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ABSTRACT: Dynamic responses of soil foundation are difficult to analyze though it
is related to kinds of practices. In this paper dynamic responses of soil foundation
under dynamic load were analyzed theoretically. Perturbation method was used to
obtain the theoretical solution. Controlling equations were about liquid-solid two-
phase media. Flow function and potential function were introduced to decouple the
controlling equations. Then perturbation expansion was introduced into the equations
of flow function and potential function. The responses characteristics are discussed.

INTRODUCTION

More and more dynamic responses of soil foundations are required to be analyzed
in practice. For an example, offshore platforms are applied in more and more
complicated ocean environments and geological conditions, so dynamic failure
becomes the key problem of platforms (Wang et al. 2006; Lu et al. 2005a; Lu et al.
2005; Lu et al. 2005b; Bye et al. 1995). Load of ocean wave or ice-induced vibration
can be transferred to the ocean floor by platform foundations (piles, suction caissons
etc.) to cause the dynamic responses of ocean floor such as deformation and even
liquefaction (Lu et al. 2004).

Up to now, few theoretical methodologies have been proposed to analyze the
dynamic responses of soil foundations subjected to dynamic load (Mamoon and
Banerjee 1990; Lu et al. 2006). Structural foundations are most embedded in
saturated soils. Thus the methodology must be able to consider the percolation in
saturated soils and pore pressure increase and the soil strength decrease. The
development of pore pressure and soil strength is crucial for understanding the
liquefaction mechanism of the soil foundations.

In this paper the dynamic responses of soil foundation in saturated soils under
horizontal dynamic load are investigated by using the perturbation expansion method.
The behavior of saturated soils is described by poro-elastic two-phase media. By
introducing the potential and flow functions, the solving process is simplified. The
development of pore pressure is mainly discussed.
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PROBLEM AND CONTROLLING EQUATION

Problem is assumed as a half-infinite plane (Fig. 1). Dynamic load is applied at the
left boundary. The upper boundary is free, the bottom is fixed and undrained. The
soil layer is saturated. The water and soil grains are incompressible. Change of
porosity is small and its gradient can be neglected. All equations are linearized with
constant coefficients. Density of each phase is constant. Hooke’s law suits for soil
skeleton.
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FIG. 1. Sketch of the problem.

MODEL OF THE PROBLEM

Momentum Equations of The Skeleton and the Pore Water
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To remove the static effective stresses and pore pressure we shall replace

henceforth o, byo, —(1-s)p, —p)gvs, and p by p+pey.

Then the above equations become homogeneous
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Eliminating p the first equation becomes
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Mass Conservation Equations of Skeleton and Pore Water
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For constant density, these two equations combine to form
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Constitutive Equations—Hooke’s Law
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Reduction of Equations
Introduce potential and “flow” functions such that

u = Gradg, + Curly _ with Diviy _ =0

v = Gradep + Curly with Diviy =0
From the mass conservation relation (5)
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From the second of equation (2), we have

Vp=—pV’ @—ﬁvz((p—%]

o K ot
And
- Oy 2 Oy
LN (y—Lsy=—_py2 2L
K" V) o
We choose

o, Wy Lo
( )=-p—

Similarly taking the divergence and curl of equation (3) respectively, we have
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In this problem, 7 = wp,K/u is a small parameter, we can give the asymptotic

expansions by using of multi-scale method:
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in which 7, =7, 7, =57 . Institute these expressions into eq.(13) and (14),we can
obtain:
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Institute eq.(15) into eq.(10) and neglecting the high order small parameter, we can
obtain:
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Then institute eq. (9) into the above equation:
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Considering the first one in the above equation, the first one of eq.(16) becomes:
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The boundary and initial conditions for p is as follows:
x=0; u, =aye™
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in which L is the depth of the soil layer. Then p can be obtained as follows
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By the first of eq.(18), we have
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We first seek for the zero order solution
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By the fourth of eq.(14), 1/75(‘) can be obtained in the following way.

Boundary conditions:
5!/7(1)
=0, ax :—Za cos B,y B; + (28)
v
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x—>oo,175 -0 (29)
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v, can be expressed as:
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By the second of eq.(18), p(l) can be obtained:
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The solution of the problem (egs.(21), (27),(32) and (34)) is formed by stable terms
and decaying terms in x direction, which means that the seepage and deformation
decay gradually away from the load side.

Responses of soil layer can be obtained by computation with the above equations.
Basic parameters are as follows: depth of soil layer L=1, porosity €=0.3, density of
water pW—IOOOkg/m density of skeleton p,=2650kg/m’, Poisson ratio p=0.3, shear
modulus G=10°Pa, viscosity of water v=0.001, physical permeability 10 Om?,
coefficient =10, frequency w=1.0.

The numerical solutions show that the response of the soil decays gradually in
horizontal direction. Pore pressure decreases fast in the range of 20% of the total
length in horizontal direction near the load end (Fig.2a). In vertical direction, the
pore pressure increases from the top to the bottom. Pore pressure increases fast in
the upper part about 50% of the total depth (Fig.2b). At any location, pore pressure
fluctuations with time (Fig.2c). It is shown that the numerical results are agreement
well with the experimental results (Lu et al. 2007) (Fig.2d).
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FIG.2. Development of pore pressure.

CONCLUSIONS

Dynamic responses of soil foundation under horizontal distributed dynamic load
were analyzed theoretically. A method to obtain the direct analytical solution is
presented. Based on liquid-solid media theory, two dimensional two-phase
controlling equations are obtained. Flow function and potential function are
introduced to decouple the controlling equations, which makes the solving of the
equations much simple.

The response is formed by stable part and decaying part, which means that the
response becomes to stable gradually. At about 1m from the load end, about equals
to the length of the soil layer, the response disappears. So there is a maximum
affected zone in the soil layer under dynamic load.
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NOMENCLATURE

p density of fluid

ps density of solid

u; displacements of solid in three directions
v, velocities of fluid in three directions
porosity

fluid pressure

effective stress

shear modulus
Poisson ratio
o, Potential functions of solid

€
p
O
g gravitational acceleration
G
v

v, flow functions of solid

¢ Potential functions of water

w flow functions of water

K the physical permeability (= p, g /(1))
p,, the density of the water

k the Darcy’s permeability

g the gravity acceleration
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