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ABSTRACT: Dynamic responses of soil foundation are difficult to analyze though it 

is related to kinds of practices. In this paper dynamic responses of soil foundation 

under dynamic load were analyzed theoretically. Perturbation method was used to 

obtain the theoretical solution. Controlling equations were about liquid-solid two-

phase media. Flow function and potential function were introduced to decouple the 

controlling equations. Then perturbation expansion was introduced into the equations 

of flow function and potential function. The responses characteristics are discussed.   

 

INTRODUCTION 

 

 More and more dynamic responses of soil foundations are required to be analyzed 

in practice. For an example, offshore platforms are applied in more and more 

complicated ocean environments and geological conditions, so dynamic failure 

becomes the key problem of platforms (Wang et al. 2006; Lu et al. 2005a; Lu et al. 

2005; Lu et al. 2005b; Bye et al. 1995). Load of ocean wave or ice-induced vibration 

can be transferred to the ocean floor by platform foundations (piles, suction caissons 

etc.) to cause the dynamic responses of ocean floor such as deformation and even 

liquefaction (Lu et al. 2004)

Up to now, few theoretical methodologies have been proposed to analyze the 

dynamic responses of soil foundations subjected to dynamic load (Mamoon and 

Banerjee 1990; Lu et al. 2006). Structural foundations are most embedded in 

saturated soils. Thus the methodology must be able to consider the percolation in 

saturated soils and pore pressure increase and the soil strength decrease. The 

development of pore pressure and soil strength is crucial for understanding the 

liquefaction mechanism of the soil foundations.  

   In this paper the dynamic responses of soil foundation in saturated soils under 

horizontal dynamic load are investigated by using the perturbation expansion method. 

The behavior of saturated soils is described by poro-elastic two-phase media. By 

introducing the potential and flow functions, the solving process is simplified. The 

development of pore pressure is mainly discussed. 
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PROBLEM AND CONTROLLING EQUATION 

 

   Problem is assumed as a half-infinite plane (Fig. 1). Dynamic load is applied at the 

left boundary. The upper boundary is free, the bottom is fixed and undrained.  The 

soil layer is saturated. The water and soil grains are incompressible. Change of 

porosity is small and its gradient can be neglected. All equations are linearized with 

constant coefficients. Density of each phase is constant. Hooke’s law suits for soil 

skeleton. 

 
    FIG. 1. Sketch of the problem. 

 

MODEL OF THE PROBLEM 

 

Momentum Equations of The Skeleton and the Pore Water 
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To remove the static effective stresses and pore pressure we shall replace 

henceforth ij  by    ijsij gy  1 and p by gyp  . 

Then the above equations become homogeneous 

 

t

v

t

u
v

Kx

p

t

v

t

u

x

p

x

ii
i

i

ii
s

ij

ij









































)(

1
2

2

                                (2) 

Eliminating p the first equation becomes 

  )(1)(
2

2

t

v

t

u

t

u
v

Kx

ii
s

i
i

j

ij






















    (3) 

12 IACGE 2013

 IACGE 2013 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

M
on

as
h 

U
ni

ve
rs

ity
 o

n 
04

/0
7/

14
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



Mass Conservation Equations of Skeleton and Pore Water 
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For constant density, these two equations combine to form 
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Constitutive Equations-Hooke’s Law 
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Reduction of Equations 

Introduce potential and “flow” functions such that 
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From the mass conservation relation (5) 
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Similarly taking the divergence and curl of equation (3) respectively, we have 
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  In this problem,  Ks  is a small parameter, we can give the asymptotic 

expansions by using of multi-scale method: 
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 in which   21 , . Institute these expressions into eq.(13) and (14),we can 

obtain: 
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  Institute eq.(15) into eq.(10) and neglecting the high order small parameter, we can 

obtain: 
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Then institute eq. (9) into the above equation: 
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Considering the first one in the above equation, the first one of eq.(16) becomes: 
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 The boundary and initial conditions for p is as follows: 
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in which L is the depth of the soil layer. Then p can be obtained as follows: 
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We first seek for the zero order solution 
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By the fourth of eq.(14),  1

s  can be obtained in the following way. 
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            0, 1  sx                                                  (29) 
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Initial conditions:  
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By the second of eq.(18),  1p can be obtained: 

       ti

n

x
D

i

n

nn

n

n

eye

D

i
L

Lia
p

n 


























0 22

1
2

cos
1121

             (34) 

The solution of the problem (eqs.(21), (27),(32) and (34)) is formed by stable terms 

and decaying terms in x direction, which means that the seepage and deformation 

decay gradually away from the load side.  

Responses of soil layer can be obtained by computation with the above equations. 

Basic parameters are as follows: depth of soil layer L=1, porosity =0.3, density of 

water w=1000kg/m
3
, density of skeleton s=2650kg/m

3
, Poisson ratio =0.3, shear 

modulus G=10
5
Pa, viscosity of water =0.001, physical permeability 10

-10
m

2
, 

coefficient a=10
5
, frequency =1.0. 

The numerical solutions show that the response of the soil decays gradually in 

horizontal direction. Pore pressure decreases fast in the range of 20% of the total 

length in horizontal direction near the load end (Fig.2a). In vertical direction, the 

pore pressure increases from the top to the bottom. Pore pressure increases fast in 

the upper part about 50% of the total depth (Fig.2b). At any location, pore pressure 

fluctuations with time (Fig.2c). It is shown that the numerical results are agreement 

well with the experimental results (Lu et al. 2007) (Fig.2d). 
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                   FIG.2. Development of pore pressure. 

 

CONCLUSIONS 

 

Dynamic responses of soil foundation under horizontal distributed dynamic load 

were analyzed theoretically. A method to obtain the direct analytical solution is 

presented. Based on liquid-solid media theory, two dimensional two-phase 

controlling equations are obtained. Flow function and potential function are 

introduced to decouple the controlling equations, which makes the solving of the 

equations much simple.  

The response is formed by stable part and decaying part, which means that the 

response becomes to stable gradually. At about 1m from the load end, about equals 

to the length of the soil layer, the response disappears. So there is a maximum 

affected zone in the soil layer under dynamic load. 

 

ACKNOWLEDGEMENTS 

 

This work was supported by the National Science Foundation of China (No.11272314 

and No.11102209). 

IACGE 2013 17

 IACGE 2013 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

M
on

as
h 

U
ni

ve
rs

ity
 o

n 
04

/0
7/

14
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



REFERENCES 

 

Wang Y. H., Lu X. B. Wang S. Y. et al. (2006). "The responses of the bucket 

foundation under horizontal dynamic loading." Ocean Engrg., Vol.33: 964-973. 

Lu X. B., Zhang J. H.,  Wang S. Y. et al. (2005). "Experimental study of the pore 

pressure and deformation of suction bucket foundations under horizontal dynamic 

loading." Chinese Ocean Engr., Vol. 19(4): 671-680. 

Lu X. B., Wu Y. R., Jiao B. T. et al. (2007). "Centrifugal experimental study of 

suction bucket foundations under dynamic loading." ACTA Mech. Sinica, Vol. 23: 

689-698. 

Lu X. B., Liu C., Wang S. Y. et al. (2005). "On the bearing capacity of bucket 

foundations in saturated sands." Int. J. Offshore Polar Engrg.,Vol.15 (4): 300-303. 

Bye A., Erbrich C., Earl K. et al. (1995). "Geotechnical design of bucket foundation." 

Proc. Offshore Tech. Conf., OTC10994, Houston, USA, OTC7793, 869~883 

Lu X. B., Tan Q. M., Cheng Z. M. et al.(2004). "Liquefaction and displacement of 

saturated sand under vertical vibration loading." ACTA Mech. Sinica, Vol. 20 (1): 

96-105. 

Mamoon S. M. and Banerjee P.K. (1990). “Response of piles and pile groups to 

traveling SH-waves.” Earthquake Eng. Struct. Dynam., Vol.19: 597–610. 

Lu J. F., Dong S. J., Wei D. N. (2006). “Dynamic response of a pile embedded in a 

porous medium subjected to plane SH waves.” Computers and Geotechnics, 

Vol.33: 404–418. 
 

NOMENCLATURE 

 

 densityof fluid 

s   density of solid 

iu   displacements of solid in three directions 

iv   velocities of fluid in three directions 

 porosity 

p   fluid pressure 

ij  effective stress 

g    gravitational acceleration 

G    shear modulus 

Poisson ratio   

s   Potential functions of solid 

s  flow functions of solid 

    Potential functions of water 

   flow functions of water 

K   the physical permeability (  kgw  / ) 

w  the density of the water 

k   the Darcy’s permeability 

g   the gravity acceleration 
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