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a b s t r a c t

The measurement of the diameter change of a piezoelectric transducer (PZT) cylinder with the white-
light interferometry is proposed and experimentally demonstrated. One arm of a Mach–Zehnder
interferometer (MZI) is wrapped on the PZT cylinder, and the phase change of the interferogram of
the MZI is used to determine the diameter change when a DC voltage is applied on the PZT cylinder. The
Fourier transform white-light interferometry is used for recovering the phase change of the inter-
ferometer. The experimental results show that the diameter change resolution of 0.8 nm for the PZT
cylinder with diameter of 40 mm is achieved.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric materials have a natural property which is the
ability of interaction between the electrical and mechanical states.
They have attracted much attention due to their wide applications
in sensing and actuating systems. Diverse styles of piezoelectric
transducers have been developed with different structures such
plate type, rod type, ring type, and cylinder type.

Piezoelectric cylinders are simple in construction than flat
types and can easily deflect in all directions. They offer flexibility
to operate under harsh condition such as high vacuum and high
temperature. They are used in a wide range of applications such as
atomic force microscopy (AFM) [1,2], scanning tunneling micro-
scopes (STM) [3,4], optical fiber switch [5,6], optical fiber modula-
tors [7], voltage sensors [8], Gyroscope [9], ultrasonic applications
[10] and in ink jet printers [11].

Different methods are available for measuring piezoelectric trans-
ducer (PZT) coefficients: direct measurements of stress-induced
charge [12], laser interferometers [13], laser scanning vibrometers
[14], and piezoelectric force microscopes, etc. [15]. Laser interfero-
metry methods are based on measuring the displacement deflection
of the sample after an applied voltage. They have been established as
popular and reliable technique for the measurement of piezoelectric
coefficients d31 and d33 [16]. The displacement can be measured
by a single-beam laser interferometer [17], where a Michelson

interferometer is used .The reference arm length of the interferom-
eter will change due to the piezoelectric deflection. This configuration
has difficulty in separating the movement of the substrate from the
dilatation of the sample. Double-beam interferometer was used to
suppress the influence of the substrate movement [18,19]. To improve
the measurement reliability and accuracy, other methods were
proposed, such as scanning-modulated interferometer [20], and a
Mach–Zehnder type heterodyne interferometer [21]. The crucial
condition in these methods is the high resolution of an interferometer,
which should be in the range of nanometer units [22]. Since the
expansion of the PZT is small, the measurement is very sensitive to
any small vibrations. Hence these techniques usually require a very
quiet operation environment [23].

The white-light interferometry (WLI) is an attractive technique
that is used for absolute measurements [24] and the measurement
of the shape of objects [25], it allows the increase in the system
operating range to overcome the fundamental problem that arises
in conventional laser interferometry [26], and high resolution and
dynamic range may be achieved [27].

In this paper, we present a technique for the PZT cylinder
measurement by using the WLI. A PZT cylinder is wrapped by an
arm of a MZI. We obtain the white-light interferogram when a DC
voltage is applied between the faces of a PZT. The Fourier trans-
form WLI is used for recovering the optical path difference (OPD)
of the MZI [28]. Experimental measurements for diameter changes
of a PZT cylinder at different driving voltages have been carried
out, and experimental results show that the technique possesses
high accuracy and high reliability.
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2. Operation principle

The experimental setup for measuring the diameter change of
the PZT cylinder is shown in Fig. 1. The light source is an amplified
spontaneous emission (ASE) source with the wavelengths covering
1525–1565 nm, and the output power of 20 mW. Two fiber optic
3 dB couplers are used for splitting and recombining the light. The
broad-band ASE light is divided into two equal power signals
through the first coupler, one goes to the reference arm, and
another one goes to the sensing arm. The reference light and the
sensing light recombine at the second coupler.

The sensing arm is circled on a PZT cylinder P-81 (from Heng
Sheng Acoustics Electron Apparatus Company) with the size of
ϕ40�ϕ35� 30 mm for outside diameter, inner diameter and
height, respectively. A photograph of the PZT is shown in Fig. 2.
A regulated DC source (NY1303A) is used with a voltage range of
0–30 V and a voltage resolution of 1% to drive the PZT cylinder.

The output of the MZI is interrogated by using a CCD based
optical spectrum analyzer (OSA) (BaySpec FBGA-F-1525-1565)
with the resolution of 0.1 nm. The OPD of the MZI must be smaller
than the coherence length determined by the resolution of the
OSA, otherwise we cannot detect the interferogram. The resolution
of 0.1 nm respects to a coherence length of 24 mm at the
wavelength of 1:55 μm. Thus the length different of the MZI
between two arms must be shorter than 16.4 mm.

In the experiment, a DC voltage is applied between the faces of
a PZT cylinder. By using the Fourier transform white light inter-
ferometry [28], the OPD of the MZI can be calculated. The recovery
of the OPD starts from the measurement of the phase angle ϕ. ϕ is

given by [29]

ϕ¼ 2π
λ

� OPD¼ 2π
λ

� n � L ð1Þ

where n is the refractive index of the fiber, and L is the difference
in path length between the two beams of the interferometer.

The OPD can be calculated when the phase is obtained by using
Fourier transform WLI. However, when we scan the wavelength
from λ1 to λ2, we obtain a phase change. So the OPD is obtained
from the following equation:

OPD¼ ðλ1 � λ2Þ
2π � ðλ2�λ1Þ

�Δϕ ð2Þ

Thus, the diameter change of the PZT can be calculated from
the following equation:

ΔD¼ΔOPD
π � k ð3Þ

where ΔOPD is the change of the OPD due to an applied voltage, k
is the number of fiber turns wrapped the PZT.

Therefore, the strain coefficient d31 can be estimated by the
following equation [30]:

d31 ¼
ΔD � t
ID � V ð4Þ

whereΔD is the diameter change of the PZT, ID is the internal cylinder
diameter, V is the applied voltage, and t is the wall thickness.

3. Experiment

In this experiment, the core and cladding diameters of the fiber
are 9 μm and 125 μm respectively, and a fiber length of 9 m was
used as one arm of the MZI. The PZT cylinder (P-81) with strain
coefficient d31¼98 pm/V and an external diameter of 40 mm was
wrapped by 5 m of fiber and the number of fiber turns is 40 turns.
In order to protect the measured sample against vibrations, a quiet
operational environment is needed.

When the wavelength is scanned from 1525 nm to 1560 nm,
the interference spectrum can be observed at the OSA by adjusting
the OPD to be smaller than the coherence length determined by
the resolution of the OSA. The optical spectrum of the MZI with an
applied voltage of 0 V is shown in Fig. 3.

When the voltage is applied on the PZT cylinder, the inter-
ference fringes suffer a phase shift. It can be seen that the optical
spectrum is red-shifted to a higher wavelength region, as shown in
Fig. 4.

The OPD can be calculated by using Fourier transform WLI.
Firstly the optical spectrum is Fourier transformed. The main
frequency component is filtered and inverse Fourier transformed.
Then we calculate a complex logarithm of the product. The phase

Fig. 1. Schematic diagram of the experimental setup.

Fig. 2. Photograph of the piezoelectric transducer cylinder. Fig. 3. The optical spectrum at 0 V.
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change of the fringe signal, which is caused by scanning wave-
length, can be obtained from the imaginary part of the complex
logarithm. Thus, the absolute OPD can be calculated by using the
phase change [31].

The Fourier spectrum is shown in Fig. 5. The spectrum was
filtered and inverse Fourier transformed, as shown in Fig. 6. The
interferometric phase changes is shown in Fig. 7. When the
wavelength is scanned from 1525 nm to 1560 nm, the phase
change is 113.09 rad and the OPD is calculated to be 1241:21 μm
for an applied voltage of 0 V.

For an applied voltage of 25 V, the measured OPD is 1245:68 μm.
Therefore, the change of the OPD can be calculated. Using Eqs. (3)
and (4), the diameter change of the PZT cylinder and the strain
coefficient d31 are 0:035 μm and 100 pm/V, respectively, which is
agreed to the strain coefficient provided by the manufacturer of
the PZT.

Fig. 8 shows the measured OPD change for various applied
voltages from 0 V to 25 V by an increment step of 5 V. A hysteresis
cycle can be observed, the maximum and minimum OPD changes
were found to be 1245:68 μm and 1241:21 μm at 25 V and 0 V,
respectively. It can be seen that the value of the OPD decreases
significantly from their value at high DC bias after the DC bias is
removed.

In order to test the stability of the system, we measured the
OPD 30 times at an applied voltage of 29 V. The measured results
are distributed between 1246.663 and 1246:86 μm, as shown in
Fig. 9. The fluctuation of the measurement results is 0:1 μm which
shows that the stability of the system is well. For a PZT cylinder
wrapped by a fiber length of 5 m, the resolution for the measure-
ment of diameter change of the PZT cylinder that can be achieved
is 0.8 nm. In fact; the stability can be significantly increased by
doing an average calculation, to reduce any environmental effect.

The main reasons of errors in the measurement of diameter change
are the resolution of the optical spectrum analyzer and the sensitivity
to any external noises and environmental fluctuations.

4. Conclusion

In conclusion, we have presented a white-light interferometric
method for the measurement of the diameter change of a PZT
cylinder. The output of the MZI is interrogated by using an OSA,
and the phase change of the interference spectrum during the
applied voltage was used for the determination of the PZT diameter
change.

Fig. 4. (a) The optical spectrum at 0 V and 5 V and (b) local portion of the data in (a).

Fig. 5. The Fourier spectrum of the optical spectrum. Fig. 6. Signal filtered, and inverse transformed.

Fig. 7. Phase changes for an applied voltage of 0 V.
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The proposed method possesses the abilities to provide wide
dynamic measurement range, low cost without other additional
components, and offers advantage of easier fabrication. However,
it requires a very quiet working environment. A resolution of up to
0.8 nm is achieved in our experiment. Thus the technique appears
to have potential applications such as optical phase modulator,
fiber stretching, and deformation measurement.
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