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The expressions of the radius and the surface tension of surface of tension Rs and γs in terms of the pressure distribution
for nanoscale liquid threads are of great importance for molecular dynamics (MD) simulations of the interfacial phenomena
of nanoscale fluids; these two basic expressions are derived in this paper. Although these expressions were derived first
in the literature [Kim B G, Lee J S, Han M H, and Park S, 2006 Nanoscale and Microscale Thermophysical Engineering,
10, 283] and used widely thereafter, the derivation is wrong both in logical structure and physical thought. In view of the
importance of these basic expressions, the logic and physical mistakes appearing in that derivation are pointed out.
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1. Introduction
Molecular dynamics (MD) simulation is one of the useful

methods to investigate the interfacial phenomena of nanoscale
fluids, because it can provide detailed information on the
molecular scale.[1,2] To use MD simulation to compute the ra-
dius and the surface tension of surface of tension Rs and γs

is of great importance for the study of interfacial phenomena.
To do this, the strict expressions of Rs and γs in terms of the
pressure distribution are needed.[3,4] In a recent paper, Kim
et al.[5] conducted MD simulations and presented a detailed
characterization of the thermophysical properties of nanoscale
liquid threads. As the basis of their MD simulations, they
derived a couple of expressions of Rs and γs in terms of the
pressure distribution for nanoscale liquid threads. However,
this derivation is wrong both in logical structure and physi-
cal thought, although the results are correct. In this paper, a
correct new derivation for these expressions will be given in
Section 2 and the mistakes appearing in the previous deriva-
tion will be pointed out in the Appendix.

2. Derivation of the expressions of RsRsRs and γsγsγs for
nanoscale liquid threads
Consider the liquid thread of a liqud phase α surrounded

by a vapor phase β . There must be a thin transition layer
between phase α and phase β where the density of phase α

changes to the density of phase β continuously. According to
Gibbs, the physical system we are studying can be described

by two bulk phases of constant densities of liqud and vapor,
separated by a dividing surface of radius R located in the thin
transition layer of the physical system, so R is not unique. For
this model system, we have a general Laplace equation[3]

pα − pβ =
γ

R
+

[
dγ

dR

]
, (1)

where γ is the surface tension of the dividing surface and
[dγ/dR] is the derivative for the same physical state of the
same system.

Neglecting the small difference between the two trans-
verse components of the pressure tensor, the pressure tensor in
cylindrical components is given by

¯̄P = pN (r)𝑒r𝑒r + pT (r) [𝑒θ𝑒θ+𝑒z𝑒z] , (2)

where 𝑒r, 𝑒θ and 𝑒z are orthogonal unit vectors, and pN (r) and
pT (r) are the normal and transverse components of the pres-
sure tensor respectively.[3] The mechanical equilibrium condi-
tion of pressure tensor ∇ · ¯̄P = 0 gives[5]

pT (r) = r
d pN (r)

dr
+ pN (r) . (3)

Equation (3) gives

d
dr

(r2 pN(r)) = r(pN(r)+ pT(r)). (4)

Integrating Eq. (4), we obtain

(Rβ )2 pβ − (Rα)2 pα ==
∫ Rβ

Rα

r[pN(r)+ pT(r)]dr, (5)
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where Rα and Rβ are the radii of two cylindrical surfaces in-
side the liquid and vapor, respectively, and pα and pβ are pres-
sures inside the liquid and vapor, respectively.

Besides, for the R satisfying Rβ > R > Rα , we have

∫ Rβ

Rα

2rpα,β (r,R)dr = (Rβ )2 pβ − (Rα)2 pα +R2(pα − pβ ), (6)

where pα,β (r,R) is a defined function pα,β (r,R) = pα (r <R),
pα,β (r,R) = pβ (r > R).

Combining Eqs. (5) and (6), we obtain

R2(pα − pβ ) =
∫ Rβ

Rα

rdr[2pα,β (r,R)− pN(r)− pT(r)]. (7)

Integrating Eq. (3) yields

∫ Rβ

Rα

pT(r)dr = Rβ pβ −Rα pα . (8)

Substituting Eqs. (1) and (8) into

∫ Rβ

Rα

pα,β (r,R)dr = Rβ pβ −Rα pα +R(pα − pβ ),

we obtain

pα − pβ =
γ

R
+

[
dγ

dR

]
=

1
R

∫ Rβ

Rα

[ pα,β (r,R)− pT(r)]dr. (9)

Equation (9) is a first-order ordinary differential equation
for γ(R). It can be written as

pα − pβ =
γ

R
+

[
dγ

dR

]
=

1
R2

∫ Rβ

Rα

r[ pα,β (r,R)− pT(r)]dr

− 1
R2

∫ Rβ

Rα

(r−R)[ pα,β (r,R)− pT(r)]dr. (10)

We can prove that

γ =
1
R

∫ Rβ

Rα

r
[

pα,β (r,R)− pT (r)
]

dr (11)

is a special solution of Eq. (10) as follows: from Eq. (11), we
obtain[

dγ

dR

]
= − 1

R2

∫ Rβ

Rα

r[ pα,β (r,R)− pT(r)]dr

+
1
R

∫ Rβ

Rα

r
[

d
dR

pα,β (r,R)
]

dr

= − 1
R2

∫ Rβ

Rα

r[ pα,β (r,R)− pT(r)]dr+(pα − pβ ),

which, combining with Eq. (9), gives[
dγ

dR

]
=− 1

R2

∫ Rβ

Rα

(r−R)[ pα,β (r,R)− pT(r)]dr.

Then we obtain Eq. (10).

So the general solution of Eq. (10) is

γ =
1
R

∫ Rβ

Rα

r
[

pα,β (r,R)− pT (r)
]

dr+
C
R
. (12)

To determine the constant C, we consider the equivalence
between the model system and the physical system. For
the model system, the axial stress distribution is pα,β (r,R)−
γ(R)δ (R− r) and the total axial stress of the model system
must be equivalent to that of the real physical system, i.e.,

2π

∫ Rβ

Rα

r[ pα,β (r,R)− γ(R)δ (R− r)]dr = 2π

∫ Rβ

Rα

rpT(r)dr.

Substituting Eq. (12) into this equation gives C = 0. Thus the
special solution equation (11) is the physical one.

Combining Eq. (7) and Eq. (11) gives

pα − pβ =
γ

R
+

1
R2

∫ Rβ

Rα

r[ pα,β (r,R)− pN(r)]dr. (13)

Comparing Eq. (13) with Eq. (1) we obtain[
dγ

dR

]
=

1
R2

∫ Rβ

Rα

r[ pα,β (r,R)− pN(r)]dr. (14)

The dividing surface with R = Rs satisfying[
dγ

dR

]
R=Rs

= 0 (15)

is called surface of tension.[3] The combination of Eqs. (14)
and (15) gives∫ Rβ

Rα

rpα,β (r,Rs)dr =
∫ Rβ

Rα

rpN(r)dr. (16)

From Eqs. (16) and (11), we obtain

γs =
1
Rs

∫ Rβ

Rα

r [ pN(r)− pT (r)]dr. (17)

From Eqs. (17) and (3), we obtain

γs =− 1
Rs

∫ Rβ

Rα

r2 d pN (r)
dr

dr =− 1
Rs

∫
∞

0
r2 d pN (r)

dr
dr, (18)

from which, by using general Laplace Eq. (1) and Eq. (15), we
obtain

R2
s =− 1

pα − pβ

∫
∞

0
r2 d pN (r)

dr
dr (19)

and

γ
2
s =−(pα − pβ )

∫
∞

0
r2 d pN (r)

dr
dr. (20)

3. Conclusion
A couple of expressions of the radius and the surface ten-

sion of surface of tension Rs and γs in terms of the pressure
distribution for nanoscale liquid threads are derived. The logic
and physical mistakes appearing in the derivation of the same
expressions in Ref. [5] are pointed out.
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Appendix A
We pointed out the mistakes in the derivation of expres-

sions of Rs and γs for nanoscale liquid threads in Ref. [5] in
the following.

In Appendix A of Ref. [5], a liquid thread was considered.
In cylindrical coordinates, the authors obtained the expression
of the radius Rs, i.e., Eq. (A11) and that of the surface ten-
sion γs, i.e., Eq. (A12), which are the same as our Eq. (19)
and Eq. (20), respectively. In Ref. [5], these two expressions
were derived “by combining Eqs. (A1), (A3), (A7), and (A10)
for R = Rs”. Among these four Eqs., Eq. (A7) contains two
equations, i.e., Eqs. (A7a) and (A7b)

pN (r) = pα,β (r,Rs) , (A7a)

pN (r)− pT (r) = γsδ (r−Rs) , (A7b)

where δ (r−Rs) is a Dirac’s delta function.
In fact, it is wrong to make use of Eqs. (A7a) and (A7b)

in the derivation of Eqs. (A11) and (A12). This is because

Eqs. (A7a) and (A7b) are only a special singular solution of
Eq. (A6) (i.e., our first order ordinary differential equation
Eq. (9)) in Ref. [5] but not its complete solution, so that it is
wrong to use this special singular solution to replace Eq. (A6)
in the derivation of the expressions (A11) and (A12) contain-
ing continuous function pN (r). Based on such a derivation in
Appendix A of Ref. [5], the expressions (A11) and (A12) (i.e.,
our Eqs. (19) and (20)) can only be looked at as two proper-
ties of the special singular solutions (A7a) and (A7b) and have
nothing to do with continuous solution pN (r). This negates
the validity of the derivation in Appendix A of Ref. [5].
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