wee Lift formula
——————— Thin wing |
L L 1 L
g 30 80
AoA (deg)

FIG. 3. The time-averaged lift coefficients of the flat plate as a function of AoA for Re, = 300, where “DNS” denotes the
result calculated directly from the surface pressure and skin friction fields, “K-J” denotes the K-J theorem, “Lift formula”
denotes the lift formula [Eq. (3) or (4)], and “Thin wing” denotes the thin-wing theory.

around the wing when the flow is fully separated and unsteady. The application of the K-J theorem
depends on the selection of the domain, which reflects a problem in applying the K-J theorem to
such flows. This problem is not addressed here. The domain used in calculating the circulation for
the K-J theorem for comparison is the same as that for the lift formula (e.g., the domain D1).

For a stationary flat plate in the incoming freestream flow that starts suddenly, as shown in
Figure 3, the time-averaged lift coefficients calculated by using the K-J theorem and the lift formula
as a function of AoA are directly compared with those obtained from Eq. (1) for Re, = 300. The
time-averaged lift coefficient is defined as C; = L'/ (,o Ulc/ 2), where the bar — denotes the time-
average. In the relevant figures in this paper, “DNS” denotes the result calculated directly from
Eq. (1) based on the surface pressure and stress distributions, “K-J”” denotes the K-J theorem, “Lift
formula” denotes the lift formula [Eq. (3) or (4)], and “Thin wing” denotes the thin-wing theory.
The K-J theorem predicts the time-averaged lift coefficients a well for @ < 30°, but it over-predicts
C;in 30° < o < 50° and considerably under-predicts C; for « > 50°. The prediction by the classical
thin-wing theory C; = 2« is also plotted in Figure 3 as a reference. In contrast, the lift formula gives
C; that is in excellent agreement with DNS. Table I lists the time-averaged lift and drag coefficients
of the flat plate at different AoAs along with the vortex shedding Strouhal numbers. The error in C;

TABLE L. Vortex shedding Strouhal number, time-averaged lift, and drag coefficients of the stationary 2D flat plate.

o St Cdﬂ C[ CI,LFb EI‘I‘OTOfC[_LF C_‘[,K,j Error OfC[,K,_]
0 e 0.2 0.0 0.0 .. 0.0 .
10 e 0.25 0.68 0.67 1% 0.69 1%
20 0.16 0.45 0.92 0.92 0 0.92 0
30 0.17 0.83 1.22 1.22 0 1.31 7%
40 0.17 1.30 1.36 1.39 2% 1.58 16%
50 0.15 1.88 1.39 1.41 1% 1.47 6%
60 0.15 2.62 1.40 1.41 1% 1.19 15%
70 0.14 3.02 1.03 1.02 1% 0.85 17%
80 0.14 3.23 0.53 0.52 2% 0.26 50%
90 0.14 3.34 0.0 0.0 . 0.0

3C, and C; denote the time-averaged lift and drag coefficients directly obtained from DNS.
®C) 1r and C; g _; denote the time-averaged lift coefficients given by using the simplified lift formula and the K-J theorem,
respectively.
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FIG. 4. Non-dimensional snap-shot fields around the stationary flat plate for Re, = 300 and « = 30°, (a) vorticity,
(b) vertically projected Lamb vector, and (c) vertically projected acceleration.

given by the K-J theorem is less than 7% for o < 30°, but it increases to about 20% in 30° < « <
50°. The error in C; given by the lift formula is less than 2% for 10° < « < 80°.

Figure 4 shows the snap-shot fields of the non-dimensional vorticity, vertically projected Lamb
vector, and vertically projected acceleration around a flat plate at the non-dimensional time ¥ =
147.6 for Re. = 300 and o = 30°. Throughout this paper, the non-dimensional vorticity, vertically
projected Lamb vector, vertically projected acceleration and time are defined as ®* = @(c¢/Ux), k -
(uxw)* =k-(ux w)(c/Ugo), k-Qu/ot) =k- 8u/8t(c/U020), and * = t(Ux/c), respectively.
According to Eq. (3), the vertically projected Lamb vector and vertically projected acceleration are
the leading terms contributing to the lift. Vortex shedding occurs when « > 20° even though the flat
plate is stationary, and therefore C; is time dependent. The vortex-shedding Strouhal number based
on the front-projected height, defined as St = fic sina/Uy, is St = 0.14-0.17 as shown in Table I,
which is consistent with the experimental data for flat-plates.*® Figure 5(a) shows the time histories
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FIG. 5. Time histories of the lift coefficient of the stationary flat plate for Re, = 300 and o = 30°, (a) comparison between
DNS, the K-J theorem, and the lift formula, and (b) contributions from the Lamb vector integral and acceleration term, and

(c) contributions from the shear stress, and total pressure term and the body boundary term.
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of the lift coefficient of the stationary plate for Re, = 300 and « = 30°. The lift formula gives C;
that is in good agreement with DNS in both the amplitude and phase. In this case, as shown in
Figure 5(b), the Lamb vector integral is the major contribution to the lift, while the acceleration term
has a relatively small effect. As indicated in Figure 4(c), the vertically projected acceleration around
the flat plate is indeed small. Figure 5(c) shows the contributions from the total pressure, shear
stress, and body boundary terms [the third, fourth, and fifth terms in RHS of Eq. (2), respectively]
to the lift coefficient. The time-averaged contributions of the total pressure, shear stress, and body
boundary terms to the lift coefficient are 0.03, 0.003, and 0, respectively. The relative errors in the
time-averaged lift due to neglecting the total pressure and shear stress terms are about 2% and 0.2%,
respectively. Clearly, their contributions to the lift generation can be neglected, which is consistent
with the analysis in Sec. II. Note that the contribution of the body boundary term (the part of the
added mass force associated with the fluid virtually occupying the body domain) is zero since the
flat plate has zero volume theoretically.

Even for the stationary plate, as indicated in Figure 5(a), there is a large phase difference between
L'(¢) given by the lift formula and L'x_;(¢) by the K-J theorem. The amplitude given by the K-J
theorem is lower than that given by the lift formula particularly when the flow becomes unsteady for
large AoAs. The K-J theorem L'x_;(f) = pUI'(¢) indicates that the lift on the flat plate has the same
phase with the circulation around the wing since U, is a constant for a stationary flat plate. However,
the lift formula L’ = pU,sT" — pD (du./dt)p + pVp {(qdq/dz) shows that the lift is out of phase
with the circulation due to not only the time-dependent effective velocity U,g(f) but also the unsteady
acceleration term (du./d1)p. In this case, L'(¢) is out of phase with I'(f) by about 180° and the phase of
L'(t) is dominated by the phase of U,(f). The K-J theorem as a quasi-steady model does not reflect the
unsteady coupling between U,(¢) and I' (7). The time-averaged lift difference given by the generalized
lift formula and the K-J theorem is L’ — L'x_; = pCyr [0| [T'| — pD (0u./0t), + pVp (q0q/9z),.
where a correlation coefficient C,r = v_F/ ] }ﬂ is introduced. This difference is proportional to
vV =Ug [Tﬁ/ Uy — 1]. It is found that m/ U increasingly deviates from one as AoA increases
after « > 30°, which corresponds to the difference L’ — L'x_; shown in Figure 3.

In the derivation of the lift formula Eq. (3), the rectangular domain is not specified. Theoretically
speaking, lift calculation is independent of a rectangular domain selected, but actual result is affected
by the selection of a domain depending on the numerical or measurement accuracy. To illustrate
this issue, three rectangular domains shown in Figure 2 are used for Eq. (3). Figure 6 shows the
time histories of the lift coefficient of the stationary flat plate calculated based on the three domains
for Re, = 300 and « = 30°. The value of C; calculated based on the domain D; where the right
boundary is at the trailing edge is very close to DNS. In contrast, calculations based on the domains
D, and D3 that contain the portion of the wake structures under-predict C; somewhat particularly

et
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FIG. 6. Time histories of the lift coefficient of the stationary plate calculated based on three domains for Re, = 300 and
a =30°.
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FIG. 7. Time histories of the drag coefficient of the stationary flat plate for Re, = 300 and « = 30° for comparison between
DNS and the drag formula, where the contributions from the Lamb vector integral, acceleration term, and parasite drag are
also included.

near the peaks. The more pronounced deviation is found for the larger domain D3. This larger error
found for a larger domain is not directly related to the size of the domain and the accuracy of the
force formula itself. This is caused by the numerical errors in a coarser grid in the wake region in
the larger domain, which leads to underestimation of the vorticity and lift as a result. This error
decreases when the grid in the wake region is refined, as shown in Figure 6. The main results in this
paper are obtained based on the domain D;.

Figure 7 shows the time histories of the drag coefficient of the stationary flat plate for Re, =
300 and o = 30° for comparison between DNS and the drag formula, where the contributions from
the Lamb vector integral, acceleration term and parasite drag are also included. The drag coefficient
calculated by using Eq. (8) is compared well with the DNS result. The time-averaged drag coefficient
given by Eq. (8) is 0.86 compared to 0.83 from DNS, and the relative error is about 4%. The parasite
drag associated with the total pressure term is dominant while the contribution from the acceleration
is negligible. The Lamb vector integral contributes a thrust in this case.

B. Flapping plate

The applicability of the K-J theorem and the lift formula to a flapping plate is examined. The
kinematics of a flapping flat plate is prescribed as a superposition of the pitching and heaving motions
by

o =ag+ a,cosr ft), z.= AsinQuft), (14)

where the time-averaged AoA is oo = 10°, the pitching amplitude is «,,, = 30°, the heaving amplitude
is A = /4, z. is the vertical position of the plate center, and f'is the flapping frequency. The flapping
Strouhal number is Sty = 2Af/U, = 0.3 that is close the optimal Strouhal number (0.2 < Sty < 0.4)
of various flying and swimming animals for high power efficiency.*® The corresponding reduced
frequency is fc/U, = 0.6 The total sectional force on the plate calculated by using the K-J theorem
is /' = pUT’, where U = ,/UZ + U? is the effective local upstream velocity, U is the freestream
velocity, U, = z, = 2w f Acos(2n ft) is the heaving velocity of the plate center. The direction of
the effective upstream velocity relative to the rotating center at the plate middle span is given by
0 = — arctan (—U./U). The sectional lift is the vertical component of the total force L' = F'cos (6).

Figure 8 shows the snap-shot fields of the non-dimensional vorticity, vertically projected Lamb
vector, and vertically projected acceleration around the flapping flat plate at t* = 18.8 when C;
reaches a peak for Re. = 300. Compared with Figure 4 for the stationary plate, the significant
vertically projected acceleration of fluid is found around the flapping plate, which contributes to the
unsteady lift. Figure 9(a) shows the histories of the lift coefficient of the flapping flat plate. The lift
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FIG. 8. Non-dimensional snap-shot fields around the flapping flat plate at #* = 18.8 when C; reaches a peak for Re. = 300,
(a) vorticity, (b) vertically projected Lamb vector, and (c) vertically projected acceleration.

formula gives the result that is consistent with DNS. The contributions from the Lamb vector integral
and acceleration term are shown in Figure 9(b). The Lamb vector integral mainly contributes to the
mean lift with a considerable phase shift compared to DNS, while the acceleration term significantly
modifies the waveform and phase. The sum of the Lamb vector integral and the acceleration term
recovers the true waveform. As shown in Figure 9(d), the contributions from the total pressure,
shear stress, and body boundary terms in (2) to the lift generation are small. The time-averaged
lift coefficient components of the total pressure, shear stress, and body boundary terms are —0.03,
0.001, and 0, respectively. The relative errors in the time-averaged lift due to neglecting the total
pressure and shear stress terms are about 1.5% and 0.1%, respectively.

Theodorsen®’ gave an analytical expression of the lift of a harmonically flapping flat plate based
on potential flow theory, which has the non-circulatory and circulatory terms. The non-circulatory
term is essentially the added mass force generated purely by the unsteady motion of the plate.
The circulatory term is the quasi-steady lift modulated by Theodorsen’s function depending on
the reduced frequency to take the effect of the infinite straight wake into account. In Figure 9(a),
Theodorsen’s formula is compared with DNS, the K-J theorem, the lift formula, which considerably
under-predicts both the amplitude and the time-averaged value of the lift. Theodorsen’s formula
gives the time-averaged lift coefficient of 0.56 that is much smaller than 2.07 given by DNS and
the maximum lift that is about one half of the value given by DNS. Physically speaking, the non-
circulatory and circulatory terms in Theodorsen’s formula correspond to the acceleration term and
the Lamb vector integral in the lift formula, respectively. Figure 9(c) shows comparisons between
these terms in this case. It is found that the Theodorsen’s non-circulatory and circulatory terms are in
phase with the acceleration term and the Lamb vector integral, respectively. Therefore, Theodorsen’s
formula correctly predicts the phase of the lift unlike the K-J theorem that is a quasi-steady model.
However, the amplitude of the non-circulatory term as the added mass force is considerably smaller
than the corresponding acceleration term in Eq. (3). The non-circulatory term does not contribute
to the time-averaged lift because of the symmetric flapping kinematics in downstroke and upstroke.
The time-averaged value of the circulatory term in Theodorsen’s formula is also much smaller than
that of the Lamb vector integral. The sinusoidal waveform of the lift calculated by Theodorsen’s
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FIG. 9. Histories of the lift coefficient of the flapping flat plate for Re, = 300, (a) comparison between DNS, the K-J theorem,
Theodorsen’s formula, and the lift formula, and (b) contributions from the Lamb vector integral and acceleration term,
(c) comparison with the non-circulatory and circulatory terms in Theodorsen’s formula, and (d) contributions from the shear
stress, and total pressure term and the body boundary term.

formula is different from the more complex waveform given by DNS. These differences are not
unexpected since Theodorsen’s model as a linear potential flow theory is not able to describe some
major unsteady separated flow features particularly vortical structures generated from the leading and
trailing edges of the plate. Therefore, Theodorsen’s model does not take into account the nonlinear
effects associated with these structures. For a pitching and plunging airfoil with a round leading edge
where separation is moderate at higher Reynolds numbers (~10*) when the pitching and plunging
amplitudes are small, Theodorsen’s model is able to give a reasonable prediction.?®:3

The time-averaged lift coefficients calculated based on different methods are showed in
Table II along with the contributions of the Lamb vector integral and acceleration term to the
time-averaged lift. It is shown that the time-averaged lift calculated by using the K-J theorem just
captures the contribution of Lamb vector integral. In this case, the flapping kinematics of the plate is

TABLE II. Time-averaged lift coefficient of the flapping flat plate.

- . N _ N
c CiLF Crgx—J Ci.Lamb® Clace

2.07 2.07 1.86 1.86 0.21

3C4 and C; denote the time-averaged lift and drag coefficients directly obtained from DNS.

®C).1r and C; g _; denote the time-averaged lift coefficients given by using the simplified lift formula and the K-J theorem,
respectively.

¢Cr.r.amp and C, 1.accrepresent the contributions of the Lamb vector integral and acceleration term in the general lift formula,
respectively.
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FIG. 10. Time histories of the drag coefficient of the flapping flat plate for Re. = 300 for comparison between DNS and the
drag formula, where the contributions from the Lamb vector integral, acceleration term, and parasite drag are also included.

not symmetric with respect to the time axis, the time-averaged quantity <8u2 / 8t> p, contributes about
10% of the time-averaged lift. The more asymmetric flapping of a bird or bat may contribute more
to the mean lift through the acceleration term. When the time-averaged AoA in Eq. (14) is ag =
0° in the symmetric flapping kinematics, the time-averaged contribution of the acceleration term is
zero. The above analysis indicates that a quasi-steady model like the K-J theorem (even the Lamb
vector integral alone) based on the snap-shot vorticity fields cannot capture the unsteady nature of
the lift in flapping flight. The acceleration term for the unsteady inertial effect is significant, and
time-resolved velocity measurements or computations are required to obtain the unsteady lift.

Figure 10 shows the time histories of the drag coefficient of the flapping flat plate for Re. = 300
for comparison between DNS and the drag formula, where the contributions from the Lamb vector
integral, acceleration term and parasite drag are also included. The parasite drag is still dominant
while the contribution from the acceleration is negligible. In this case, the Lamb vector integral does
not generate a thrust in a time-averaging sense. The time-averaged drag coefficient calculated by
using Eq. (8) is 0.31, while DNS gives 0.34. The relative error of the drag calculation is 9%.

V. RECTANGULAR FLAT-PLATE WING
A. Stationary wing

Flow fields over a stationary rectangular flat-plate wing with AR = 4 are calculated at different
AoAs for Re, = 300 after the incoming freestream flow starts suddenly. For a finite wing, Eq. (3)
can be expressed as

L = pVp ((urwy), — (uywx),) — pVp (du-/0t) p + pVi (q3q/3z)p . (15)

The first term in the Lamb vector integral on RHS of Eq. (15) is the dominant component, and
the second term is a relatively small component for a rectangular wing since interaction between
the spanwise velocity and the streamwise vorticity is weak. Figure 11 shows the time-averaged
lift coefficient as a function of AoA. The lift formula predicts well the lift for all AoAs. In planar
PIV measurements, 2D velocity fields on different spanwise slices along the wing span are usually
obtained, and therefore the sectional lift L’ is calculated for each slice. Then, the total lift L of the
wing is obtained by summing the contributions from all the slices. This approach is a quasi-2D
approximation where only the first term in the Lamb vector integral in Eq. (15) is used since the
streamwise vorticity and the spanwise velocity cannot be measured at the same time in planar PIV.
The lift formula is compared with DNS in Figure 11. It is indicated that this quasi-2D approximation
is reasonably good even though the time-averaged lift is over-predicted slightly for o > 30°.
Interestingly, in this case, the K-J theorem gives the time-averaged lift that is consistent with DNS
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FIG. 11. The time-averaged lift coefficient as a function of AoA for the stationary rectangular flat-plate wing with AR = 4
for Re, = 300, (a) comparison between DNS, the K-J theorem, and the lift formula and (b) quasi-2D estimation of the lift.

as well. This may be coincident. For comparison, Figure 11(a) also includes the lift for a finite wing
given by McCormick’s formula where the lift slope is*’

_ dC] _ aoAR
" da AR +2(AR+4)/(AR +2)’
where ay = 2 according to the thin-wing theory.
Figure 12 shows the non-dimensional snap-shot iso-surface fields of the vorticity, verti-
cally projected Lamb vector, and vertically projected acceleration around a stationary rectangular
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FIG. 12. Non-dimensional snap-shot iso-surface fields around the stationary rectangular flat-plate wing with AR = 4 at *
= 98.9 when —(du./dt)p reaches the maximum for Re, = 300 and o = 30°, (a) iso-surfaces of vorticity, the lightest gray
(or green): w;‘ = £1.0, the darkest gray (or blue): w} = —1.0, mid-gray (or red): } = 1.0, (b) iso-surfaces of vertically
projected Lamb vector, the darkest gray (or blue): k - (u x @)* = —1.0, mid-gray (or red): k - (u X 0)* = 1.0, and (c) iso-
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FIG. 13. Histories of the lift coefficient of the stationary rectangular flat-plate wing with AR = 4 for Re, = 300 and o = 30°,
(a) comparison between DNS, the K-J theorem, the lift formula, and quasi-2D approximation and (b) contributions from the
Lamb vector integral and acceleration term.

flat-plate wing with AR = 4 at r* = 98.9 when (du./0t)p reaches the maximum for Re. = 300 and
a = 30°. For the vorticity iso-surfaces, the lightest gray (or green), the darkest gray (or blue), and
mid-gray (or red) correspond to wy = £1.0, wi = —1.0, and wy = 1.0, respectively. For the verti-
cally projected Lamb vector iso-surfaces, the darkest gray (or blue) and mid-gray (or red) respond to
k-(u xw)=—-1.0and k- (u x ®)* = 1.0, respectively. For the vertically projected acceleration
iso-surfaces, the darkest gray (or blue) and mid-gray (or red) correspond to (—du./d1)* = —0.25 and
(—0u,/at)* = 0.25, respectively. The superscript “*” denotes non-dimensional quantities. Similar
to Figure 4 for the 2D case, the vertically projected acceleration of fluid around the wing is small,
indicating its contribution to the time-averaged lift is not significant. Figure 13(a) shows the histories
of the lift coefficient of the wing for Re, = 300 and o = 30°. The lift formula gives a consistent result
with DNS. In contrast, the lift coefficient given by the K-J theorem has a lower time-averaged value
and a significant phase shift. It is indicated that the first term the Lamb vector integral in Eq. (15)
makes the most contribution to the lift from the spanwise vorticity field. Although the contribution
of the acceleration to the time-averaged lift is relatively small for the stationary wing, it affects the
phase as indicated in Figure 13(b).

B. Flapping wing

The kinematics of a flapping rectangular flat-plate wing is prescribed using Eq. (14). Figure 14
shows the non-dimensional snap-shot iso-surface fields around the flapping rectangular flat-plate
wing with AR = 4 at t* = 23.7 when (du,/0t)p reaches the maximum for Re, = 300. For the
vorticity iso-surfaces, the lightest gray (or green), the darkest gray (or blue) and mid-gray (or
red) correspond to wj = £2.0, ; = —2.0 and w} = 2.0, respectively. For the vertically projected
Lamb vector iso-surfaces, the darkest gray (or blue) and mid-gray (or red) respond to k - (# x @)*
= —2.0and k - (u x @)* = 2.0, respectively. For the vertically projected acceleration iso-surfaces,
the darkest gray (or blue) and mid-gray (or red) correspond to (—du,/df)* = —2.0 and (—du./0t)*
= 2.0, respectively. In contrast to the stationary wing shown in Figure 12, the vertically projected
acceleration around the flapping wing is significantly large. Figure 15(a) shows the histories of the
lift coefficient of the flapping wing. The lift formula gives the consistent result with DNS. The lift
predicted by the K-J theorem has not only a considerable phase shift but also a different waveform
compared to DNS. Interestingly, in this case, the Lamb vector integral in the lift formula gives a
waveform that is close to that given by the K-J theorem. Nevertheless, as indicated in Figure 15(b),
the acceleration term for the unsteady inertial effect has a considerably large effect on both the
amplitude and phase of the lift for the flapping wing. The sum of the Lamb vector integral and
the acceleration term recovers the true waveform. Table III gives the time-averaged lift coefficients
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FIG. 14. Non-dimensional snap-shot iso-surface fields around the flapping rectangular flat-plate wing with AR = 4 at r*
= 23.7 when —(du,/dt)p reaches the maximum for Re. = 300, (a) iso-surfaces of vorticity, the lightest gray (or green):
a); = 32.0, the darkest gray (or blue): w} = —2.0, mid-gray (or red): w} = 2.0, (b) iso-surfaces of vertically projected
Lamb vector, the darkest gray (or blue): k - (u X @)* = —2.0, mid-gray (or red): k - (u x w)* = 2.0, and (c) iso-surfaces of

vertically projected acceleration, the darkest gray (or blue): (—du./9¢)* = —2.0, mid-gray (or red): (—du./0t)* = 2.0.

calculated based on different methods along with the contributions of the Lamb vector term and
acceleration term. Similar to the 2D flow case in Table II, the K-J theorem does not capture the
contribution of the flow acceleration to the time-averaged lift. The acceleration term (8142 / 8t> D
contributes about 10% of the time-averaged lift.
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FIG. 15. Histories of the lift coefficient for the flapping rectangular flat-plate wing with AR = 4 for Re. = 300, (a) comparison
between DNS, the K-J theorem, and the lift formula and (b) contributions from the Lamb vector integral and acceleration
term.
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TABLE III. Time-averaged lift coefficient of the flapping rectangular flat-plate wing.

- _ _ i _
c? CiLF Crx—y Ci.Lamb® Clace

1.13 1.12 1.01 1.02 0.10

3C; denote the time-averaged lift coefficients directly obtained from DNS.

°Cy..r and C; x_; denote the time-averaged lift coefficients given by using the simplified lift formula and the K-J theorem,
respectively.

°Ci.Lamp and C‘[,W;represent the contributions of the Lamb vector integral and acceleration term in the general lift formula,
respectively.

VI. CONCLUSIONS

The lift formula is given for a wing in a rectangular control volume in the framework of the
general viscous flow theory, and it has a lucid form with the two leading-order terms: the Lamb
vector integral for the vortex force and the acceleration term of fluid for the unsteady inertial effect.
The acceleration term includes the added mass force and other unsteady effects associated with
flow structures generated in complex flows. The lift formula is validated and the relevant theoretical
arguments are supported by direct numerical simulation (DNS) on the stationary and flapping flat
plate and rectangular flat-plate wing. As indicated by DNS, the fields of the vertically projected
Lamb vector and vertically projected acceleration around a flapping wing are directly responsible
to the lift generation. Due to its simplicity, the lift formula is useful for estimation and analysis of
the unsteady lift from velocity fields obtained in measurements and computations. In addition, since
the Kutta-Joukowski (K-J) theorem is a reduced case from this lift formula, the limitations of the
K-J theorem can be critically examined. It is found that the application of the K-J theorem as a
quasi-steady model to unsteady low-Reynolds-number flows may lead to errors in prediction of the
phase, amplitude and waveform of the unsteady lift of a flapping wing.
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APPENDIX A: PHYSICAL MEANINGS OF THE SECOND AND FIFTH TERMS
OF RHS OF EQ. (2)

The second term in RHS of Eq. (2), which is a volume integral of the local acceleration of fluid
induced by a moving solid body, represents the unsteady inertial effect. The physical meanings of
the second and fifth terms in RHS of Eq. (2) can be further illustrated in a reduced case when an
inviscid irrotational flow is considered where the first, third, and fourth terms in RHS of Eq. (2)
vanish. For an inviscid irrotational flow, when the outer control surface ¥ is time independent and
the far-field flow is steady, Eq. (2) is reduced to

d
F=—p —udV—pﬁ (q2/2)ndS
y, 0t B

d 1
=—p— udV—}—pf n-|:—q21—uui|dS. (A1)
dt Jy, 5 2
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In fact, by some manipulations, it can be found that in a potential flow Eq. (Al) equals to the
acceleration-reaction force given by Noca et al.?’ Therefore, when the unsteadiness of an inviscid
irrotational flow is exclusively associated with the motion of a moving body, the second and fifth
terms together are reduced to the added mass force in ideal fluid mechanics.

To illustrate this point, a sphere moving with a velocity of V() along the positive z-coordinate
is considered as a classical case, and the velocity potential is ¢ = —V,R* cos §/(2r?) in a spherical
coordinate system and u = V¢, where R is the radius of the sphere, 6 is the polar angle, and r is
the radial position. In the second equality in RHS of Eq. (A1), since ¢ ~ r~2 and V¢ ~ r—> decay
fast as r — oo, the volume integral of V¢ in the first term can be transformed to the surface integral
of ¢ on the sphere surface 0B and the second term vanishes as » — oo. Further, integration on the
sphere surface projected along the z-coordinate gives the drag

Fp=—pk- %/Vf udv = p% 7%3 ok -n)dS = —%p <§nR3> dd‘f. (A2)
Clearly, Eq. (A2) recovers the classical formula of the added mass force on a sphere moving with
an unsteady acceleration where the added mass coefficient is 1/2. This indicates that the second and
fifth terms together are reduced to the added mass force when the flow is inviscid and irrotational. In
general, the velocity field can be decomposed into the potential flow part and viscous flow part, i.e.,
u = V¢ + u,;, where u,;, is the velocity deviation from the potential flow due to fluid viscosity.
Therefore, in addition to the added mass force, the second term in RHS of Eq. (2) as an inertial term
naturally includes the effects of viscous flow phenomena. For example, in separated viscous flows
over a stationary body where the added mass force is zero, the second term in RHS of Eq. (2) is
purely induced by unsteady flow structures generated by some intrinsic flow instability mechanisms
such as the Kelvin-Helmholtz instability and vortex shedding.

APPENDIX B: CODE VALIDATIONS

The numerical method and code used in this work have been validated previously by investigating
various flows including decaying vortices, 2D flows around stationary and oscillating cylinders, 3D
flows over a sphere and a low-aspect ratio flat plate.** In this appendix, additional comparisons with
the existing experimental and computational data are provided for the flows around a flat plate.

In the first case, the flows around a stationary flat plate at different AoAs are simulated, and
the results are compared with the measurements of Cleaver et al.*' In the experimental setting, a
0.04c thick flat plate with the semicircular leading and trailing edges is fixed in a uniform upstream
flow, where c is the chord length of the flat plate. The Reynolds number based on the incoming
velocity and chord length is Re, = 1.0 x 10*. The computational domain is [—8¢, 12¢] x [—2.5¢,
2.5c]. The minimum and maximum grid length are §4/c = 0.0025 and §h/c = 0.02, respectively.
The AoA of the flat plat varies from 0° to 20°. The time-averaged lift coefficient is shown in
Figure 16 as a function of AoA. The time-averaged lift coefficient increases linearly with AoA for
AoA < 10°, which is consistent with the prediction of the classical thin-airfoil theory. For AoA >
10°, after the flow fully separates, the lift coefficient saturates and decreases. The computational
results are consistent with the experimental data of Cleaver et al.*' and the numerical results of
Vargas et al.*> At Re. = 1.0 x 10*, the time-averaged lift coefficient in AoA = 0°~10° still follows
the classical thin-wing or thin-airfoil theory that predicts the lift slope of 2.

In the second case, the flow around a translational and pitching flat plate in still water is simulated
to validate the present numerical method in handling the highly unsteady flows over the moving
boundaries. The numerical results will be compared with the experimental data of Sunada er al.*
who simulated the motion of an insect wing in hovering. The translational and pitching kinematics
are given by

h = h,sinrft), o =ay+ o;sinrft+ @), (B1)

where 4 is the position of the rotational axis of the plate in the —X direction, « is the angle between
the flat plate and —X direction, f and &, are the frequency and amplitude of the translational motion,
respectively, o and o are the time-averaged pitching angle and pitching amplitude, respectively,



093605-20 Wang et al. Phys. Fluids 25, 093605 (2013)

15— 77— 71—
/
P 4
4
y/
A
1r //. ann ©®
ES
iy 7/,
QO /
0.5F / b
—=o6—— Present
,’ L] Cleaver et al
A Vargas et al
¢ EERaei Thin-wing theory
i a0 VOl M ;e o VI M i e O e wmAl e: S Cow 01 1
oF 5 70 15 20
AoA (deg)

FIG. 16. Time-averaged lift coefficient of a flat plate as a function of AoA at Re. = 1.0 x 10%.

¢ is the phase difference between the translating and pitching motions. The rotation axis is at the
quarter chord (c/4) from the leading edge. The parameter are selected as h, = 1.4¢c, a9 = /2, ) =
/2, and ¢ = /4. The Reynolds number and the reduced frequency are given by

_ 2 hac _ e _ ¢ 35 (B2)
v 2Qnfhy)  2h,

The flat plate has a thickness of 0.05¢. The computational domain is [—24c, 24c] x [—24c, 24c].
The minimum and maximum grid length are §h/c = 0.005 and 64/c = 0.04, respectively.

The unsteady force coefficients C, and C; in the X direction (the translational direction) and
the Z direction (the normal direction to X) in a period after the initial effect disappeared are shown
in Figure 17. The computational result of C, is basically consistent with the experimental data of
Sunada ez al.* although there is a phase shift. However, the computational value of C. is considerably
smaller than the measurements although the time trace has a similar waveform with a phase shift.
The differences may come from the measurement errors in the experiments. Sunada et al.** pointed
out that the measurements could suffer from the effect of the free surface wave and the 3D effect of
the gap between the wing tip and the wall of the water tank. The 3D effect of the relatively small
aspect ratio of the wing model may also lead to the difference between their measurements and the
2D computations.*!

Re = 1000, &

00—

| = C,. Sunada et al
15 a a C,, Sunada et al

i C,, present 1
10F ------ C,, present .

-10

12 125 13

FIG. 17. The force coefficients C, and C. for the translational and pitching flat plate compared with the measurements of
Sunada et al.



093605-21 Wang et al. Phys. Fluids 25, 093605 (2013)

4 4
Present Present
u Dickinson and Gotz L] Dickinson and Gotz
sh =" Miller and Peskin sl "7 Miller and Peskin

FIG. 18. The drag and lift coefficients of for a suddenly translating flat plat as a function of the normalized traveled distance:
(a) the drag coefficient and (b) the lift coefficient.

In the third case, the flow around an impulsively starting and translating flat plate is investigated.
The numerical parameters are set according to the experiments of Dickinson and Gotz.* The flat
plate with the thickness of 0.02¢ impulsively translates with a constant AoA in still water. The
translational motion starts with a constant acceleration of 3.125(U?/c) and then approaches to a
fixed velocity U. The Reynolds number based on the fixed translational velocity and chord length is
Re. = 192. The computational domain in this case is [—6¢, 14c] x [—4c, 4c]. The minimum and
maximum grid length are §4/c = 0.02 and §h/c = 0.04, respectively. The AoA of the flat plat is
set at 45° during the motion. The lift and drag coefficients C; and C; are plotted in Figure 18 as a
function of the normalized traveled distance L/c. The computational results are consistent with the
experimental data of Dickinson and Gotz* and the numerical results of Miller and Peskin.*®
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