
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 618980, 15 pages
http://dx.doi.org/10.1155/2013/618980

Research Article
A GPU-Based Parallel Procedure for Nonlinear Analysis of
Complex Structures Using a Coupled FEM/DEM Approach

Lixiang Wang,1 Shihai Li,1 Guoxin Zhang,2 Zhaosong Ma,1 and Lei Zhang2

1 Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
2 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,
China Institute of Water Resources and Hydropower Research, Beijing 100038, China

Correspondence should be addressed to Shihai Li; shli@imech.ac.cn

Received 18 July 2013; Accepted 9 September 2013

Academic Editor: Zhiqiang Hu

Copyright © 2013 Lixiang Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This study reports the GPU parallelization of complex three-dimensional software for nonlinear analysis of concrete structures. It
focuses on coupled thermomechanical analysis of complex structures. A coupled FEM/DEM approach (CDEM) is given from
a fundamental theoretical viewpoint. As the modeling of a large structure by means of FEM/DEM may lead to prohibitive
computation times, a parallelization strategy is required. With the substantial development of computer science, a GPU-based
parallel procedure is implemented. A comparative study between the GPU and CPU computation results is presented, and
the runtimes and speedups are analyzed. The results show that dramatic performance improvements are gained from GPU
parallelization.

1. Introduction

Many authors have studied the resolution of the nonlinear
concrete structure problems, focusing rigorously on the
three-dimensional (3D) elastoplastic problem, such as Roca
and Maŕı [1] and Spacone et al. [2]. These authors used a
finite element model. Other authors (e.g., Rousseau et al. [3],
Villard et al. [4]) proposed a coupled FEM/DEM approach
with regard to nonlinear material analysis of structures. As
is shown, the modeling of a large structure by means of
FEM or DEM may lead to prohibitive computation times.
Thus, some authors (e.g., Sziveri et al. [5], Romero et al. [6])
developed CPU-based parallel procedures. With significant
development of computer science, the implementation of a
GPU-based parallel procedure becomes possible.

A graphics processing unit (GPU) is a specialized elec-
tronic circuit designed to rapidly manipulate and alter
memory to accelerate the creation of images in a frame
buffer intended for output to display [7]. GPU has become
an integral part of today’s mainstream computing systems.
The modern GPU is not only a powerful graphics engine
but also a highly parallel programmable processor featuring
peak arithmetic and memory bandwidth that substantially

outpaces its CPU counterpart [8]. Over the past decade,
there has been a marked increase in the performance and
capabilities of GPUs. As a result, computing on a GPU card
has been a hot topic for scientific research in different numer-
ical areas [9–21]. The techniques, which enable GPUs to effi-
ciently undertake large-scale scientific computing tasks, can
be summarized as follows [21].

(i) A GPU card consists of a number of multiprocessors
(as shown in Figure 1). On each processor, there
are several hundred coresident threads that can exe-
cute integer, single and double precision calculations
simultaneously.

(ii) Fine-grained parallelization with a very large number
of threads is the kernel principal of GPU computing.

(iii) The memory access technique is specially designed
in a GPU to accelerate the memory access speed of
the threads. To achieve near peak memory access
performance, memory coalescing is considered in the
design of the data structure and the computational
arrangement for computations.
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Figure 1: Fermi architecture—Fermi’s 16 SMs are positioned around a common L2 cache. Each SM is a vertical rectangular strip that contains
an orange portion (scheduler and dispatch), a green portion (execution units), and light blue portions (register file and L1 cache) [23].

(iv) The release of Compute Unified Device Architecture
(CUDA) makes it much more straightforward to
implement GPU code.

CUDA is a parallel computing platform and program-
ming model (as shown in Figure 2) created by NVIDIA and
implemented by the GPUs that they produce [22]. It enables
dramatic increases in computing performance by harnessing
the power of the GPU. It is the most popular programming
toolkit in computational sciences. It has already been used by
researchers to parallelize their codes of different numerical
methods, for example, Molecular Dynamic (MD) [9, 10],
Lattice BoltzmannMethod (LBM) [11, 12], Boundary Element
Method (BEM) [13], Finite Element Method (FEM) [14–16],
Discrete Element Method (DEM) [17, 18], Finite Difference
Method [19], Moving Particle Semi-implicit (MPS) method
[20], and Distinct Lattice Spring Model (DLSM) [21]. The
overall speedups of GPU parallel codes compared to serial
CPU counterparts are reported to be from 10x to 100x [9–
21]. This is promising for both scientific computations and
engineering practices.

To model the nonlinear response of complex structures,
we will parallelize the coupled FEM/DEM code on a GPU
with CUDA. In the first section, the coupled FEM/DEM
approach with its basic formulations is introduced. Then,
the GPU implementation and optimization techniques are
presented. Furthermore, the parallel FEM/DEM code is
tested on computers equipped with modern GPU cards.
Finally, conclusions regarding the GPU parallelization are
drawn.

2. Coupled Finite/Discrete Element Model

2.1. Geometric Representation. Li et al. [24, 25] proposed a
Continuum-based Discrete Element Method (CDEM) which
in fact is a Coupled Finite/Discrete Element Method and has
a variety of applications. A detailed description about CDEM
will be introduced in the following context.

CDEM is a combination of Finite ElementMethod (FEM)
and Discrete Element Method (DEM). Figure 3 shows the
geometric domains used by the CDEM approach. It contains
two kinds of elements, blocks (i.e., A, B, C, and D) and
contacts (Figures 3(c) and 3(d)). A discrete block consists
of one or more FEM elements, all of which share the same
nodes and faces. In this paper, it is assumed that a discrete
block consists of only one FEM element. All three element
types are shown in Figure 4. A contact contains several
normal and tangent springs (Figure 5); each connects nodes
of neighboring blocks. Inside the block, the FEM is used,
while for the interface, the DEM is adopted.

2.2. Governing Equations. Block stress analysis means fig-
uring out stress of every single block and the interaction
between different blocks. For every block in the model, it
needs to satisfy the following governing equations.

Equilibrium equation:
𝜎
𝑖𝑗,𝑗
+ 𝑓
𝑖
− 𝜌𝑢̈
𝑖
− 𝛼𝑢̇
𝑖
= 0. (1)

Strain-displacement relationship:

𝜀
𝑖𝑗
=

1

2

(𝑢
𝑖,𝑗
+ 𝑢
𝑗,𝑖
) . (2)
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Figure 2: CUDA programmingmodel—hierarchy of threads, blocks, and grids, with corresponding per-thread private, per-block shared and
per-application global memory spaces [23].
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Figure 3: Geometric domains used by CDEM.
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(a) 4-node
tetrahedron

(b) 6-node wedge (c) 8-node hexahe-
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Figure 4: Finite element types adopted in CDEM.
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Figure 5: CDEM contact—A 2D contact contains 1 normal spring
(𝑘
𝑛
) and 1 tangent spring (𝑘

𝑠
). The figure illustrates contact A2-B1

and contact A3-B4.

Constitutive law:

𝜎
𝑖𝑗
= D
𝑖𝑗𝑘𝑙
𝜀
𝑘𝑙
. (3)

Boundary conditions:

𝑢
𝑖
= 𝑢
𝑖
,

𝜎
𝑖𝑗
𝑛
𝑗
= 𝑡
𝑖
.

(4)

Initial conditions:

𝑢
𝑖
(𝑥, 𝑦, 𝑧, 0) = 𝑢

0

𝑖
(𝑥, 𝑦, 𝑧) ,

𝑢
𝑖,𝑡
(𝑥, 𝑦, 𝑧, 0) = 𝑢

0

𝑖,𝑡
(𝑥, 𝑦, 𝑧) .

(5)

In (1)∼(5), 𝜎
𝑖𝑗,𝑗

represents the first-order partial derivative
of stress tensor versus coordinate; 𝑓

𝑖
stands for the body

force; 𝜌 is density; 𝑢̈
𝑖
denotes the acceleration; 𝑢̇

𝑖
denotes the

velocity; 𝛼 is damping ratio; 𝑢
𝑖,𝑗
, 𝑢
𝑗,𝑖
are both the first-order

partial derivatives of displacement versus coordinate; 𝜀
𝑖𝑗
, 𝜀
𝑘𝑙

are strains; 𝜎
𝑖𝑗
is stress;D

𝑖𝑗𝑘𝑙
is stress-strain tensor.

It should be mentioned that various constitutive models
in (3) can be used in the block, including the linear elastic
model, Drucker-Prager model, the block breakage model,
and the discrete spring model.

2.3. Thermal Analysis. The equilibrium equation of heat
transfer can be written as

𝜆(

𝜕
2
𝑇

𝜕𝑥
2
+

𝜕
2
𝑇

𝜕𝑦
2
+

𝜕
2
𝑇

𝜕𝑧
2
) − 𝑐𝜌

𝜕𝑇

𝜕𝜏

= 0. (6)

The initial condition is

𝑇 = 𝑇
0
(𝑥, 𝑦, 𝑧) , (𝜏 = 0) . (7)

The boundary conditions are

𝑇 = 𝑇
𝑏

Dirichlet B.C.,

−𝜆 (

𝜕𝑇

𝜕𝑛

) = 𝑞 Neumann B.C.,

−𝜆 (

𝜕𝑇

𝜕𝑛

) = 𝛽 (𝑇 − 𝑇
𝑎
) Mixed B.C.

(8)

In (6)∼(8), 𝜏 represents age; 𝜆 is thermal conductivity; 𝜌
stands for density; 𝑐 is specific heat capacity;𝑇 is temperature;
𝑇
0
is the initial temperature of concrete; 𝑇

𝑏
is the fixed

boundary temperature; 𝑞 represents heat flux; 𝑇
𝑎
denotes

ambient temperature in natural convection conditions and
adiabatic temperature of boundary layer in forced convection
conditions; 𝛽 is heat transfer coefficient in surface.

By using the variation formulation, the equilibrium
equation of heat transfer in (7) can be transformed into the
following matrix form:

[𝐶] {
̇
𝑇} + [𝐾] {𝑇} = {𝑄} , (9)

where [𝐶] is the matrix for specific heat capacity, [𝐾] is the
matrix for heat conductivity, and {𝑄} is the heat flux vector.

A time forward difference scheme is used for thermal
analysis.Thus, the time difference equation can be formulated
as

[𝐶]

{𝑇
𝑛+1
} − {𝑇

𝑛
}

Δ𝜏

+ [𝐾] {𝑇𝑛} = {𝑄} ,
(10)

where {𝑇
𝑛
} stands for the temperature vector at time step 𝑛;

Δ𝜏 is the time step.

2.4. Dynamic Relaxation Method. By using the variation
formulation, the equilibrium equation of momentum in (1)
can be transformed into the following matrix form in an
element:

[𝑀] {𝑢̈} + [𝐶] {𝑢̇} + [𝐾] {𝑢} = {𝐺} , (11)

where [𝑀] represents the diagonal mass matrix; [𝐶] repre-
sents the dampingmatrix; [𝐾] represents the stiffness matrix;
{𝑢} represents the vector of displacement; {𝐺} represents the
vector of external force.

In our approach, global stiffness matrix is not assembled.
Instead, (11) is iterated element by element, using the dynamic
relaxation method. In every element, its displacement satis-
fies (11) strictly. If the solution of every element satisfies (11),
then the overall solution made up of element solutions must
satisfy the assembled equation. In fact, this is beneficial for
the parallel implementation.

In time domain, an explicit iteration technique is applied.
In this technique, the acceleration is iterated by the central
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Figure 6: Flow chart of iteration using dynamic relaxation method.

difference scheme, while the velocity is iterated by the unilat-
eral difference scheme. The schemes can be written as

𝑢̈
𝑛

𝑙𝑖
=

𝑢
𝑛+1

𝑙𝑖
− 2𝑢
𝑛

𝑙𝑖
+ 𝑢
𝑛−1

𝑙𝑖

(Δ𝑡)
2

=

(𝑢
𝑛+1

𝑙𝑖
− 𝑢
𝑛

𝑙𝑖
) /Δ𝑡 − (𝑢

𝑛

𝑙𝑖
− 𝑢
𝑛−1

𝑙𝑖
) /Δ𝑡

Δ𝑡

,

𝑢̇
𝑛+1

𝑙𝑖
=

𝑢
𝑛+1

𝑙𝑖
− 𝑢
𝑛

𝑙𝑖

Δ𝑡

,

(12)

where 𝑢̈𝑛
𝑙𝑖
, 𝑢̇𝑛
𝑙𝑖
, and 𝑢𝑛

𝑙𝑖
, respectively, represent the acceleration,

the velocity, and the displacement of the 𝑖th node of the 𝑙th
element, at the 𝑛th time step.

The explicit iteration technique can be formulated from
(12):

𝑢̇
𝑛+1

𝑙𝑖
= 𝑢̇
𝑛

𝑙𝑖
+ 𝑢̈
𝑛

𝑙𝑖
Δ𝑡,

𝑢
𝑛+1

𝑙𝑖
= 𝑢
𝑛

𝑙𝑖
+ 𝑢̇
𝑛+1

𝑙𝑖
Δ𝑡.

(13)

The process of explicit iteration using the dynamic relax-
ation method is illustrated in Figure 6. During the iteration,
convergence is reached when the total magnitude of the
kinetic energy is minimized.

3. GPU Implementation

3.1. GPU Implementation with CUDA. In Section 2, we refer
to the CDEM approach, in which global stiffness matrix is

not assembled. An element-by-element strategy is employed
to solve the equilibrium equation. In this sense, the CDEM is
suitable to run on a GPU since calculations involved in the
CDEM are all performed independently for the elements and
the nodes.

In GPU parallelization, heterogeneous computing
methodology is usually used. This means that the serial part
of the code executes in a host (CPU) thread, while the parallel
part executes in a large amount of device (GPU) threads.
The device can be viewed as a virtual computer that has its
own separate memory space. It is ideally suited to perform
element and nodal calculations across hundreds of threads.
Figure 7 shows a flow chart of the GPU implementation
of the CDEM. One principle for the implementation is to
replace the original CPU-based calculation functions with
CUDA kernels. A kernel is a function that runs on the device.
Another principle is to integrate as many CUDA kernels into
a large one as possible.This is to minimize the delay of kernel
launching. The kernels should be integrated only when they
can be parallelized. Serial and dependent kernels cannot be
integrated together.

An example is given to demonstrate the GPU imple-
mentation with CUDA. In the example, the CPU functions
DoElems and DoNodes are first replaced by corresponding
CUDA kernels. Then, the CUDA kernels are integrated
into one CUDA kernel DoKernel. The additional qualifier
“ global ” is used to define a CUDA kernel. Embellished
with <<<nBlocks, nThreads>>>, the DoKernel function will
be run in 𝑛𝐵𝑙𝑜𝑐𝑘𝑠 × 𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠 threads in parallel (see
Algorithms 1 and 2).
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As illustrated in Figure 7, stress and thermal fields are
analyzed on two GPUs concurrently. Such multi-GPU tech-
nique ensures higher efficiency when we perform multifield
simulation for complex structures. All of the data in two
fields will be first sent to the device. During the calculation,
only thermal stress will be read from one GPU and sent to
another. The communication is realized by using the CUDA
function cudaMemcpy. The data transfer from the device to
the host only happens when the simulation results need to
be output. Since the data are kept on the device for the whole
simulation process, memory transfer between host and device
is largely reduced. Data transfer from GPU2 to GPU1 only
happens under necessary circumstances, whichwill not affect
the overall efficiency.

3.2. GPUParallel Algorithm and Procedure. TheGPUparallel
algorithm is realized by GPU kernels. In Section 3.1, we have
discussed the implementation of oneGPUkernel. Now all the
kernels will be presented to demonstrate the detailed process
(see Algorithm 3).

The kernels GenerateStiffness() and GenerateConductiv-
ity() generate element stiffness matrix and element conduc-
tivity matrix, respectively. They use similar algorithms. To
generate element matrix, we perform the Gaussian integra-
tions over each element by using the following formula:

[𝐾]
𝑒
= ∫

Ω
𝑒

[𝐵]
𝑇
[𝐷] [𝐵] 𝑑𝑥 𝑑𝑦 𝑑𝑧
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// CPU functions
void DoElems ( /∗parameters omitted∗/ )
{

// omitted codes that do element calculation;
}

void DoNodes ( /∗parameters omitted∗/ )
{

// omitted codes that do nodal calculation;
}

void main ( )
{

// Element and nodal calculation
DoElems( /∗parameters omitted∗/ );
DoNodes( /∗parameters omitted∗/ );

}

Algorithm 1

// GPU kernels
global void DoKernel

( /∗parameters omitted∗/ )
{

// omitted codes that do element calculation;
// omitted codes that do nodal calculation;
}

void main ( )
{

// Element and nodal calculation
DoKernel <<< nBlocks, nThreads >>>
( /∗parameters omitted∗/ );

}

Algorithm 2

= ∫

1

−1

∫

1

−1

∫

1

−1

[𝐵]
𝑇
[𝐷] [𝐵] |𝐽| 𝑑𝜉 𝑑𝜂 𝑑𝜁

=

𝑛

∑

𝑖,𝑗,𝑘=1

𝑤
𝑖
𝑤
𝑗
𝑤
𝑘[𝐵]
𝑇

𝐺
[𝐷] [𝐵]𝐺 |𝐽| ,

(14)

where [𝐵] is strainmatrix; [𝐷] is stress-strain tensor; |𝐽| is the
determinant of Jacobian matrix;𝑤

𝑖
,𝑤
𝑗
, and𝑤

𝑘
are weights in

Gaussian integrations.
The strain matrix [𝐵] is calculated by GPU. For linear

problems, [𝐵] is calculated and stored inGPUmemory before
iteration. For memory-consuming problems (i.e., nonlinear
or big problems), [𝐵] is calculated when iteration is taking
place. Since the GPU calculation of [𝐵]matrix is fast, it costs
little time. For different elements, the parallel algorithms to
generate [𝐵] matrix are different. The algorithm is shown
below.

Algorithm of Generation of [𝐵] Matrix. (1) For each 4-
node tetrahedron element, there is one or four Gaussian
integration points. Each element is divided into four threads.
If there is one Gaussian integration point, the first thread

performs the Gaussian integration and the weight is unit. If
there are four Gaussian integration points, each of the four
threads performs its own Gaussian integration and each of
the four weights is 0.25.

(2) For each 6-node wedge element, there are six Gaus-
sian integration points. Every 8 threads are one group. In
one group, only the first six threads perform the Gaussian
integrations, while the left two threads do nothing.

(3) For each 8-node hexahedron element, there are eight
Gaussian integration points. Each element is divided into
eight threads. Each thread performs the Gaussian integration
of one Gaussian point.

The kernel DoKernel() does nodal and element calcu-
lation of stress field. The algorithm in DoKernel() can be
summarized as follows.

Algorithm of DoKernel(). (1) Calculate external nodal forces
{𝐹}

ext, which include tractions and body forces.
(2) Calculate internal nodal forces: {𝐹}int = [𝐾]

𝑒
{𝑢}
𝑒
+

[𝐶]
𝑒
{𝑢̇}
𝑒 (in static problems, {𝐹}int = [𝐾]𝑒{𝑢}𝑒).

(3) Calculate total nodal forces: {𝐹}tot = {𝐹}ext − {𝐹}int.
(4) Calculate nodal accelerations by Newton’s Second

Law: {𝑎} = [𝑀]−1{𝐹}tot.
(5) Calculate nodal velocities {V} and displacements {𝑢}

by (13).
(6) Repeat 1∼5 until convergence is reached.
Steps 1∼3 are calculations in terms of elements, while

steps 4∼5 are in terms of nodes. In parallel algorithm, all
elements and nodes are distributed into nBlocks × nThreads
threads. Thus, the DoKernel() function will be run in nBlocks
× nThreads threads in parallel.

It is worth mentioning that a CUDA library function
syncthreads() must be called between Steps 1 and 2. The

matrix multiplication [𝐾]
𝑒
{𝑢}
𝑒 is performed by GPU. It

demands that the displacement vector {𝑢} be synchronized.
Thus, the function syncthreads() is used to keep all the
displacement components at the same level.

Boundary conditions need special treatments. For 𝑢 = 0
boundary, no calculation is done.Thedisplacements are set as
zero. For traction boundary, tractions are equivalent to nodal
forces. Each thread performs the calculation of one node.

Convergence is reached if the kinetic energy is lower than
a threshold. The kinetic energy is defined as.

𝐸
𝑘
= ∑

1

2

{V}𝑇 {V} . (15)

3.3. Performance Optimization. The parallel procedure is
implemented and tested by using NVIDIA CUDA Toolkit
3.0. The 8-node hexahedron element is adopted. The 6-node
wedge element can be viewed as a degenerated element from
8-node hexahedron. The 4-node tetrahedron element owns
half the number of nodes, compared with the 8-node hexa-
hedron element. They share a proportional (1/2) relationship
with each other. Thus, a proportional optimization strategy
can be used. In this sense, once the 8-node hexahedron
element is optimized, the 4-node tetrahedron element is
optimized as well by multiplying a proportion of 1/2.
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// GPU kernels for stress analysis
global void GenerateStiffness(); // To generate element stiffness matrices
global void DoKernel(); // To do nodal and element calculation of stress field
global void CalcEnergy(); // To calculate kinetic energy

// GPU kernels for thermal analysis
global void GenerateConductivity(); // To generate element conductivity matrices
global void DoKernelT(); // To do nodal and element calculation of thermal field

Algorithm 3

Table 1: Specifications of the GPUs [26–28] used in this study.

Model GeForce GTX580 GeForce GTX670 GeForce GTX680
GPU GF110 GK104 GK110
Number of CUDA cores 512 1344 1536
Number of SMs 16 8 8
Processor clock (MHz) 1544 980 1006–1058
Memory 3GB DDR5 4GB DDR5 2GB DDR5
Memory bandwidth (GB/s) 192.4 192.2 192.2

To optimize the parallel procedure, the number of threads
per block needs to be carefully chosen. As is recommended
by NVIDIA [29], the best results will be achieved when the
number of threads per block is a multiple of 64. For ideal
performance, this number is recommended to be over 192. In
practice, the best performance is achieved when the number
of elements per block is 16 or 32. Equations (16) [18] and
(17) show the relationship between the number of threads per
block𝑁

𝑡
and the number of elements per block𝑁

𝑒
.

8-node/6-node elements:

𝑁
𝑡
= 𝑁
𝑒
⋅ 8 = {

256, 𝑁
𝑒
= 32,

128, 𝑁
𝑒
= 16.

(16)

4-node element:

𝑁
𝑡
= 𝑁
𝑒
⋅ 4 = {

128, 𝑁
𝑒
= 32,

64, 𝑁
𝑒
= 16.

(17)

The effective bandwidth of each memory space depends
significantly on the memory access pattern. As described in
[29], global memory bandwidth is usedmost efficiently when
the simultaneous memory accesses by threads in a half-warp
(during the execution of a single read or write instruction)
can be coalesced into a single memory transaction of 32, 64,
or 128 bytes. To achieve maximum global memory band-
width, the data structures are realigned to thread. Besides,
shared memory is used to store nodal variables, for the
shared memory space is much faster than the local and
global memory spaces, and nodal variables are reused among
threads [18].

4. Performance Tests

4.1. Test Platform. In all our tests, three computers, one Intel
Xeon E5506 at 2.13 GHz with NVIDIA GeForce GTX580,
one Intel Xeon E5-26090 at 2.40GHz with NVIDIA GeForce

Table 2: Temperatures used in boundary conditions.

Temperature (∘C) Air Water Ground
Summer 28.2 19.5 32.4
Winter −1.6 2.8 10.3

GTX670, and one Intel Core i5 2320 at 3.20GHz with
NVIDIAGeForce GTX680, are used. All the three computers
run a 64-bit version of Windows 7 with the CUDA driver 3.0
as the compiler. Details of the GPU cards are summarized in
Table 1.

4.2. TestModel. Themodel of a dam is tested by the following
steps.

(i) First, the gravity field is simulated to test the accuracy
of the GPU procedure, to get the runtime distribution
of different GPU kernels, and to obtain the concern-
ing speedups.

(ii) Then, the thermal field is calculated with a distribu-
tion of thermal stress.

(iii) Finally, the fracture field is determined by the super-
position of the original gravity and the newly-induced
thermal stress.

The model of the dam is presented in Figure 8(a). The
boundary conditions for gravity simulation are displacement
constraints.The front and back faces (𝑥+/− directions) and the
left and right faces (𝑦−/+ directions) are all constrained with
zero displacements in normal directions. The bottom face
(𝑧− direction) is constrained with zero displacements in all
directions. The thermal boundary conditions are illustrated
in Figure 8(b), and the temperatures used in boundary
conditions are presented in Table 2.
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Figure 8: The test model of a dam.
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(c) 𝑧-displacement by GPU GTX670
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(d) 𝑧-displacement by GPU GTX680

Figure 9: Results from different test platforms.

4.3. GPU Analysis

4.3.1. Accuracy. The results from the CPU and the GPU
procedures are not identical though they look the same to
each other (see Figure 9). A comparison between the results

is illustrated in Figure 10. This comparison shows that the
results from different GPUs are the same, but they have a
little difference compared with the CPU result. Further, the
errors between different procedures are shown in Table 3.The
average error is about 2%.
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Figure 10: 𝑧-displacements at (𝑥 = −578, 𝑦 = −300).

The reason why errors happen is that the parallel algo-
rithm has a different accumulation order from the serial one.
The accumulation occurs in the nodal force redistribution
function. The CPU procedure accumulates the nodal forces
one by one in the order of the elements, while the GPU
version has a different order, which depends on the gener-
ation of nodal force group. Besides, the Arithmetic Logical
Units (ALUs) on CPU and GPU have different relative error
bounds.

4.3.2. Runtime. Figure 11 illustrates the runtimes of different
GPU kernels. It shows that the iteration kernel of dynamic
relaxation takes possession of over 95% of the runtime,
while other kernels take possession of that less than 5%.
The iteration kernel determines the overall runtime, which
means that the iteration speedup can represent the overall
speedup to some extent. The second time-consuming is the
data output kernel. An average of about 3% of runtime is
consumed in data output. When big problems are calculated,
this part of runtime can be large. This encourages us to

reduce data transfer between host and device. Other kernels
consume little. Their total runtime is less than 1%, which can
be neglected in this study.

From another point of view, whatmakes the runtimes dif-
ferent on different platforms is concerned. Take the runtime
of stiffness matrix generation as an example. The runtimes
on different platforms are shown in Table 4. On GTX680,
the runtime is the least, only 0.828582ms, nearly the same as
the GTX570.The GTX580 is the most time-consuming GPU.
The reason why this happens can only be the difference of
the numbers of CUDA cores.This indicates that more CUDA
cores will reduce the runtime of stiffness matrix generation.
However, the number of cores is not the only decisive factor.
The processor clocks determine the runtimes of dynamic
relaxation iterations, which can be learned from Figure 12.
The higher the clock rate is, the less the runtime of iteration
is consumed. Figure 13 indicates that newer GPU models are
designed for less runtime of output. All the figures presented
show that double precision calculations cost more runtimes
than single precision ones.
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Figure 11: Runtime comparison among different GPU platforms on different computation precisions. “Stiffness” means generating stiffness
matrices; “Iteration” is short for dynamic relaxation iteration; “Elements” represents elements and nodal calculation; “Cloning” denotes nodal
force redistribution; “Energy” stands for energy calculation; “Output” refers to data output.
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Table 3: Errors of 𝑧-displacements at (𝑥 = −578, 𝑦 = −300).

Node number Coordinate 𝑧 (m) GPU results (m) CPU results (m) Errors (%)
1 1.13500𝐸 + 03 −6.9058𝐸 − 02 −7.1662𝐸 − 02 3.63
2 1.09949𝐸 + 03 −6.9820𝐸 − 02 −7.1442𝐸 − 02 2.27
3 1.05684𝐸 + 03 −6.9004𝐸 − 02 −6.9937𝐸 − 02 1.33
4 9.44115𝐸 + 02 −5.9221𝐸 − 02 −5.9511𝐸 − 02 4.87
5 8.70247𝐸 + 02 −4.7656𝐸 − 02 −4.7809𝐸 − 02 0.32
6 7.81536𝐸 + 02 −2.8922𝐸 − 02 −2.8984𝐸 − 02 0.21
7 0.00000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.00

Table 4: Runtimes of stiffness matrix generation on different GPUs.

Runtime (ms) GeForce GTX580 GeForce GTX670 GeForce GTX680
Single precision 4.55253 0.879342 0.828582
Double precision 8.19164 0.901528 0.912056
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Figure 14: Speedup versus GPU model.

The runtime analysis helps us to choose a proper GPU
model for simulations in both scientific research and engi-
neering applications.

4.3.3. Speedup. In parallel computing, speedup refers to how
much a parallel algorithm is faster than a corresponding serial
algorithm [30]. Speedup 𝑆 is defined by the following formula:

𝑆 =

𝑇
𝑠

𝑇
𝑝

, (18)

where 𝑇
𝑠
is the runtime of the serial algorithm; 𝑇

𝑝
is the

runtime of the parallel algorithm.
In the tests, we obtain different speedups, which are

presented in Figure 14, on different GPU computers using
different precisions. The figure shows that speedups range
from about 100 to 400. The maximum speedup reaches
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Figure 15: Summer temperature simulation to obtain the steady thermal field. The last picture (𝑡 = 100 d) shows the steady state of thermal
field in summer.

dramaticly 417, while the minimum reaches 102. Follow-
ing the optimization strategies presented in Section 3.2, we
have gained dramatic performance improvements fromGPU
parallelization. The figure also shows that double precision
calculations consume more runtimes than single precision
ones. The GTX580 is the fastest GPU among the three GPUs
we present.

4.4. Other Analysis. Temperatures in summer and in winter
are both simulated, as shown in Figures 15 and 16. We obtain
the steady thermal fields in summer (see Figure 15) and in
winter (see Figure 16), respectively. The thermal differences
between two thermal fields will produce thermal stresses,
which may cause cracking in concrete. The crack caused by
thermal stresses is a major research topic in future work.

5. Conclusions

In this study, the CDEM is successfully accelerated by using
GPUs. In CDEM, global stiffness matrix is not assembled,

and an element-by-element strategy is employed to solve
the equilibrium equation. This, as well as the performance
optimization, enables us to implement an efficient GPU
parallel procedure. Detailed tests on accuracy, runtime, and
speedup are performed on different GPUs. The results show
that dramatic performance improvements are gained from
GPU parallelization. A maximum speedup of 417 has been
achieved. The GPU parallelization of CDEM makes it more
powerful in multifield analysis of complex structures.
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