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Abstract 

This paper generally describes the research advances on dynamical response and structural integrity of submerged floating tunnel

(SFT) subjected to hydrodynamic load and accidental load, which were accomplished by a research team in the Institute of 

Mechanics, Chinese Academy of Sciences in recent years. By means of theoretic analysis, modeling, calculation and 

experimental investigation, the research team has achieved creative results in several aspects including: (1) ABB Selection and its 

environmental & geotechnical conditions for ABP design, (2) Dynamic characteristics of SFT due to wave and current loads, (3) 

Effects of SFT structural parameters on its dynamic response, (4) Geotechnical investigations and tension pile analysis, (5) 

Dynamic response of SFT due to seismic load and accidental load, (6) Effects of water and sea-water on high-cycle and very-

high-cycle fatigue behavior for metallic materials, and (7) Design of ABP of Qiandao Lake and its structure analysis & strength

assessment. 
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1. Introduction 

Submerged floating tunnel (SFT) i.e. Archimedes Bridge is a kind of structural passage floating and submerged 

within water body to bridge two shores, which takes the advantage of buoyancy and is tethered to the foundation and 

the shore. Fig. 1(a) shows an SFT demonstration model in our laboratory. SFT is a new alternative solution for the 

crossing of sea strait, river, lake or other water sound with the water depth of 50 meters or more. As an innovative 

technique, it will become attractive competing with other traditional techniques with its economic and 

environmental advantages. At present, there is still not an actual SFT being built in the world. To build such a 

structure will encounter various technical problems and difficulties. These include structure type of the tunnel, 

tethering to the tunnel, anchoring to water-bed, installation, shore connection, etc. Water wave and current effect, 

earthquake effect and tsunami effect need to be investigated. Thus, experimental investigations and numerical 
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simulations in laboratory may provide useful premise for the design and the preparation of construction. Another 

important step is to build an SFT prototype to show its feasibility for the world. 

Fig. 1. (a) An SFT demonstration model in laboratory of IMECH; (b) West view of ABB, the line indicating the selected route for ABP  

Since 1980s, there have been researches regarding SFT conceptual design and dynamic response by investigators 

from Italy, Norway, China, Japan, USA, etc. Brancaleoni et al. [1] first simulated the dynamic response of SFT with 

different mooring types. They suggested that the short-span tunnel with large buoyancy can provide stiffness to 

withstand severe environments, and when moored by cables, an initial sufficient tension should be given to avoid 

slackening phenomena. Remseth et al. [2] calculated the problem of two-dimensional hydrodynamics of SFT under 

regular waves. Their results indicated that the maximal response may occur for non-normal incidence of waves, and 

the introduction of short crested waves will reduce the directionality effects. Kanie et al. [3] and Kunisu et al. [4] 

analyzed the effect of waves on the dynamics of SFT under regular waves. They found when oblique angle of the 

incident wave increases, the wave force in the transverse direction decreases, whereas the wave force in the vertical 

direction stays constant. Kunisu et al. [5] performed experiments on two-dimensional model, investigating the 

dynamics of SFT subjected to the wave environment of Hokkaido. Their results showed, for the case of tether 

perpendicular to sea-bed, the transverse displacement is significant, but the snap force is almost negligible. Perotti et 

al. [6, 7] calculated the dynamic response due to wave and seismic loading for SFT in the conceptual design of 

Messina Strait. They noted that the flexible responses of short anchoring elements, excited by seismic loading, will 

yield inelastic behaviour, yet the dynamic responses due to wave loading is one order of magnitude smaller than 

those due to seismic loading. Kiyokawa et al. [8] and Morita et al. [9] calculated the effect of fluid compressibility 

on the SFT dynamics due to seismic excitation. They proposed that the influence of fluid compressibility cannot be 

ignored when the wave frequency is higher than 1 Hz. Venkataramana et al. [10] experimentally investigated the 

effect of flow velocity on the vibration of SFT in a water tank with one-dimension cyclic flow. The results pointed 

out the horizontal responses increase with flow velocity, whereas the variation in the vertical responses is much 

more complicated and susceptible to eddies and other forms of turbulence.

In China, several research groups from universities and research institutions have involved in SFT researches 

since late 1990s. The research teams from Zhejiang University, Tongji University and Institute of Mechanics 

(IMECH), Chinese Academy of Sciences (CAS) successively cooperated with Italian research teams engaged in the 

projects of “Feasibility Study of Jintang Strait SFT” [11, 12] and “Archimedes Bridge Prototype in Qiandao Lake” 

[13, 14]. The later project was implemented via Sino-Italian Laboratory of Archimedes Bridge (SIJLAB) between 

December 2004 and December 2009. Fig.1 (b) is the lake bay for the location of the Prototype. Xiang et al. [15, 16] 

completed the structural analysis for the SFT design in Jintang Strait, and performed model experiments. Ge et al. 

[17, 18], taking into account the excitation effect of tunnel tube on the tether and the irregularity of water current, 

calculated the nonlinear vortex-induced-vibration (VIV) of tethers, and analyzed the effect of buoyancy-weight ratio 

(BWR) on the VIV of SFT [19]. Ge et al. [20] also investigated the characteristics of cross-flow and in-line 

vibration of a cylinder with large aspect ratio (length to diameter) under uniform flow. Chen et al. [21, 22] modified 

the wake oscillator model so as to analyze the effects of tether tension and flow non-uniformity on tether VIV. Dong 

et al. [23, 24] performed structural analysis on curved SFT, especially analyzed the stress distribution of the 

structure induced by temperature changes. Hui et al. [25], by means of FEM analysis, obtained the stress and 

(a) (b)
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deformation of the tunnel tube due to accidental load. Long et al. [26] revealed the effects of structure parameters of 

BWR, structure dump and tether stiffness on the dynamic response of SFT subjected to hydrodynamic loadings. Mai 

et al. [27, 28] investigated the dynamic response of SFT structure under water wave and current loadings, and also 

estimated the cross vibration of tether due to VIV. They found that the incident angle of wave, surface flow velocity, 

shape of tunnel section and support structures may affect the dynamic response of SFT, and the frequency of 

parametric excitation has significant influence on VIV of tension legs. Sun et al. [29-31] also investigated the effect 

of parameter excitation on tether VIV. They indicated that the decrease of the inclined angle and tether tension may 

increase the maximum vibration amplitude, and decrease the first-order natural frequency, the current velocity with 

regard to lock-in occurrence and the parametric excitation frequency corresponding to the maximum response. 

In the following of this paper, the research advances on dynamical response and structural integrity of SFT 

subjected to hydrodynamic load and accidental load accomplished by our team in recent years are briefly described. 

Such research activities are of two aspects. One is focused on the scientific and technological issues for SFT and the 

other is on the design of the Archimedes Bridge Prototype (ABP) in Qiandao Lake. These are described in seven 

parts: (1) ABB Selection and its environmental & geotechnical conditions for ABP design, (2) Dynamic 

characteristics of SFT due to wave and current loads, (3) Effects of SFT structural parameters on its dynamic 

response, (4) Geotechnical investigations and tension pile analysis, (5) Dynamic response of SFT due to seismic 

load and accidental load, (6) Effects of water and sea-water on high-cycle and very-high-cycle fatigue behavior for 

metallic materials, and (7) Design of ABP of Qiandao Lake and its structure analysis & strength assessment. 

2. ABB selection and its environmental & geotechnical conditions for ABP design [14] 

Before the initiation of SIJLAB, the Chinese team had carried out preliminary activities for the implementation of 

SFT in Qiandao Lake, which was promoted by the ingenious idea of CAS President Lu Yongxiang. In August 2003, 

we visited Qiandao Lake, making a first time field survey of potential sites for SFT. Then, we made the preliminary 

field investigation of potential sites for the SFT construction in Qiandao Lake. 

In November 2004, we met with local officials in Beijing, reviewing the progress of field investigation of 

potential construction sites and the relevant researches. Scientists and officials in this meeting noticed the difficulties 

of the approval process for such an innovative engineering structure without existed design codes and standards. For 

this situation, we proposed to build an Archimedes Bridge Prototype (ABP) in Qiandao Lake instead of one for 

routine tourist purpose, such that the project will have the feasibility to get approval and become a demonstrator. 

The local officials were definitely in favour of this new initiative. 

To develop this new consideration, we further visited Qiandao Lake in March 2005, with the help of local 

government, searching for an appropriate site for the construction of ABP as shown in Fig. 1(b). After investigating 

a number of potential sites in the broad lake area, we finally made the decision of a lake bay for the location of ABP. 

The local authority jointly agreed with this selection. The major features of the bay are: (1) surrounded by two small 

peninsulas with the nearest cross width of 110m and the cross width at the two peninsula tips of 163m (at the water 

level with respect to the altitude of 100m), (2) adjacent to the high way connecting Qiandao Lake and Hangzhou 

City, and (3) the deepest water depth being 35m. On August 21, 2006, during the further field investigation of ABP 

location in Qiandao Lake, we imaginatively proposed an exciting name of Archimedes Bridge Bay (ABB) for the 

ABP location in Qiandao Lake. This has been officially endorsed by the local authority. 

Based on the field survey and relevant investigations, the parameters of environmental and geotechnical 

conditions of ABB, including hydrological parameters, geological parameters, seismic parameters and accidental 

load were proposed [14], which have been used in the design and the research of ABP within SIJLAB.  

It is evident that, the selection of ABB and the definition of design parameters as shown in the following are the 

premise and the first step of the structural design of ABP in Qiandao Lake. 

2.1. Hydrological parameters for ABP design 

(a) Water level � maximum level: 103m, minimum level: 95m, and minimum clearance between water surface and 

tunnel top: 2m. 

(b) Surface water wave � maximum wave height: 1m, and wave period: 1.8±0.5s. 

(c) Water current � maximum water current velocity: 0.1m/s. 
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(d) Air temperature � average air temperature: 17.5ºC, and maximum difference of air temperature: 40ºC. 

(e) Water temperature � average water temperature (water surface): 21.4ºC, and maximum difference of water 

temperature (surface): 20ºC. 

2.2.  Geological condition for ABP design 

The lakebed of ABB is mainly composed of tuff-sandstone randomly covered with thin soils. The medium 

weathered tuff-sandstone, whose compressive strength is approximately in the range from 15 to 47MPa. So that it 

could be served for supporting the foundations. 

2.3. Earthquake parameters for ABP design 

Qiandao Lake area belongs to the region of earthquake intensity less than Grade 6. According to “Code for 

Seismic Design of Buildings” (Chinese Standard GB50011-2001) [32], the earthquake intensity for the design is 

taken as Grade 6, and for important buildings the intensity should be increased by one grade. Thus it is proposed the 

earthquake intensity for the ABP design be Grade 7. The basic acceleration corresponding to the earthquake 

intensity of Grade 7 is 0.1g (0.98m/s2) in usual case and 0.2g (1.96m/s2) in unusual case, respectively. 

When time-history method is used to evaluate the response of the prototype suffered to the most serious 

earthquake, the maximum acceleration is 2.2m/s2 in usual case and 3.2m/s2 in unusual case, respectively.

2.4. Accidental load 

With respect to the impact of sinking boat, boat mass is estimated as 50t and impact velocity is estimated as 1m/s. 

3. Dynamic characteristics of SFT due to water wave and current loads 

SFT is submerged under water surface, and fluid-structure interaction is a basic feature of SFT dynamic response. 

Due to the aspect ratio (length to diameter) for integrated tunnel tube or tether is usually as large as the order of 

magnitude of 102 to 103, the slenderness of structure is necessary to be taken into account.  

3.1. Vortex-induced vibrations of SFT structure [17, 19, 20, 33-37] 

When fluid passes a tether, vortexes form behind the tether due to fluid viscosity. Vortexes are shed periodically 

from fluid-structure interface. The variety of pressure on the tether surface induces the fluid forces acting on the 

tether along the current direction (in-line) and perpendicular to the current and tether (cross-flow). Therefore, the 

tether undergoes vibration induced by vortex shedding. Vortex-induced vibration (VIV) is one of the most important 

factors responsible for tether fatigue damage. 

Wake oscillator model has been widely used in the simulation of the VIV. It is a semi-empirical formula as Eq.(1) 

containing two parameters � and A , which are deduced by experimental results. Usually, these two parameters are 

treated as constants.  

� �2 1q q q q A y�� � � �
.. . ..

                                                                      (1)  

where q  represents non-dimensional fluid variable, y  is the non-dimensional tether displacement, �  and A  are 

related to structural damping, mass ratio, frequency ratio, etc. 

Based on the experimental results of forced oscillation cylinder, we obtained the fitted value of parameter A ,

which depends on the non-dimensional variable �  (the ratio of vortex shedding frequency to structure natural 

frequency). When 0 1�	 	  is satisfied, A equals 10, and if � is larger than 1, A equals 4.  

According to the Skop-Griffin plot deduced by wake oscillator model, we deduced the value of � , which is not a 

constant, but is a function of structural intrinsic characteristics. To verify the influence of �  and A on the structure 

vibration, we compared the simulation results with experimental data and the results calculated by Facchinetti et al. 
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[38]. Fig. 2 shows that using the variable parameters � and A instead of treated as constants, the present results are 

better in agreement with the experimental data.  

Fig. 2. Vibration amplitude as a function of reduced velocity for an elastically supported rigid cylinder [33] 

Regarding the dynamic response of tether, the results of Fig.3 were obtained, showing the cross-flow vibration 

amplitudes for each excited modes of the tether with different inclined angles and axial pretensions. It is obvious 

that as the incline angle increases from zero degree, the amplitudes of the 2nd and 3rd excited mode increase first 

then decrease. There is an incline angle of tether corresponding to the maximum amplitude. The influence of 

pretension on the vibration amplitude is not similar for different excited modes. However, the total amplitude 

reaches the minimum when the pretension increases to a certain value. 

Fig. 3. (a) Vibration amplitude versus incline angle; (b) vibration amplitude versus axial pretension [36] 

For the case of large aspect ratio of tether, three-dimensional vibration model is necessary in the analysis. Thus, a 

Cartesian right-hand coordinate system is defined with x  and y  perpendicular to the tether axis and the dynamic 

equation of tether is proposed as 

� �
2 4 2

2 4 2
m C C EI T

tt z z

 
 
 
�� � � � �



 
 

r r r r

F                                                           (2) 

where, m  is the mass per unit length including fluid added mass, C and C�  are the damping coefficients due to 

structure and hydrodynamic forces, EI is the bending stiffness of tether, T is the axial tension force in tether, r

denotes the deflection of tether and F denotes the fluid forces. 

The experimental data of a long riser with large aspect ratio (1400) were adopted to verify the presented model 

[20]. Fig. 4 shows that the simulation results of vibration frequency and dominant mode number are in good 

agreement with the experimental data. Moreover, it is noted that the lock-in phenomenon does not occur in the 

vibration of large aspect ratio riser. The vibration frequency increases linearly with current speed. The variation of 

dominant vibration mode number with current speed presents a step-wise pattern. It means that when the mode 

number does not increase with current speed, travelling wave occurs and propagates along the riser. Due to the 

(a) (b)
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boundary constraints, near the ends of riser, the vibration is dominated by standing waves. As far away from the 

riser end, travelling wave becomes dominant. As a whole, the process of dynamic response is a combination of 

standing wave and travelling wave oscillations. Therefore, the frequency and the dominant mode of VIV for large 

aspect ratio cylinder are different from that of VIV for small aspect ratio cylinder. 

Fig. 4. (a) Frequency and (b) dominant mode of riser vibration versus current speed [20] 

3.2. Hydroelasticity of SFT under wave condition [39-41] 

Wave propagation is always coupled with SFT motion. Due to the elasticity of SFT, the deflection and the motion 

of the structure may induce the radiation wave propagating. Fluid added mass and hydrodynamic damp are 

necessary to be taken into account in the analysis, which are the functions of structural acceleration and velocity. We 

adopted boundary element and structural mode decomposition methods to solve radiation wave potentials, and the 

dynamic equation was solved in frequency domain. As a case study, we simulated the response of ABP in Qiandao 

Lake due to wave forces using hydro-elastic analysis method. By considering the different types of tunnel end 

connectors, the distribution of tunnel deflection and axial forces at connectors are compared [41]. Under the wave 

condition of Qiandao Lake, the deflections of ABP are only at the order of several millimeters whether stress 

relaxation device is used in tunnel end connectors or not. If only one stress relaxation device is used in either tunnel 

end connector, the maximum axial force occurs at the other end connector. However, if stress relaxation device is 

used in both tunnel end connectors, axial forces will increase at every tube segment joint. 

4. Effects of SFT structural parameters on its dynamic response 

The decision of structural parameters of SFT is an essential issue in its design. Based on the fluid dynamic 

environment of Qiandao Lake and the structural designs of ABP proposed by SIJLAB [13, 14], the effects of 

structural parameters on dynamic responses of SFT under hydrodynamic loads were investigated.  

4.1. Effect of BWR on SFT dynamic response 

Buoyancy-weight-ratio (BWR) determines the tension force in the tether section and influences the dynamic 

behaviour of SFT structure. The simulation results demonstrate the BWR effect on SFT dynamic responses due to 

hydrodynamic loads. As shown in Fig.5(a), the dynamic response in the current direction increases with the 

increasing of BWR. Fig. 5(b) shows that, when BWR is between 1.1 and 1.2, the vertical response decreases 

dramatically with the increase in BWR. When BWR continues to increase, the vertical response decreases very 

slowly. Note that in Figs.5-7, STDEV is the standard deviation of tunnel displacement (or amplitude of tunnel 

vibration) and D is the tunnel diameter. 

(a) (b)
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Fig. 5. STDEV at SFT mid-span under different BWRs, (a) current direction; (b) vertical direction [26] 

4.2. Effect of tunnel outer diameter on SFT dynamic response 

The influence of tunnel outer diameter was analyzed in terms of the ratio of the net buoyancy of unit tunnel 

segment (100m) to the stiffness coefficient of the tether systems (BCR). Fig. 6 indicates that the dynamic response 

in the current direction increases as tunnel outer diameter (or BCR increases) increases, whereas in the vertical 

direction, the dynamic response increases as the outer diameter of tunnel segment  decreases (or BCR decreases). 

Fig. 6. STDEV versus BCR (a) current direction; (b) vertical direction [26] 

4.3. Effect of tether system stiffness on SFT dynamic response 

Fig.7. STDEV versus BCR, (a) current direction; (b) vertical direction [26] 

(a) current direction (b) vertical direction 

(a) current direction (b) vertical direction 

(a) current direction (b) vertical direction 
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The effect of tether system stiffness on the dynamic response of SFT was also examined in terms of BCR. Fig. 7 

shows that the dynamic responses in both current direction and vertical direction increase as the tether system 

stiffness decreases (or BCR increases).

It is certain that both net buoyancy and tether stiffness are essential factors with regard to SFT stability. However, 

by comparison of Figs. 6(b) and 7(b), it is judged that BCR is not a characteristic factor with respect to SFT 

dynamics, although it is a dimensionless parameter. 

4.4. SFT model experiment under different BWR values and tether angles 

An experiment was performed in a water tank with the size of 3.6m�1.8m�1.1m. A spherical object was released 

1.13m above the water surface to impact on the water, thus to generate water wave on one side of the tank. The 

average wave period is 0.48s and the average wave height is 37mm. The effects of BWR and tether angle on SFT 

dynamic responses are given in Fig. 8. When the tube is constrained by inclined tethers, the horizontal response 

amplitude of the tube almost increases with the increase of BWR, whereas the vertical response amplitude of the 

tube decreases first, then increases and finally tends to stable [Fig. 8(a)]. The vertical response amplitude of the tube 

reaches the minimum when BWR approaching 1.2. Fig. 8(b) illustrates the dynamic responses of SFT when tether 

angle is 0°, showing the horizontal displacement is remarkably greater than the vertical displacement.  

Fig. 8. SFT dynamic response versus BWR under (a) tether angle of 30°; (b) tether angle of 0° [42] 

Our both theoretical simulations and experiments indicate that BWR dominates the dynamic response of SFT and 

is the most important parameter to be considered in SFT structural design. For this, we propose the concept of 

“Synergetic range of BWR”. This is defined as, for an SFT structure with related environmental conditions, there 

exists a suitable range of BWR value which will lead to less dynamic response and more stability for the SFT. For 

ABP in Qiandao Lake, the Synergetic range of BWR is between 1.2 and 1.3. 

4.5. Effect of tether angle on dynamic tension of SFT tethers  

Fig. 9. (a) Relative dynamic tension versus tether angle; (b) enlargement of (a) for  � 25º [42] 

(a)
(b)

(a) (b)
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In addition, the slacking phenomenon was investigated, and the conceptual design of SFT for Funka Bay with a 

span of 30km and a depth of 100m was taken as the analysis case. As an example, Fig. 9(a) shows the relation 

between relative dynamic tension and tether angle  , and Fig. 9(b) is the enlargement of right part of Fig. 9(a) for
25º. It is seen that the relative dynamic tension increases sharply with   first, and then decreases. If   is larger 

than 30º, the response becomes stable. The relative dynamic tension reaches its peak value around the tether angle of 

15º. This tendency should be considered in relevant SFT design.

5. Geotechnical investigations and tension pile analysis [14, 43, 44] 

Based on the geotechnical analyses of the sediment samples at the five boring and sampling positions, the 

engineering geology section was obtained. There usually exist five layers along the selected route along the lakebed, 

i.e. silt, silty clay, gravel mixed with silty clay, highly-weathered tuff-sandstone, and medium weathered tuff-

sandstone. The silt and gravel layers may be missing at some locations. The lakebed is a kind of layered sediment, 

which is mainly composed of tuff-sandstone covered with thin soils. The medium weathered tuff-sandstone has 

excellent bearing capacity and no faults or crash zones have been detected in this stratum. The lakebed is 

characterized with deep sloping surface, thus the tension pile is considered as the potential foundation solution for 

ABP. 

The uplift bearing capacity of the tension pile embedded in the layered sediments was investigated numerically. 

In the numerical model, the parameters of the layered sediments were chosen with some reference to the properties 

of the sediments at Qiandao Lake. Numerical results indicate that, the sediment characteristics have much influence 

on the shear stress along the pile-sediment interface [Fig. 10(a)]. As the pile-top displacement increases up to a 

certain value, the pile-sediment interfacial shear stress at the Layer-5 (medium-weathered tuff sandstone) becomes 

much larger than that at the Layer-2 (clay), which indicates that the layer of medium-weathered tuff sandstone 

contributes much larger to the resultant uplift capacity of the tension pile than the upper soft sediment covers. 

With the increase of pipe-top displacement, the uplift load increases gradually to its maximum value. For this 

examined layered sediment, the values of the ultimate tension load increases with the increase of the pile length [Fig. 

10(b)]. Note that, a critical length of the tension piles exists under most of pile/sediment conditions. That is, the 

ultimate tension load would stop increasing while the pile length reaches its critical value [44]. 

Fig. 10. (a) Development of shear stress along pile-sediment interface for various values of pile-top displacement (pile length L = 14m, pile 

diameter D = 0.6m); (b) uplift load-displacement curves of single tension pile for various values of pile length (L=6~14m; D = 0.6m) 

For the optional mooring systems of ABP, the tension piles may be either vertically loaded or obliquely loaded. 

Thus, the effects of loading angle on the uplift resistance of the tension pile were also investigated by employing the 

symmetric three-dimensional finite element model for oblique loading. The variation of the total tension load with 

pile-top displacement of an obliquely-loaded single tension pile is shown in Fig. 11. It is indicated that, the loading 

angle has much influence on the ultimate tension load. For a certain value of pile-top displacement, the oblique 

loads get smaller with increasing loading angle. The ultimate values of tension load tend to become larger for bigger 

loading angles. Nevertheless, the pile-top displacement would become the more prevailing influential factor while 

increasing the loading angle. 
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Fig. 11. Effects of loading angle on tension load development with pile-top displacement of an obliquely-loaded single tension pile 

6. Dynamic response of SFT due to seismic load and accidental load 

6.1. Effect of seismic load on dynamic response of SFT with various shore connections [45] 

A numerical model was developed based on the finite element method to study the dynamic response of SFT due 

to seismic loading. Five types of shore connections were considered for an SFT subjected to uniform seismic 

excitation, i.e. A: rigid connection, B: hinged connection, C: elastic bearing, D: bi-elastic bearing and E: elastic-

plastic bearing. Fig. 12(a) shows the comparison of the transverse moment of SFT for the five cases of shore 

connections. It is seen that the seismic response, especially near the shore ends, is reduced remarkably for the cases 

of bi-elastic and elastoplastic bearings. This result is helpful to the aseismiatic design of SFT. In addition, a 

parametric analysis for the elastic, bi-elastic and elastoplastic bearings was made, which gave the quantitative 

relations between the amount of vibration mitigation and the parameters of bearings, such as the stiffness and yield 

force or turning force. This information provides a convenient reference for the design of SFT. 

Fig. 12. (a) Seismic responses of SFT with different shore connections; (b) envelopes of transverse shear force of SFT under uniform excitation 

and multiple excitations with various wave velocities  

6.2. Seismic wave passage effect [46]  

A numerical analysis was also performed to investigate the dynamic characteristics of SFT due to seismic wave 

passage effect. The large mass method was implemented to simulate the dynamic response of SFT subjected to 

multiple support seismic excitations with various wave velocities. Fig. 12(b) depicts the seismic wave passage effect 

with various wave velocities, where the situation of infinite velocity is equivalent to uniform excitation. It is found 

that the response under the multi-support excitation is much intensive than that under the uniform excitation and 

varies with the velocity of seismic waves in a non-monotone way. There exists a peak velocity of seismic waves, 
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which corresponds to the maximum response of the structure. In addition, for every velocity, the most remarkable 

response appears near the shore connection corresponding to the output end of the seismic wave.  

Furthermore, an analytical study shows that the resonance due to the periodic hitting of seismic wave is 

responsible for this appreciable dynamic magnification, which is unique to long-span periodic structures, such as 

SFT. It is worth paying special attention to this resonance in the aseismatic design of SFT. 

6.3 Effect of accidental impact load [25]  

    SFT is located under water surface. There is a potential risk of collision due to sink ship or other objects. 

Therefore, for the safety of SFT, it is important to analyze the structure resistance to impact load. Numerical 

simulation based on the ANSYS/LS_DYNA was performed to demonstrate the analytical solution. In the simulation, 

the length of tunnel tube is 20m, the diameter is 4m, the thickness of wall is 0.1m, the Young’s modulus of shell 

material is 52.1 10 MPa� , the density is 37800kg/m  and the Poisson’s ratio is 0.3. The impact object is assumed to 

be rigid. The object mass is set as 10 tons and the impact velocity is 3m/s. 

   The results showed that if the fluid added mass is considered, the radial displacement decreases and the Mises 

stress increases. The influence of impact velocity was also investigated. The results show that the radial 

displacement and Mises stress vary linearly as it increases. If the material of shell is steel Q420 with yield stress of 

325MPa, when the impact velocity approaches 4.0m/s, the shell will yield at the impact position. 

7. Effects of water and sea water on high-cycle and very-high-cycle fatigue behavior of metallic materials [47] 

One of the important loading characteristics for SFT structure and related materials is that the mooring tethers 

and the connection joints between two segments or between tunnel and shore are subjected to high average stress 

(induced by structure weight, infrastructure weight and buoyancy) superimposed by cyclic loading (due to 

hydrodynamic load, traffic load or accidental load). If the cyclic loading frequency is of the order of magnitude of 

1Hz, the total number of loading for the related structure or material will reach 108 cycles after 3 years in service, 

which is within the very-high-cycle fatigue (VHCF) regime [48]. Moreover, such a loading situation is inevitably 

coupled with the effect of water or sea water environment. Thus, the high-cycle and VHCF fatigue behaviour in 

water or sea water for related materials is an essential aspect for SFT structure integrity. And there is still a lack of 

investigations regarding the effect of environmental medium on VHCF behaviour of high strength metallic materials. 

Fig. 13. S-N curves tested in air, water and sea water, hollow: surface crack origination, solid: subsurface origination, and semi-solid: mixed 

mode  

The material tested in this investigation was a structural steel (0.4%C, 1%Cr). Hour-glass shape specimens were 

used with the minimum diameter of 3mm. The ultimate tensile strength of the specimen was 1582MPa. Fatigue tests 

were performed by using a rotary bending machine at room temperature, operated at the frequency of 52.5 Hz, and 

with the stress ratio of �1. Three types of test environmental media were adopted: laboratory air, fresh water and 

3.5% NaCl aqueous solution (sea water). For further examination of fatigue crack propagation in sea water, hour-

glass type specimens with V-notch at reduced section were also tested.
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The results of S-N curves for specimens tested in laboratory air, water and sea water are shown in Fig. 13. For 

fatigue testing in water, a stepwise S-N curve presents (squares in Fig. 13), but the maximum stress value, i.e. 

fatigue strength, of transition part in the S-N curve is dramatically decreased, which (260MPa) is only 36% of that in 

laboratory air testing (720MPa). In VHCF regime, the difference of fatigue strength between the two cases is even 

larger. For fatigue testing in sea water, the S-N curve (circulars in Fig. 13) exhibits a continuously descending shape. 

The fatigue strength is even lower than that tested in water. 

The fatigue strength in aqueous solutions is substantially degraded and the reduction increases gradually with 

decreasing stress level. The ratio of fatigue strength tested in water to that tested in air at the failure life of 107 is 

34%. This ratio decreases to 21% at 108 failure cycles. Furthermore, the ratio of fatigue strength tested in sea water 

to that tested in air is only 10% at 107 cycles, and is even lower of 5.8% at 108 cycles. The above description is 

expressed as: 

7 8

w w
max max

a a
max max10 10

0.34 0.21
� �
� �

� �                                                                   (3) 

and               
7 8

s s
max max

a a
max max10 10

0.10 0.058
� �
� �

� �                                                                  (4)

where w
max�  is the fatigue strength tested in water, s

max�  is that in sea water and a
max�  is that in laboratory air. The 

severe degradation of fatigue strength for metallic materials in water and sea water in high-cycle and VHCF regimes 

should be paid enough attention in strength design, material selection and life estimation of SFT.

The observations on V-notch specimens cyclically loaded in sea water showed that multiple crack origins 

prevailed at specimen surface or subsurface covering almost the circumference of the notch root, and that a large 

portion of fracture surface resulted from corrosion fatigue cracking. The cracking area fraction gradually increased 

with the number of loading cycles.

Under aqueous environment, the failure mechanism of high strength steel has been confirmed as hydrogen 

induced embrittlement. In the present investigation of fatigue behavior in the test environments of water and sea 

water for the structural steel, the typical phenomena were: multiple crack origins, surface cracking associated with 

subsurface micro-voids for crack initiation and early growth, and intergranular cracking morphology with 

widespread secondary intergranular cracks, which are evidences of hydrogen induced damage due to the effect of 

aqueous solution. In the process of hydrogen induced damage and failure, the diffusion and concentration of 

hydrogen is proportional to time variable t [49]: d H4X D t� , where Xd is the maximum depth of hydrogen 

penetration and DH is the hydrogen diffusion coefficient of 10-5 mm2/s [50]. Such that we obtained the variation 

tendency of Xd versus t, i.e. the number of loading cycles, by taking /t N f�  with f  being the cycling frequency of 

52.5Hz. The results show the increasing tendency of hydrogen penetration with time variable. Thus, one may 

anticipate that a large time period for a specimen exposed to aqueous environment while cyclic loading will lead to 

larger value of hydrogen diffusion depth into the specimen and therefore more extensively corrosive effect of 

environment superimposed on the mechanical loading, which is the qualitative explanation for the cracking area 

increasing with loading cycles and for the large difference of fatigue strength between the cases tested in air and in 

aqueous solutions at higher failure lives, i.e. the fatigue strength is inversely proportional to fatigue failure cycles 

when introducing aqueous environment, as shown in Fig. 13. 

8. Design of ABP of Qiandao Lake and its structure analysis & strength assessment [13, 14, 51, 52] 

As mentioned in Introduction, we have searched and decided the ABB for the construction of ABP in Qiandao 

Lake. The crossing length of the selected route for ABP is 117 meters, and ABP is divided into 5 segments 

(modules). For the cross section of ABP, a circular shape has been proposed [13], which is composed by three shells: 

inside a steel tube (0.02m), in the middle a reinforced concrete one (0.30m), and the outside an aluminum one 

(0.10m). Thus, the total thickness of the sandwich wall is 0.42m.  
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8.1. BWR, effective density and deformation stiffness of homogenized shell 

By homogenizing the three-layered composite shell to a single-layer shell while keeping the effective stiffness, 

the mass as well as the inner and the outer diameters constant, then BWR, effective density and deformation 

stiffness of homogenized shell were obtained. The values of BWR for the tube, the tube with infrastructure and the 

tube with infrastructure and live load are calculated as 1.320, 1.215 and 1.140, respectively. Referred to Section 3, 

the Synergetic range of BWR for ABP is between 1.2 and 1.3. Note that the BWR for the tube with infrastructure 

and live load is only 1.140, which is relatively small. Therefore, the adjustment of the ABP cross section should be 

considered. 

The effective density is 2.19×103 kg/m3. Based on the equivalence principle of stiffness, the effective compressive 

stiffness and bending stiffness are 1018.86 10 N� and 10 233.5 10 N m� � , respectively.

8.2. Deformation stress and strength assessment of ABP tube  

When the aspect ratio (length to diameter) of tube is greater than 5, the shear deformation is relatively small and 

consequently, the planar cross-section deformation assumption can be used. According to the data of hydrodynamic 

load, seismic load and accidental load in the design report [14], the values of the maximum stress for ABP tube were 

calculated. The data in Table 1 indicate that the maximum stress under seismic loading is the largest. The maximum 

stress due to seismic induced tension is much greater than the strength of materials used in ABP. This should be 

considered in the revision of the design. 

Table 1. Data of the maximum stress of ABP tube 

 Wave loading Seismic induced tension Seismic induced bending Accidental loading 

Maximum stress 3.88 MPa 3.06GPa (for steel) 

0.187GPa (for concrete) 

24.6MPa 17.1MPa 

8.3. Stress of  connecting bolts 

144 bolts are used to connect two modules for the prototype, which are distributed along a circular line of 3.27m 

in diameter. The diameter of the bolt is 30mm. According to hydrodynamic load, seismic load in design report [14], 

the maximum stress of bolts was calculated. The data in Table 2 show that the bolt stress under seismic bending load 

is the largest. The strength of material (410.3MPa) does not meet such extreme condition. 

Table 2. Data of bolt stress  

 Wave & current loading Seismic induced tension Seismic induced bending Seismic shearing 

Bolt stress, MPa 94.58 23.58 626.2 27.0 

8.4. Natural frequencies of ABP  

ABP is anchored to the lake foundation by steel tethers, which give significant influence to the vibration 

behaviour of ABP. Here the transversal natural frequencies of ABP without added mass and live load, with added 

mass, and with added mass and overload are listed in Table 3. It should be pointed out that in the calculation of the 

transversal vibration frequencies, the supporting effect of tethers was ignored. 

Table 3. Data of transversal natural frequencies of ABP  

Support condition Frequency, Hz Frequency, Hz (with added mass) Frequency, Hz (with overload & added mass) 

Simply-simply 2.72 1.78 1.72 

Fixed-fixed 5.25 3.47 3.35 
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8.5. Deformation of ABP under accidental impact load and estimation of energy absorption of aluminum panel 

Table 4 and Table 5 list the data of energy absorption for ABP. It is evident that the aluminum alveolate layer has 

considerable capacity in absorbing accidental collision energy. For this particular case, the energy absorbed is larger 

than 80% of the impacting energy. 

Table 4. Deformation and stress of ABP due to impact load 

 Without added mass With added mass 

Deflection, mm 6.34 5.57 

Mises stress, MPa 41.4 46.0 

Table 5. Energy absorption of ABP due to impact load 

 Total impact energy energy absorption by skin Energy absorption by webs Total energy absorption 

Energy, J 42.5 10� 41.88 10� 40.21 10� 42.1 10�

9. Concluding remarks 

The creative results on dynamic response and structural integrity of SFT due to hydrodynamic load and accidental 

load obtained by our team have been summarized with the following main remarks.   

(1) The location of ABP has been determined and the related design parameters have been defined, which are the 

premise for the design and the research of ABP within SIJLAB. 

(2) The distinct characteristics of VIV for SFT structure with large aspect ratio are revealed: vibration without 

lock-in phenomenon, vibration frequency increasing linearly with current speed, and the combination of standing 

wave and travelling wave oscillations.  

(3) The concept of “Synergetic range of BWR” is proposed. For ABP in Qiandao Lake, the Synergetic range of 

BWR is between 1.2 and 1.3.  

(4) The uplift capacity of tension pile with regard to ABB foundation is solved, showing the possibility of the 

tension pile solution.  

(5) Seismic effect on SFT is significant, and the response caused by seismic wave passage effect is several folds 

larger than that due to uniform excitation. 

(6) The fatigue strength of steel in sea water for 108 cycles is only 5.8% of that in air environment. Such severe 

degradation should be paid enough attention in the strength design of SFT. 

(7) The strength assessment for ABP shows the previous design should be revised to improve the safety and 

reliability of the Prototype. 

These achievements provide the scientific and technological principles for SFT realization in Qiandao Lake and 

in the world. 
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