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Abstract. Although the equations of ideal Magnetohydrodynamics (MHD) is a non-strictly 

hyperbolic system, they have a wave-like structure analogous to that of the hydrodynamics equations, 

various numerical schemes for hydrodynamics equations have been extended to solve the MHD 

equations. The finite compact (FC) scheme treats the discontinuity as the internal boundary and 

avoids the global dependence of the traditional compact schemes. By using a parameter-free shock 

detecting method, the computational domain is divided into a series of smooth regions and shock 

wave regions. In the shock wave regions, the shock capturing scheme is used to construct the 

numerical flux, and in the smooth regions the compact scheme is used, the flux of shock wave region 

is automatically the boundary formulation of the compact scheme. Hence, the FC scheme can resolve 

shock essentially non-oscillatory and achieve high order of accuracy in smooth region. This paper 

develops the non-oscillation finite compact scheme for the ideal MHD equations. 

Introduction 

The application of Magnetohydrodynamics(MHD) is received more attention recently, especially in 

designing thermal protection system, capturing inlet flow and improving the efficiency of combustion 

chambers. Since the equations of ideal Magnetohydrodynamics (MHD) have a wave-like structure 

analogous to that of the hydrodynamics equations, various numerical schemes for hydrodynamics 

equations have been extended to solve the MHD equations [1-8]. 

The ideal MHD equation is a non-strictly hyperbolic system. There are seven different 

eigenvalues of its Jacobian matrix. Hence the eigenstructure of MHD system is very complex. This 

results in the complexity of those numerical methods based on the eigenstructure[1-6]. The 

convective upwind and split pressure(CUSP) schemes, which consider the convective upwind 

characteristics of flow and do not require the eigen-decomposition process, have been extended to 

calculate the MHD equations recently[7,8]. 

Weighted essentially non-oscillatory(WENO) schemes have high order accuracy in smooth 

region and essentially no oscillation near shocks[9,10]. However, for the short waves or complex 

multi-scale flows, WENO schemes exhibit excessive diffusion[11,12]. In order to reduce numerical 

diffusion in complex flows, many hybrid schemes are proposed, such as hybrid central-WENO 

scheme, hybrid compact WENO scheme. Shen et al.[13-15] propose the finite compact scheme, 

which treats the discontinuity as the internal boundary and avoids the implicit global dependence of 

the traditional compact schemes. Combined with a parameter-free shock detector[15], the FC 

schemes show excellent advantages, i.e., the compact schemes' spectral-like resolution in smooth 

region and essentially non-oscillation of WENO schemes. 

In this paper, combined the Energy-CUSP(E-CUSP) scheme and the finite compact 

reconstruction, we develop the efficient and high order accuracy low diffusion method for 

calculating the MHD equations. 
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The numerical scheme 

Governing equations. The governing equations of ideal MHD can be expressed in vector form, 

U
F 0

t

∂ + ∇ ⋅ =
∂

                                                     (1) 

where, 

{ }U= , V,B,
T

eρ ρ ρ , 

( ) ( ){ }F= V, VV+ I BB,VB BV, V B V B
T

t tp e pρ ρ ρ− − + − ⋅ . 

E-CUSP schemes. In E-CUSP method[8], the x-direction flux E is decomposed to convective 

and generalized pressure fluxes as following,  

 E=f +P+u uϕ                                                        (2) 

where, 

{ }f = , , , , , , ,
T

x y zu v w e B B Bρ ρ ρ ρ ρ , { }0,0,0,0, ,0,0,0
T

tpϕ = , 

( ){ }P= 0, , , , + + , , ,-
T

t x y y x z x x x y z x y zp B B B B B B B uB vB wB uB vB wB− − − − − − . 

The numerical flux 1/2iE + is constructed as, 
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Non-oscillatory finite compact scheme. In paper [15], Shen and Zha proposed a lemma to 

detect the non-smooth stencil in computational region, i.e., 

Lemma 1. If ),,min( 2105 ISISIS>τ , then ( )5

2 1 2, ,...,i i iS x x x− − += is a non-smooth stencil. 

Where, 5 0 2IS ISτ = −  and 0 1 2, ,IS IS IS  are smoothness indicators given by Jiang and Shu[9]. 

There is no any artificial parameter introduced, hence this shock detecting method is robust and 

generally applicable. Using this lemma, the reconstruction algorithm of the finite compact is 

constructed as the following[15], 

BEGIN 

Step 0. Calculate 1/2u and 1/2Nu + using boundary formula. 

Step 1. 1M =  ! Looking for starting and ending points for compact scheme using  

Lemma 1. 

DO 1, 1i N= −  

Calculate 0 1 2, ,IS IS IS . 
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5 0 2IS ISτ = −  

IF 5 0 1 2min( , , )IS IS ISτ > THEN 

end_point(M) = i  ! Compact stencil ending point. 

M=M+1 

start_point(M) = i + 1 

Calculate 1/2iu + using WENO scheme: 

( )
2

1/2 1/2

0

ˆ k

i k i

k

u f xω+ +
=

=∑                                       (4) 

END IF 

ENDDO 

end_point(M)=N 

Step 2. DO k=1, M  ! Calculate fluxes on compact stencil (smooth region) k using a compact 

scheme. 

DO i = start_point(k), end_point(k) -1 

Calculate the right hand side 1/2id + of compact scheme. 

ENDDO 

Solve tridiagomal compact scheme: 

1/2 1/2 3/2 1/2i i i iu u u dα γ β− + + ++ + =                             (5) 

Where, i=start_point(k),...,end_point(k) -1 

ENDDO 

END 

Numerical results 

In this paper, the fifth-order WENO-Z scheme [10] and the sixth-order Pade compact 

scheme(parameters and formula in Eq.(5) can be found in [15,16]) are used in FC scheme, and the 

third-order TVD Rung-Kutta method[17] is used for the time marching. 

Circularly polarized Alfven waves. The propagation of a monochromatic circularly polarized 

Alfven wave is used to test the accuracy of the FC scheme in smooth MHD flow. Computational 

conditions are same as in Refs.[8,18].The computational domain is ( )0< <1/ cosx α , ( )0< <1/ siny α , 

where o30=α is the angle between x-axis and the propagation direction of Alfven wave. Initial 

conditions are given as, 

|| ||1, 0.1, 0, 1p v Bρ = = = = , ( )0.1sin 2 cos sinv B x yπ α α⊥ ⊥= = +   , 

( )0.1sin 2 cos sinv B x yπ α α⊥ ⊥= = +   , ( )0.1cos 2 cos sinzw B c yπ α α= = +   .

 

Where, 

cos siny xB B Bα α⊥ = − , cos sinx yB B Bα α= +
�

, 5 / 3γ = . 

Table1 shows the accuracy comparison of FC scheme and WENO-Z scheme. The errors of FC 

are much smaller than those of WENO-Z no matter in L∞ or 1L . The 1L  order of FC scheme 

approaches to sixth order. 

Table1. Accuracy of Alfven wave 
Scheme x yN N×  L∞ error L∞ order 1L error 1L order 

WENO-Z 8× 8 

16× 16 

32× 32 

3.01E-2 

8.93E-4 

2.38E-5 

__ 

5.07 

5.23 

1.99E-2 

6.37E-4 

1.68E-5 

— 

4.97 

5.25 
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64× 64 7.62E-7 4.96 4.99E-7 5.07 

FC 8× 8 

16× 16 

32× 32 

64× 64 

7.27E-3 

2.40E-4 

2.39E-6 

7.54E-8   

— 

4.92 

6.65 

4.98 

3.26E-3 

6.76E-5 

7.86E-7 

1.64E-8 

— 

5.59 

6.42 

5.58 

 

Orszag––––Tang turbulence problem. The Orszag-Tang MHD turbulence problem[19] has many 

significant characteristics of MHD turbulence, such as interactions of multiple shock waves 

generated as the vortex evolves, so it is considered as one of the standard models to validate a MHD 

numerical method. The computational domain is 0 2 , 0 2x yπ π< < < < . Initial conditions of this 

problem are given as, 

( ) ( ) ( )2, ,0 , , ,0 sinx y u x y yρ γ= = − , ( ) ( ), ,0 sinv x y x= ， 

( ), ,0p x y γ= , ( ) ( ) ( ) ( ), ,0 sin , , ,0 sin 2x yB x y y B x y x= − = . 

 

Fig.1. Density contour of Orszag-Tang MHD turbulence problem, WENO-Z and FC 

For this case, how to preserve the divergence-free condition∇・B=0 for the magnetic field B is a 

crucial issue, same as in[8], the constrained transport(CT) method proposed by Balsara and Spicer 

in paper[6] is used. The mesh of 192×192 is used in this paper. Fig.1 shows the density contour of 

WENO-Z scheme and FC scheme at 3.0t = . FC scheme can capture more detailed small scale 

structures than WENO-Z scheme. Fig.2 is density curves comparison along y π= . It can be seen 

that both two schemes obtain similar distributions. The higher values at peaks and lower values at 

valleys obtained by FC scheme show that FC scheme has lower diffusion than WENO-Z scheme. 

 

Fig.2. Density distribution along y π=  
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Summary 

In this paper, a high order low diffusion shock capturing method for computing MHD flows is 

developed. The new method combines the E-CUSP scheme used as Riemann solver and the finite 

compact scheme used as reconstruction scheme. Hence, the new method avoids the complex 

eigenstructure of the MHD system and has the properties of the finite compact scheme. Numerical 

results show that the present method has the high order low diffusion in smooth regions and 

essentially non-oscillation near shocks. 
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