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We present a cell-centered finite volume method for the fully coupled discretization of 
single-phase flow in fractured porous media. Fractures are discretely modeled as lower 
dimensional elements. The method works on structured/unstructured and hybrid grids. An 
explicit time discretization is employed to solve steady/unsteady problems. Results from 
two-dimensional and three-dimensional simulations are presented. 

INTRODUCTION 
Modeling of flow in fractured porous media plays an integral role in many areas of the geo-

sciences, ranging from groundwater hydrology to oil [1, 2]. It is also of high importance in radio-
active waste management and hydraulic fracturing.  

Flow simulations in fractured media are challenging for several reasons such as uncertainty in 
fracture location, complexity in fracture geometry, dynamic nature of fractures, etc. A discretiza-
tion of a fractured medium domain with volumetric elements in the fractures requires a mesh 
which resolves the geometry of the problem. Besides, the large contrast in the rock matrix and 
fracture permeability coupled with small fracture openings makes the numerical simulation chal-
lenging. Therefore, a mixed-dimensional finite volume discretization method is applied [3], which 
realizes fractures as lower-dimensional elements. One-dimensional elements are used for frac-
tures in two-dimensional domains and two-dimensional fracture elements in three-dimensional 
domains. This method is suited for structured/unstructured grids and locally refined grids.  

There are two types of finite volume methods and the cell-centered one is employed in order 
to model hydraulic fracturing in future. It’s considered that the cell-centered type has a better 
numerical stability than the node-centered one in many aspects though a bit less accuracy than 
the latter one. 

In this study, we first present the governing equations of single-phase flow, and then intro-
duce the numerical models. After model introduction, several numerical simulations are tested. 
Results from two-dimensional and three-dimensional simulations are both presented. Some con-
clusions are drawn afterwards. 

GOVERNING EQUATIONS 
Darcy’s law, in its simplified form and ignoring gravitational forces, can be used to obtain ve-

locity field, 

k pv  (1) 

where v denotes the velocity field and p represents the pressure values. The pressure equation for 
single-phase flow in porous media in the absence of gravity and capillary forces can be written as 
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where q stands for external sinks and sources. In the above equations, k, , c and  are physical 
properties of porous media and they stand for permeability, viscosity, compressibility and porosi-
ty respectively.  

Equations (1) and (2) work on flow in fractures as well despite the different physical proper-
ties from matrix. The porosities of fractures equal unity and the permeabilities can be written in 
the following form [4] 

2

12f
ak  (3) 

where a denote the apertures of fractures. 

NUMERICAL MODELING 
To derive the set of finite volume mass balance equation for pressure equation, consider a grid 

cell i in the domain denoted by . j is one of the neighboring cells of i and they own the 
same interface ij = i  j. They are shown in the Fig 1 below. The centers of the two cells 
are Ci and Cj respectively. Co is the middle point of ij.  

         
(a) Unstructured mesh                                (b) Structured mesh 

Fig 1. Geometry representation of two adjacent cells in two dimensions – the solid dot indi-
cates the control volume and the hollow dot indicates a virtual and auxiliary point 

The finite volume method is derived by obtaining the relationship between flux Qij across the 
interface ij and pressures p of the two adjacent cells. Let K = k /  for simplicity. The flow ve-
locities along line segments CiCo and CoCj can be obtained from Darcy’ law, 
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Flux across interface ij can be calculated by taking the following integral, 
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where A is the area of the interface between the adjacent cells, Ki is the intrinsic permeability of 
cells i, Di is the distance between the cell center and the middle point of the interface, ni is the 
unit normal vector to the interface and di is the unit direction vector along CoCi. 

We can obtain (pi – po) from equation (6) and (po – pj) from equation (7). By adding the two 
terms, we get 

( ) ( )
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i j ij
i i i j j j

DDp p Q
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 (8) 

By denoting i
i i i

i
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d n , j
j j j
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ij

i j

T , the above equation can be 

simplified below 

( )ij ij i jQ T p p  (9) 

where Tij represents the geometric transmissibility between cell i and cell j. 

For steady flow, mass balance equation can be obtained by taking the following integral 

( ) 0
i

q dVv  (10) 

Using divergence theorem, the equation (10) transforms into the following 

i i

dV qdVv n  (11) 

The left term of equation (11) can be calculated by equation (9), 

( )
i

ij i jj
dV T p pv n  (12) 

By denoting
i

iqdV Q , we get the numerical scheme for steady flow 

( )ij i j ij
T p p Q  (13) 

where Qi is the volumetric flux of cell i. The j denotes the number of interfaces of the cell. 
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For unsteady flow, an explicit time discretization is used. By taking the integral of equation (2) 
over cell i with the difference form of pressure derivative, the numerical scheme for unsteady 
flow can be given below 

1

( )
i

n n

i ij i jj

p pc dV Q T p p
t

 (14) 

Thus, we get an explicit scheme by transforming the above equation into the following 

1
( )i ij i jjn n

i i i

Q T p p
p p t

cV
 (15) 

Consider a system with N degrees of freedom where N is the sum of the number of the matrix 
and fracture cells. The scheme can be rewritten as the form of matrix 

1 1( )n n n n tP P C Q TP  (16) 

where Pn is the pressure vector with dimension N × 1, C is the compressibility matrix which is 
diagonal and Nth-ordered, Qn is the flux vector with dimension N × 1 as well and T is the trans-
missibility matrix of dimension N × N.  

The above equations work on flow in three dimensions and coupling flow of two and three 
dimensions as well, but some treatment should be done as shown in Fig 2 and Fig 3. 

 
Fig 2. Treatment of coupling between matrix and fractures 

 
Fig 3. Fracture intersection – using the star-delta transformation [5] 
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NUMERICAL SIMULATIONS 
Several numerical simulations are given to test the scheme. 

Case 1. At first an example of flow through matrix in three dimensions is shown below. It’s a 
ring flow and it has been tested right. 
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        (a) Grids for calculation            (b) Results from calculation by the scheme 

Fig 4. A 3D case: grids and results of flow through matrix 

Case2. Secondly, we present an example of flow through fractures in three dimensions. 
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(a) Grids of fracture domain        (b) Unsteady-state result           (c) Steady-state result 

Fig 5. A 3D case: grids and results of flow through fracture 

Case 3. At last, an example of structured grids in two dimensions is given below. 

               
   (a) Structured grids for calculation            (b) Distribution of fractures in matrix 

Fig 6. Grids for calculation in case 1 
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We give two different simulation results. 

 
(a) t=5s  Matrix        (b) t=5s Matix-fracture      (c) t=200s  Matrix   (d) t=200s Matrix-fracture 

Fig 7. Results from Case 1: Matrix v.s. Matrix/Fracture 

The results show that the fractures have a significant influence on flow. When fluid flows 
from matrix to fractures, the front becomes sharp as show in Fig 7. 

CONCLUSION 
The three cases we give show that this cell-centered finite volume scheme is suitable for cal-

culation of single-phase flow in fractured porous media. The features of the presented method 
can be summarized as follows: 

 Discrete fracture model in 2D and 3D domains. 
 Structured/unstructured and hybrid grids. 
 Fully coupled mass-conserving cell-centered finite volume discretization. 
 Explicit time discretization. 
 Steady/unsteady flow in matrix-matrix, matrix-fracture, and fracture-fracture. 

ACKNOWLEDGMENTS 
The authors would like to acknowledge the financial support of China National Program on 

Key Basic Research Project (973 Program, Grant No. 2010CB731500). 

REFERENCES 
1. G. I. Barenblatt, I. P. Zheltov, I. N. Kochina, ‘Basic concepts in the theory of seepage of ho-

mogeneous liquids in fissured rocks’, Journal of Applied Mathematical Mechanics, No.24, 
1286–1303, 1960. 

2. J. E. Warren, P. J. Root, ‘The behavior of naturally fractured reservoirs’, Soc. Pet. Eng. J., 
228, No.3, 245–255, 1963. 

3. V. Reichenberger, H. Jakobs, P. Bastian, R. Helmig, ‘A mixed-dimensional finite volume 
method for two-phase flow in fractured porous media’, Advances in Water Resources, 29, 
No.7, 1020–1036, 2006. 

4. D. T. Snow, A parallel plates model of fractured permeable media, Ph.D. Thesis, University 
of California, Berkeley, 1966. 

5. M. Karimi-Fard, L. J. Durlofsky, K. Aziz. ‘An efficient discrete-fracture model applicable for 
general-purpose reservoir simulators’, SPE Journal, No.9, 227–236, 2004. 

-  135 - DEM6 - International Conference on DEMs


