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Abstract

In order to accurately simulate the interaction of shock wave/complex flows, hybrid schemes com-
bining a compact scheme and weighted essentially non-oscillatory(WENO) scheme are beneficial, in
particular due to the high order low dissipation schemes used in smooth regions. For a hybrid scheme,
there are two key issues, one is how to detect the discontinuity, the other is how to choose the high
order low dissipation scheme to ensure the accuracy, robustness and efficiency. In this paper, a shock
detecting method without any artificial parameter is proposed using the definition of the derivative.
Based on this shock detecting method, a high order accuracy low dissipation shock-capturing algorithm
is constructed. Numerical examples show that the shock detecting method and the hybrid algorithm are
accurate, efficient and robust.

1 Introduction

With the increasing research and application of computational fluid dynamics (CFD) in compressible flows,
it is desirable that the numerical methods of CFD have both the properties of capturing discontinuities such
as the shock waves with monotone profiles and high order low dissipation in smooth regions. However,
these two properties are often conflicting. Capturing shock wave requires numerical dissipation, but if
the numerical dissipation is excessive, it may overwhelm the actual physical diffusion. Researchers thus
propose the hybrid schemes combining shock-capturing schemes and high-order accuracy low dissipation
schemes, i.e. near shock wave regions, the shock-capturing schemes are used, while in smooth regions, the
high-order low dissipation schemes are used. An important and challenge issue is: how to detect a shock
accurately and efficiently.

Adams and Shariff[1] used a local maximum condition to detect the shock and proposed a hybrid
scheme of ENO scheme and compact difference scheme. Pirozzoli[2] used the first order difference of
three neighboring interface to switch the fluxes of WENO scheme and compact difference scheme. Ren
et al.[3] developed a weighted WENO-compact hybrid scheme, the abrupt transition from one sub-scheme
to another is avoided. Zhou et al.[4] followed the hybridization procedure of Ren et al[3], constructed the
hybrid scheme of WENO and compact upwind scheme in which free parameters are optimized for higher
spectral resolution. Shen et al.[5] treated the discontinuity as an internal boundary, proposed the finite
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compact (FC) scheme, and constructed the FC-TVD scheme, FC-ENO scheme, and used an improved
limiter as the shock detector to develop the hybrid FC-WENO scheme[6]. Numerical results show that
these hybrid schemes have the ability of capturing shock waves essentially with no oscillation, and have
the corresponding high order accuracy similar to the compact scheme in smooth region. Their limitation
is that the artificial, problem-dependent parameters are introduced to detect the shock position.

Hill and Pullin[7] used the smoothness indicator of WENO scheme to develop the hybrid scheme of
the tuned central-difference (TCD) scheme and WENO scheme. Pantano[8] applied a pressure and density
curvature based discontinuity detection crierion to switch schems from TCD to WENO around shocks.
Costa and Don[9] developed the hybrid central difference and WENO scheme, Hartens multi-resolution
algorithm[10] is used to switch two different schemes.

Another category numerical methods is to combine the high order accuracy low diffusion scheme with
the high order filters. For example, Yee et al.[11] used the non-dissipative fourth- or higher-order compact
and non-compact differencings as the base schemes, an artiticial compression method switch is used to
signal the appropriate amount of TVD or ENO types of characteristic based numerical dissipation, this
term acts as a characteristic filter to minimize numerical dissipation for the overall scheme. Yee and
Bjogreen[12] developed multiresolution wavelet decomposition of the computed flow data as sensors for
adaptive numerical dissipative control, where a experiential Lipschitz exponent is needed. Bogey et al.[13]
developed a shock-capturing methodology based on an adaptive spatial filtering, it applys a background
selective filtering at each mesh point and a shock-capturing filtering around discontinuities. Based on the
order analysis, Darian et al.[14] designed a shock detecting sensor for switching between a second-order and
higher-order filter. For the above mentioned methods, either the central-WENO hybrid schemes, or the
high order accuracy low dissipation scheme combined with the filters, they need an artificial (experiential),
problem-dependent parameter to determine whether the numerical dissipation is necessary for capturing
shocks. This greatly limits the applications of those numerical methods.

To develop parameter free hybrid schemes, Shen and Zha[15] proposed a lemma based on the WENO
smoothness indicators of Jiang and Shu[16] and Borges et al.[17] to detect shock regions and a class
of generalized finite compact difference schemes. Shen et al.[18] compared the performances of several
combined high order low diffusion schemes with the fifth order WENO scheme by using the lemma.

In this paper, based on the definition of a derivative, a parameter free shock detecting method different
from the one of Shen and Zha[15], which is based on the relation between the smoothness indicators, is
proposed. A class of high order shock-capturing hybrid algorithms are constructed. Numerical examples
show that the new methods are accurate, efficient and robust.

2 Shock Detector

Based on the definition of a derivative, the necessary and sufficient conditions for differentiability of a
function f at xi are:

(1) Both lim
∆x+

i →0

f+
i − fi

∆x+
i

and lim
∆x−

i →0

fi − f−
i

∆x−
i

exist,

(2) lim
∆x+

i →0

f+
i − fi

∆x+
i

= lim
∆x−

i →0

fi − f−
i

∆x−
i

,

where, ∆x+
i = x+

i − xi, ∆x−
i = xi − x−

i .
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2.1 Non-differentiability Indicator at Three-points Stencil

Based on above conditions, for the numerical computation, a sufficient condition for non-differentiability(it
is generalized to the spatial interval ∆xi, which can not be infinitesimal) of the function f at stencil
S3 = (xi−1, xi, xi+1) is proposed as following, Let

β0 = (fi+1 − fi), β1 = (fi − fi−1), τ = |β2
0 − β2

1 |, (1)

If
τ > min(β2

0 , β2
1) (2)

then f is non-differentiable at stencil S3. Note since β2
0 and β2

1 are used to detect the non-differentiable
point, a sharp peak point, which is a non-differentiable point, may be numerically treated as a local extreme
point.

Let ∆x = ∆x+ = ∆x−, using the method of reduction to absurdity, it is easy to prove above conclusion.
In fact, if f is smooth at stencil S3, by using Taylors expansion series, we have

{

β0 = f ′
i∆x + 1

2f ′′
i ∆x2 + 1

3f ′′′
i ∆x3 + · · ·

β1 = f ′
i∆x − 1

2f ′′
i ∆x2 + 1

3f ′′′
i ∆x3 + · · ·

(3)

it can be seen that τ is always an infinitesimal of a higher order than β2
0 and β2

1 .

2.2 Non-differentiability Indicator at Five-points Stencil

This can be generalized to the five-points stencil S5 = (xi−2, xi−1, xi, xi+1, xi+2). Let

β0 =
1

2
(fi−2 − 4fi−1 + 3fi), β1 =

1

2
(−3fi + 4fi+1 − fi+2), τ = |β2

0 − β2
1 | (4)

If
τ > min(β2

0 , β2
1) (5)

then f is non-differentiable at stencil S5.

β0/∆x and β1/∆x can be regarded as the second order left and right approximation of the first derivative
of f , respectively.

Similar as the prove of the indicator at three-points stecil, suppose that f is differential at stencil S5,
by using by using Taylors expansion series, we have

{

β0 = f ′
i∆x − 2

3f ′′′
i ∆x3 + 6

4!f
(4)
i ∆x4 + · · ·

β1 = f ′
i∆x − 2

3f ′′′
i ∆x3 − 6

4!f
(4)
i ∆x4 + · · ·

(6)

Hence, if f ′
i 6= 0, there is

τ = |f ′
if

(4)
i |∆x5 + O(∆x6)

while
β2

k = (f ′
i)

2∆x2 + O(∆x4), k = 0, 1.

that means τ is an infinitesimal with three order (about ∆x) higher than β2
k. This also shows that, under

the case with f ′
i 6= 0, the indicator with five points is more accurate than that with three points. If f ′

i = 0,
then τ is also an infinitesimal of a higher order than β2

k.
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2.3 Shock Detector

For the numerical calculation of the hyperbolic conservation laws, even if the solution contains discontinuity,
the first order derivative should be discretized. Thus, for applications of computational fluid dynamics,
the condition (2) or (5), can be used as the shock detector at the corresponding stencil.

3 The Numerical Algorithm

Considering the following hyperbolic conservation equation,

∂u

∂t
+

∂f

∂x
= 0 (7)

Its semi-discretized form can be written as

∂ui

∂t
= −

1

∆x
(hi+1/2 − hi−1/2) (8)

where hi+1/2 is the numerical flux function.

3.1 The Linear Difference Scheme

The general form of linear difference scheme is

q
∑

l=−p

γlhi+1/2+l =
n

∑

k=−m

akfi+k (9)

where γ0 6= 0. If γl = 0(l 6= 0), then hi+1/2 is the traditional explicit finite difference scheme; otherwise,
hi+1/2 is the compact finite difference scheme. The parameters p, q, m, n and the coefficients γl and ak

can be obtained according to different requirement and using Taylor expansion.

3.2 The WENO Scheme

The high order linear difference schemes always generate spurious numerical oscillation if the solution
contains large gradient or discontinuity. The weighted essentially non-oscillatory (WENO) schemes have
uniform higher order accuracy in smooth region and keep the essentially non-oscillatory properties near
shock waves, and are widely used in CFD applications. The numerical flux of the r-th order WENO scheme
can be written as

hi+1/2 =
r−1
∑

k=0

ωkqk (10)

where qk is the rth order approximation of hi+1/2 at stencil Sr
k = (xi+k−r+1, · · · , xi+k), the weights ωk are

defined as

ωk =
αk

∑2
l=0 αl

, αk =
Cr

k

(ISk + ǫ)p
(11)

Cr
k are the ideal weights to make flux (10) be the (2r − 1)− th order accurate. The smoothness indicators

ISk are given as

ISk =
2

∑

l=1

∆x2l−1
∫ xi+1/2

xi−1/2

(

q
(l)
k

)2
dx (12)
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where q
(l)
k is the lth-derivative of qk(x). The parameter ǫ is used to avoid the division by zero. In [16],

ǫ = 10−6 and the power p = 2 are suggested. Borges et al.[17] proposed new smoothness indicators ISz
k

for the 5th-order WENO scheme,

ISz
k =

ISk + ǫ

ISk + τ5 + ǫ
(13)

where τ5 is defined as
τ5 = |IS0 − IS2| (14)

3.3 Hybrid Algorithm Using the Parameter-free Shock Detector

In [15], Shen and Zha give the following lemma as the discontinuity detector[15]:

Lemma 1. If τ5 > min(IS0, IS1, IS2), then S5 is a non-smooth stencil.

Then, a generalized finite compact difference is suggested as the following:

(1) A zone containing a discontinuity is detected by using Lemma 1, and the fluxes within this zone
including at the zone boundaries are calculated by a WENO scheme.

(2) those smooth point(s) between two zones containing discontinuities(or between boundary point and
discontinuous interface)are defined as a compact stencil, and a compact scheme is used to calculate the
numerical fluxes on the compact stencil.

In [18], the above algorithm is generalized by using different high order schemes to substitute the
compact scheme used in step (2), and their performances are compared numerically.

In this paper, except the shock detector (2) or (5) is used, the constructing procedure of a hybrid
algorithm is the same as above mentioned procedure. For completeness, the procedure of the high order
low diffusion hybrid scheme is described as following,

Procedure of the High Order Low Dissipation Hybrid Algorithm

BEGIN

Step 0. calculate h1/2 and hN+1/2 using boundary formula

Step 1. M=1 ! looking for starting and ending points for smooth region using the shock detector

start point(M)=1 ! smooth region starting point

DO i=1,N-1

calculate τ

IF τ > min(β2
0 , β2

1) THEN

end point(M)=i ! smooth region ending point

M=M+1

start point(M)=i+1

calculate hi+1/2 using WENO scheme:

hi+ 1

2

=
2

∑

k=0

ωkqk (15)

END IF

END DO
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end point(M)=N

Step 2. DO k=1,M ! calculate fluxes on smooth region k using a high order scheme

DO j=start point(k), end point(k)-1

calculate the right hand side di+1/2

END DO

solve the equations(general form)

αhi−1/2 + γhi+1/2 + βhi+3/2 = di+1/2, (16)

where, i =start point(k), · · ·, end point(k)-1.

END DO

END

Note: in step (2), if the compact scheme is used, then the fluxes on the discontinuity zones obtained
from step (1) are automatically used as the internal boundary fluxes.

4 Numerical Examples

In this paper, the 4th order Runge-Kutta-type method[19] is used for the time marching of the governing
equations. For simplicity, the simple abbreviation is used to represent the different schemes, for example,
3p-4Pade-W5 denotes the three-points stencil shock detecor (2), 4th-order Pade compact scheme in smooth
region and 5th-order WENO scheme for the shock stencil are used.

4.1 Linear transport equation

The linear transport equation is used to test the accuracy of the new scheme.

∂u

∂t
+

∂u

∂x
= 0, −1 < x < 1 (17)

u(x, 0) = u0(x), periodic

(1)
u0(x) = sin(2πx) (18)

Table 1 gives the error and accuracy. It can be seen that, 3p-4Pade-W5 scheme is only 3rd-order
accurate for the L∞ error, while 5p-6Pade-W5 is uniformly 6th-order accurate. The reason is that, for the
three-points stencil detector, τ is only a first-order infinitesimal of β0 and β1 in smooth region, while for
the five-points stencil detector, τ is a third-order infinitesimal of β0 and β1. Compared Table 1 and the
results given in [18], for the smooth solution, the five-points stencil detector proposed in this paper and
the detector in Ref.[15] give the same results, except the former is slightly more accurate than the latter
at coarse grid.

(2)

u0(x) =



























1
6(G(x, β, z − δ) + G(x, β, z + δ) + 4G(x, β, z)), −0.8 ≤ x ≤ −0.6,
1, −0.4 ≤ x ≤ −0.2,
1 − |10(x − 0.1)|, 0 ≤ x ≤ 0.2,
1
6(F (x, α, α − δ) + F (x, α, α + δ) + 4F (x, α, a)), 0.4 ≤ x ≤ 0.6,
0, otherwise

(19)
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Table 1: Accuracy on ut + ux = 0 with u0(x) = sin(2πx), t=1
Scheme N L∞ error L∞ order L1 error L1 order

40 0.3423E-03 0.2102E-03
80 0.1021E-04 5.067 0.6308E-05 5.059

WENO-Z 160 0.3142E-06 5.022 0.1980E-06 4.994
320 0.9792E-08 5.004 0.6206E-08 4.995
640 0.3058E-09 5.001 0.1943E-09 4.998

40 0.5560E-03 0.2889E-03
80 0.5730E-04 3.278 0.2489E-04 3.537

3p-4Pade-W5 160 0.6825E-05 3.070 0.1801E-05 3.789
320 0.7551E-06 3.176 0.1205E-06 3.902
640 0.8799E-07 3.101 0.7712E-08 3.965

40 0.1000E-03 0.3167E-04
80 0.2446E-05 5.353 0.7561E-06 5.388

5p-6Pade-W5 160 0.4242E-07 5.850 0.1189E-07 5.991
320 0.6903E-09 5.941 0.1817E-09 6.032
640 0.1092E-10 5.983 0.2903E-11 5.968

Same as in Ref.[16], the constants for this case are taken as a = 0.5, z = −0.7, δ = 0.005, α = 10, and
β = log2/36δ2. The solution contains a smooth combination of Gaussians, a square wave, a sharp triangle
wave, and a half ellipse.

The results at t = 8 with 200 grid points are shown in Figs. 1 and 2. It can be seen that, 3p-4Pade-W5
and 5p-6Pade-W5 schemes obtain more accurate solution of Gaussians, a square wave, a sharp triangle
wave than the WENO-Z scheme. 3p-4Pade-W5 scheme overshoots at the extremum point of the ellipse
wave. For comparing, Fig. 3 gives the results of 5p-6Pade-W5 and the method in Ref.[15]. 5p-6Pade-
W5 is more accurate than the method in Ref.[15] for all waves. Since the the compact scheme and the
WENO scheme used in the two methods are the same, the results indicate that the shock detector of
τ5 > min(IS0, IS1, IS2) is more strict than the present detector of τ > min(β2

0 , β2
1).

4.2 1D Shock Wave Tube, Shu-Osher Problem

This problem is governed by the one-dimensional Euler equations with following initial condition:

(ρ, u, p) =

{

(3.857143, 2.629369, 10.3333), when x < −4,
(1 + εsin(5x), 0.0, 1.0), when x ≥ −4.

(20)

where, ε = 0.2. This case represents a Mach 3 shock wave interacting with a sine entropy wave[20]. Steger-
Warming flux vector splitting method[21] is used. The results at time t = 1.8 with mesh size 300 are
plotted in Fig. 4. The “exact” solutions are the numerical solutions of the original WENO-Z scheme with
grid points of N = 4000. For this case, it can be seen that, the present schemes resolves the wave peaks
better than the WENO-Z scheme due to smaller dissipation of a compact scheme.

4.3 Two-dimensional Shock/Shear Layer Interaction

A two-dimensional shock/shear layer interaction problem is solved to demonstrate these schemes for multi-
dimensional flows. The two-dimensional Navier-Stokes equations are solved for this problem:

∂U

∂t
+

∂E

∂x
+

∂F

∂y
=

1

Re

[

∂Ev

∂x
+

∂Fv

∂y

]

(21)
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where

U =











ρ
ρu
ρv
ρe











, E =











ρu
ρu2 + p
ρuv
u(ρe + p)











, F =











ρv
ρuv
ρv2 + p
v(ρe + p)











, Ev =











0
τxx

τxy

uτxx + vτxy + qx











, F =











0
τxy

τyy

uτxy + vτyy + qy











,

where τxx = µ(4
3

∂u
∂x − 2

3
∂v
∂y ), τxy = µ( ∂v

∂x + ∂u
∂y ), τxy = µ(4

3
∂v
∂y − 2

3
∂u
∂x).

p = (γ − 1)(ρe − ρ(u2 + v2)/2), γ = 1.4.

An oblique shock with angle β = 12o is made to impact on a spatially developing mixing layer at an
initial convective Mach number of 0.5. The computation domain is taken to be [x, y] = [0, 200]× [−20, 20].
The inflow is specified with a hyperbolic tangent profile,

u = 2.5 + 0.5tanh(2y) (22)

For the upper stream inflow, ρu = 1.6374, pu = 0.3327; for the lower stream inflow, ρl = 0.3626, pl = 0.3327.
The upper boundary condition is taken from the flow properties behind the oblique shock. The lower wall
uses a slip condition.

Fluctuations are added to the v-component of velocity of the inflow as

v′ =
2

∑

k=1

akcos(2πkt/T + φk)exp(−y2/b) (23)

with period T = λ/uc, wavelength λ = 30, convective velocity uc = 2.68, b = 10, a1 = a2 = 0.05, φ1 = 0
and φ2 = π/2.

The Prandtl number is set to 0.72, and the Reynolds number is chosen to be 500. The viscosity µ is
calculated by using Sutherland formula. The 4th-order central difference scheme[22] is used for the viscous
terms. The uniform grid, 321 × 81, is used. The time step is taken as follows[2]:

∆t = δ
∆tx∆ty

∆tx + ∆ty
, with ∆tx =

∆x

maxi,j(|ui,j | + ci,j)
, ∆ty =

∆y

maxi,j(|vi,j | + ci,j)
(24)

where δ = 0.5 is the CFL number.

The Steger-Warming flux vector splitting method[21] is used to calculate the interface fluxes. The
density contours are shown in Fig. 5. Due to only the 4th-order Pade scheme is used in smooth regions,
3p-4Pade-W5 resolves the structures of last four vortices not so clear as the WENO-Z (5th-order accurate
in smooth regions) scheme. However, 5p-6Pade-W5 obtains vortex structures with significantly higher
resolution than the WENO-Z scheme.

4.4 Rayleigh-Taylor instability

This problem has been simulated by many authors, e.g. [23], [24] and [25], to test the numerical dissipation
of various high order shock capturing schemes. The initial conditions are

(ρ, u, v, p) =

{

(2, 0, −0.025αcos(8πx), 2y + 1) if 0 ≤ y < 1/2
(1, 0, −0.025αcos(8πx), y + 3/2) if 1/2 ≤ y ≤ 1

(25)

where, α =
√

γp/ρ is the sound speed, the ratio of specific heats γ = 5/3. This problem represents the
interface instability between fluids with different densities when an acceleration is directed from heavy
fluid to light one. The gravitational effect is introduced by adding ρ and ρv to the right hand side of
the y-momentum and the energy equations, respectively. Reflective boundary conditions are imposed for
the left and right boundaries, and (ρ, u, v, p) = (1, 0, 0, 2.5) and (ρ, u, v, p) = (2, 0, 0, 1) are set as top and
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bottom boundary conditions, respectively. The computational domain is [0, 1/4]× [0, 1], and the simulation
time is t = 1.95.

As analyzed in [24, 25], due to the invisid Euler equation is solved, the details of the complex structures
due to the physical instability are related to the specific form of numerical viscosity of the scheme. From
the density contours ploted in Fig. 6, it can be seen that, the present method with coarse meshes of
61 × 241 can obtain the comparable solution of WENO-Z scheme with meshes of 121 × 481. The different
instability structures between the present method and the method developed in [15] show that the different
shock indicators can generate different numerical viscosity. The difference is more obvious with the refined
meshes.

5 Conclusions

In this paper, based on the definition of a derivative, a new shock detecting method without any artificial
parameter is proposed. The new shock detector is used with a high order accuracy low dissipation shock-
capturing algorithm, in which the high order WENO scheme is used at the shock stencil determined by
the shock detecting method and the high order compact scheme is used at the smooth stencils. Hence, the
new algorithm has both the non-oscillatory property of WENO scheme and high order low dissipation of
compact scheme. Numerical examples show that the new method is accurate, efficient and robust.
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Figure 1: Linear transport equation, problem 2,
t = 8
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Figure 2: Locally enlarged plot of Fig. 1
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Figure 3: Linear transport equation, problem 2,
t = 8
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Figure 4: Shu-Osher problem, t = 1.8
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Figure 5: Density contours of the shock
wave/shear interaction, t = 120.

Figure 6: Rayleigh-Taylor instability, t = 1.95.
From left to right: WENO-Z, Shen and Zha[15],
present method. From top to bottom: 61 × 241,
121 × 481, 481 × 481.
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