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The unsteady process for thermocapillary droplet migration at large Reynolds and Marangoni numbers
has been previously reported by identifying a nonconservative integral thermal flux across the surface
in the steady thermocapillary droplet migration (Wu and Hu, 2013) [15]. Here we add a thermal source
in the droplet to preserve the integral thermal flux across the surface as conservative, so that thermocap-
illary droplet migration at large Reynolds and Marangoni numbers can reach a quasi-steady process.
Under assumptions of quasi-steady state and non-deformation of the droplet, we make an analytical
result for the steady thermocapillary migration of droplet with the thermal source at large Reynolds
and Marangoni numbers. The result shows that the thermocapillary droplet migration speed slowly
increases with the increase of Marangoni number.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Thermocapillary migration of a droplet or bubble at a uniform
temperature gradient is a very interesting topic in both micrograv-
ity and microfluidics[1,2]. On the one hand, due to the develop-
ment of space exploration, the studies of the physical mechanism
of the droplet/bubble migration phenomena in the microgravity
environment become more and more important. The first investi-
gation of thermocapillary droplet migration was completed by
Young et al (YGB) in 1959, who gave an analytical prediction for
the migration speed at zero limit Reynolds (Re) and Marangoni
(Ma) numbers [3]. Subramanian [4] proposed the quasi-steady
state assumption for thermocapillary bubble migration and
obtained analytical results with high order expansion at small
Ma numbers. Balasubramaniam and Chai [5] derived an exact
result for thermocapillary droplet migration at small Ma numbers.
The experimental results for the droplet migration speed at small
Re numbers obtained by Braun et al [6] are in agreement with
those of the YGB model. On the other hand, the manipulation
and actuation of droplets in microfluidic devices have an extensive
application on the chemical industry and biological engineering.
Many interest problems, such as static contact and dynamic con-
trol of the droplets on solid substrates, were theoretically analyzed
and experimentally observed [7–10].
Although the thermocapillary droplet migration processes at
small Ma numbers under the microgravity environment are under-
stood very well in the series of theoretical analyses and experimen-
tal investigations, the physical behaviors at large Ma numbers are
rather complicated due to the momentum and energy transfer
though the interface of two-phase fluids. In large Re and Ma num-
ber area, it was reported [11] that the migration speed of a droplet
increases with the increase of Ma number, as is in qualitative
agreement with the corresponding numerical simulation[12]. The
above theoretical analysis and numerical simulation are based on
assumptions of the quasi-steady state and non-deformation of
the droplet. The experimental investigation carried out by Hadland
et al. [13] and Xie et al. [14] showed that the droplet migration
speed non-denationalized by the YGB velocity decreases with the
increase of Ma number. The results are not in qualitative agree-
ment with the above theoretical and numerical ones. Moreover, a
nonconservative integral thermal flux across the surface in the
steady thermocapillary droplet migration at large Ma (Re) numbers
was identified [15]. It was indicated that the thermocapillary drop-
let migration at large Ma(Re) numbers is an unsteady process.
Therefore, the thermocapillary droplet migration at large Ma (Re)
numbers remains a topic to be studied with respect to its physical
mechanism.

In this paper, first, under the assumption of the quasi-steady
process of thermocapillary droplet migration at large Re and Ma
numbers, a thermal source is added in the droplet to change the
integral thermal flux across the surface from nonconservative to
conservative. Then, we make an analytical result for the steady
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thermocapillary migration of droplet with the thermal source at
large Re and Ma numbers and elucidate effects of the adding ther-
mal source in the droplet on thermocapillary migration process.

2. Problem formulation

Consider the thermocapillary migration of a spherical droplet of
radius R0, density cq, dynamic viscosity al, thermal conductivity
bk, and thermal diffusivity kj in a continuous phase fluid of infinite
extent with density q, dynamic viscosity l, thermal conductivity k,
and thermal diffusivity j under a uniform temperature gradient G.
The rate of change of the interfacial tension between the droplet
and the continuous phase fluid with temperature is denoted by
rT . Fig. 1 displays a schematic diagram of thermocapillary migra-
tion of a droplet with a thermal source in a laboratory coordinate
system denoted by a bar. Axisymmetric energy equations for the
continuous phase and the fluid within the droplet are written as
follows

@T
@t
þ �v �rT ¼ j�DT;

@ �T 0

@t
þ �v0 �r �T 0 ¼ kj�D �T 0 þX;

ð1Þ

where �v and T are velocity and temperature, a prime and X denote
quantities and a thermal source in the droplet. By going over an
unstable migration process from beginning, the droplet migration
can reach a steady state, i.e., with the constant migration speed
V1. Using the coordinate transformation from the laboratory coor-
dinate system to a coordinate system moving with the droplet
velocity V1

�r ¼ rþ V1tk; �vð�r; tÞ ¼ vðrÞ þ V1k; Tð�r; tÞ ¼ TðrÞ þ GV1t;

�v0ð�r; tÞ ¼ v0ðrÞ þ V1k; �T 0ð�r; tÞ ¼ T 0ðrÞ þ GV1t;

ð2Þ

the problem (1) can be formulated as

GV1 þ vrT ¼ jDT;

GV1 þ v0rT 0 ¼ kjDT0 þX:
ð3Þ

By taking the radius of the droplet R0, the YGB model velocity
vo ¼ �rT GR0=l and GR0 as reference quantities to make coordi-
nates, velocity and temperature dimensionless, the energy Eq. (3)
can be written in the following dimensionless form in the spherical
coordinate system (r; h) as follows
r

z

o

r1
z0

z1

0

-

--

-
-

-

Fig. 1. A schematic diagram of thermocapillary migration of droplet with a thermal
source in a laboratory coordinate system.
1þ u
@T
@r
þ v

r
@T
@h
¼ �2DT; ð4Þ

1þ u0
@T 0

@r
þ v 0

r
@T 0

@h
¼ k�2DT 0 þ X

Gv0V1
; ð5Þ

where the small parameter � and Ma number are defined, respec-
tively, as

� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MaV1
p ð6Þ

and

Ma ¼ v0R0

j
: ð7Þ

In the space experiments[13,14], Prandtl numbers (Pr ¼ l
qj) are

constants in terms of the fixed fluid media, but Ma numbers are
changed duo to the variable droplet sizes. It is common to adopt
Re numbers (Re ¼ qv0R0

l ¼ Ma
Pr ) instead of Pr numbers in order to cap-

ture velocity fields with the changes of Re numbers. In general, the
deformation of droplet usually depends on the Weber numbers

[We ¼ qv2
0R

r0
¼ CaRe;Cað¼ v0l

r0
Þ is the Capillary number], it is not

included in this study due to the small We numbers in the space
experiments. For example, We is in Oð10�3Þ � Oð10�1Þ when
Ma < 1000[14,16]. Thus, the solutions of Eqs. (4) and (5) have to
satisfy the following boundary conditions at the interface of two
phase fluids (r ¼ 1)

Tð1; hÞ ¼ T 0ð1; hÞ; ð8Þ
@T
@r
ð1; hÞ ¼ b

@T 0

@r
ð1; hÞ ð9Þ

and at places far away from the droplet

T ! r cos h; as r !1: ð10Þ

Besides the above temperature boundary conditions, the stress
boundary conditions at the interface are also applied for the steady
droplet migration. However, the normal stress boundary condition
is removed in terms of the non-deformation assumption. The shear
stress boundary condition is expressed by

srh � as0rh ¼
1

V1r
@T
@h
; ð11Þ

where

srh ¼ r
@

@r
v
r

� �
þ 1

r
@u
@h
: ð12Þ

For large Re numbers, the inner and outer momentum boundary
layers at r-direction are introduced near the surface of droplet. In
the flow fields outside the momentum boundary layers, there are
still the potential flows. The scaled inviscid velocity field in the
continuous phase and Hill’s spherical vortex within the droplet
can be written as, respectively [17]

U ¼ � cos h 1� 1
r3

� �
;

V ¼ sin h 1þ 1
2r3

� � ð13Þ

and

U0 ¼ 3
2

cos hð1� r2Þ;

V 0 ¼ �3
2

sin hð1� 2r2Þ:
ð14Þ

By introducing the perturbation velocity fields v̂ ¼ v � U;

v̂0 ¼ v0 � U0 and the depth of boundary layer dx ¼ r � 1 ðd ¼
ffiffiffiffi
1
Re

q
Þ
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into the boundary condition (11) and the momentum equation for
the continuous fluid, they are derived and truncated in the leading
orders Oð1=dÞ and OðdÞ as, respectively [17]

@v̂
@x
¼ 3

2
ð2þ 3aÞ sin hþ 1

V1

@T
@h
: ð15Þ

and

3
2
@

@h
ðv̂ sin hÞ � 3x cos h

@v̂
@x
¼ @

2v̂
@x2 ; ð16Þ

where @
@r ¼ Oð1dÞ;U=U0 ¼ OðdÞ=OðdÞ;V=V 0 ¼ Oð1Þ=Oð1Þ, û=û0 ¼ Oðd2Þ=

Oðd2Þ and v̂=v̂ 0 ¼ OðdÞ=OðdÞ are in the momentum boundary layers.
Following the derivation for the steady migration speed of a bubble
at large Re numbers [18], the migration speed of the droplet is
written as follows

V1 ¼ �
1

2ð2þ 3aÞ

Z p

0
sin2 h

@T
@h
ð1; hÞdh

¼ 1
2þ 3a

Z p

0
sin h cos hTð1; hÞdh: ð17Þ

Thus, to determine V1, the temperature Tð1; hÞ on the surface of
droplet is required. However, before the energy equations are
solved, the self-consistency of temperature fields for the steady
droplet migration system will be determined. It means that the
solutions of steady energy equations will satisfy the conservative
integral thermal flux across the surface of droplet. In this case, the
temperature field at infinity in Eq. (10) was derived by using the
asymptotic expansion method and expressed as [15]

T � r cos h� 1
2r2 cos hþ oð1Þ: ð18Þ

Integrating Eqs. (4) and (5) in the continuous phase domain
ðr 2 ½1; r1�; h 2 ½0;p�Þ with boundary condition (18) and within
the droplet region ðr 2 ½0;1�; h 2 ½0;p�Þ, respectively, we obtainZ p

0

@T
@r
ð1; hÞ sin hdh ¼ � 1

3�2 ð19Þ

andZ p

0

@T 0

@r
ð1; hÞ sin hdh ¼ 2

3k�2 1� X
Gv0V1

� �
: ð20Þ

From Eqs. (19) and (20), we have

b
Z p

0

@T 0

@r
ð1; hÞ sin hdh�

Z p

0

@T
@r
ð1; hÞ sin hdh

¼
Z p

0
b
@T 0

@r
ð1; hÞ � @T

@r
ð1; hÞ

� �
sin hdh

¼ 1
3�2 ð1þ

2b
k
Þ � 2bX

3kGv0
Ma: ð21Þ

For large Ma numbers and finite V1, Eqs. (19) and (20) should sat-
isfy the thermal flux boundary condition (9), i.e., the right side of Eq.
(21) will be zero. So, we have

X ¼ kGv0V1
2b

1þ 2b
k

� �
¼ Gv0V1 1þ k

2b

� �
: ð22Þ

Using Eq. (22), Eq.(5) is rewritten as

u0
@T 0

@r
þ v 0

r
@T 0

@h
¼ k�2DT 0 þ k

2b
: ð23Þ

In following, we will focus on the steady thermocapillary migration
of droplet with the thermal source under a uniform temperature
gradient and determine the dependence of the migration speed on
large Ma numbers.
3. Analysis and results

3.1. Outer temperature field in the continuous phase

By using an outer expansion for the scaled temperature field in
the continuous phase

T ¼ T0 þ T1�þ Oð�2Þ; ð24Þ

the energy equation for the outer temperature field in its leading
order can be obtained from Eq. (4) as follows

1þ U
@T0

@r
þ V

r
@T0

@h
¼ 0: ð25Þ

By using the coordinate transformation from ðr; hÞ to ðw0; hÞ to solve
Eq. (25), its solution can be written as

T0ðr; hÞ ¼ Gðw0Þ �
Z

2r4

2r3 þ 1
dh

sin h
; ð26Þ

where Gðw0Þ is a function of w0 (the streamfunction in the continu-
ous phase). Following[19], the solution near r ¼ 1 is simplified as

T0ðr; hÞ ¼ 1þ p
6
ffiffiffi
3
p � 1

6
ln 432

� �

� 1
18

pffiffiffi
3
p þ ln 432
� �

r2 � 1
r

� �
sin2 hþ 1

3

� ln r2 � 1
r

� �
þ 2

3
lnð1þ cos hÞ þ 2

9
r2 � 1

r

� �
cos h

þ 1
9

r2 � 1
r

� �
ln r2 � 1

r

� �
sin2 h

þ 2
9

r2 � 1
r

� �
sin2 h lnð1þ cos hÞ: ð27Þ

By using the boundary layer approximation

x ¼ r � 1
�

; ð28Þ

the temperature field near interface can be expressed as

tðx; hÞ ¼ 1þ p
6
ffiffiffi
3
p � 1

6
ln 48þ 2

3
ln

1þ cos h
sin h

� �

þ 1
3

x sin2 h� ln �þ Oð�Þ: ð29Þ
3.2. Outer temperature field within the droplet

By using the following outer expansion for the scaled tempera-
ture field within the droplet in Eq. (23)

T 0 ¼ 1
�2 T 0�2 þ T 00 þ Oð�Þ; ð30Þ

the equation in its leading order can be written as

U0
@T 0�2

@r
þ V 0

r
@T 0�2

@h
¼ 0: ð31Þ

Its solution is

T 0�2 ¼ F0ðw0Þ; ð32Þ

where w0 ¼ 3
4 sin2 hðr4 � r2Þ is the streamfunction within the droplet.

The unknown function F0ðw0Þ can be obtained from the following
equation for the temperature field T 00 in its second order

U0
@T 00
@r
þ V 0

r
@T 00
@h
¼ kDF0 þ

k
2b

: ð33Þ

To solve Eq. (33), we use the coordinate transformation from
ðr; hÞ to ðm; qÞ, with streamlines and their orthogonal lines as coor-
dinate axes defined as



Fig. 2. A schematic diagram of the inner and outer temperature fields denoted by
different colors near the surface of droplet in a coordinate system moving with the
droplet velocity V1 . The light/dark gray and the white/black regions represent the
inner [t=t0 � 0ð1�Þ=0ð1�Þ] and outer [T=T 0 � 0ð1Þ=0ð 1

�2Þ]) temperature fields in the
continuous phase/within the droplet, respectively.
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m ¼ �16
3

w0;

q ¼ r4 cos4 h
2r2 � 1

:

ð34Þ

Eq. (33) can thus be written in the ðm; qÞ coordinate system as
follows

Vq

hq

@T 00
@q
¼ k

hmhqh/

@

@m
hqh/

hm

dF0

dm

� �
þ k

2b
; ð35Þ

where hm;hq;h/ are the metrical coefficients for the transformation.
Multiplying both sides of Eq. (35) by hmhqh/ and integrating with
respect to q for one circuit along a streamline, we obtain the follow-
ing equationI

Vqhmh/
@T 00
@q

dq ¼ k
@

@m
JðmÞdF0

dm

� �
þ k

2b
HðmÞ; ð36Þ

where HðmÞ ¼
H

hmhqh/dq and JðmÞ ¼
H hqh/

hm
dq. From the equation of

continuity, it can be shown that Vqhmh/ is a constant. We thus
obtain a solution of Eq. (36) as follows

F0 ¼ �
1

2b
Bþ

Z m

0

dx
JðxÞ

Z x

1
HðsÞds

� �
: ð37Þ

Near m ¼ 0; JðmÞ and HðmÞ can be expanded, respectively

JðmÞ ¼ 16
3
� 5mþ Oðm2 ln mÞ ð38Þ

and

HðmÞ ¼ 3
8

ln 2� 1
16

ln mþ Oðm ln mÞ: ð39Þ

Using Eqs. (38) and (39), we thus obtain from Eq. (37)

T 0�2ðr; hÞ ¼ F0

¼ � 1
2b

B� 1
16

mþ 3
256
ð3 ln 2� 1

3
4
Þm2 � 3

512
m2 ln m

� �
þ Oðm3 ln mÞ:

ð40Þ

By using the boundary layer approximation

x0 ¼ 1� rffiffiffi
k
p
�
; ð41Þ

the temperature field near interface can be expressed as follows

t0ðx0; hÞ ¼
ffiffiffi
k
p

4b
x0 sin2 h

1
�
þ 3k

16b
x02 sin4 h ln �þ oðln �Þ: ð42Þ
3.3. Inner temperature fields in the leading order

From Eqs. (19) and (20), the leading orders of the inner temper-
ature fields in the continuous phase and within the droplet can be
obtained, respectively. A schematic diagram of the inner and outer
regions with the leading orders near the surface of droplet is
shown in Fig. 2. By using inner expansions for the continuous
phase and the fluid in the droplet

tðx; hÞ ¼ t�1
1
�
þ tl0 ln �þ t0 þ tl1� ln �þ Oð�Þ; ð43Þ

t0ðx0; hÞ ¼ t0�1
1
�
þ t0l0 ln �þ t00 þ t0l1� ln �þ Oð�Þ ð44Þ

and the inner variables given in Eqs. (28) and (41), the scaled energy
equations for the inner temperature fields in the leading orders can
be written as follows
� 3x cos h
@t�1

@x
þ 3

2
sin h

@t�1

@h
¼ @

2t�1

@x2 ; ð45Þ

� 3x0 cos h
@t0�1

@x0
þ 3

2
sin h

@t0�1

@h
¼ @

2t0�1

@x02
: ð46Þ

The boundary conditions are

t�1ð0; hÞ ¼ t0�1ð0; hÞ;

d
@t�1

@x
ð0; hÞ ¼ � @t0�1

@x0
ð0; hÞ;

t�1ðx!1; hÞ ! 0;

t0�1ðx0 ! 1; hÞ ! Bþ d
4

x0 sin2 h;

ð47Þ

where d ¼
ffiffiffi
k
p

=b. We transform the independent variables from
½ðx; x0Þ; h� to ½ðg;g0Þ; n� and the functions from ðt�1; t0�1Þ to ðf0; f 00Þ as

ðg;g0Þ ¼ 3
2

x sin2 h;
3
2

x0 sin2 h

� �
;

n ¼ 1
2
ð2� 3 cos hþ cos3 hÞ ¼ 1

2
ð2þ cos hÞð1� cos hÞ2

ð48Þ

and

f0ðg; nÞ ¼ t�1ðx; hÞ;

f 00ðg0; nÞ ¼ t0�1ðx0; hÞ � B� d
4

x0 sin2 h:
ð49Þ

The corresponding energy equations for f0; f 00 and boundary condi-
tions can be written as follows

@f0

@n
¼ @

2f0

@g2 ;

@f 00
@n
¼ @2f 00
@g02

ð50Þ

and

f0ð0; nÞ ¼ f 00ð0; nÞ þ B;

d
@f0

@g
ð0; nÞ ¼ � @f 00

@g0
ð0; nÞ � d

6
;

f0ðg!1; nÞ ¼ 0;
f 00ðg0 ! 1; nÞ ¼ 0:

ð51Þ
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Fig. 3. Function g0 versus g0 determined from Eq. (63).
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To solve Eq. (50), initial conditions are provided below

f0ðg;0Þ ¼ 0;
f 00ðg0;0Þ ¼ f 00ðg0; nðpÞÞ ¼ f 00ðg0;2Þ ¼ g0ðg0Þ;
g0ðg0 ! 1Þ ! 0:

ð52Þ

Following the methods given by Harper and Moore [17], the solu-
tion of Eq. (50) can be obtained as

f0ðg; nÞ ¼
1

1þ d
B� d

6
g

� �
erfc

g
2
ffiffiffi
n
p

� �
þ d

ffiffiffi
n
p

3
ffiffiffiffi
p
p exp � g2

4n

� �	

þ 1ffiffiffiffiffiffi
pn
p

Z 1

0
g0ðg�Þ exp �ðgþ g�Þ2

4n

" #
dg�
)
; ð53Þ

f 00ðg0; nÞ ¼
d

1þ d
� Bþ 1

6
g0

� �
erfc

g0

2
ffiffiffi
n
p

� �
þ

ffiffiffi
n
p

3
ffiffiffiffi
p
p exp �g02

4n

� �	 


þ 1
2
ffiffiffiffiffiffi
pn
p

Z 1

0
g0ðg�Þ exp �ðg

0 � g�Þ2

4n

" #
þ 1� d

1þ d

(

exp �ðg
0 þ g�Þ2

4n

" #)
dg�: ð54Þ

From Eqs. (49) and (53), we obtain the inner temperature field in its
leading order near the surface of droplet

t�1ð0; hÞ ¼ f0ð0; nÞ

¼ 1
1þ d

Bþ d
ffiffiffi
n
p

3
ffiffiffiffi
p
p þ 1ffiffiffiffiffiffi

pn
p

Z 1

0
g0ðg�Þ expð�g�2

4n
Þdg�

� �

¼ 1
1þ d

Bþ d
ffiffiffi
n
p

3
ffiffiffiffi
p
p þ 2ffiffiffiffi

p
p

Z 1

0
g0ð2n1=2fÞ expð�f2Þdf

� �
:

ð55Þ

When the inner expansion in the temperature field (43) is truncated
at the zero order, we rewrite Eq. (17) as

V1 ¼
1

2þ 3a

Z p

0
sin h cos h t�1ð0; hÞ

1
�
þ tl0ð0; hÞ ln �

� �
dh: ð56Þ

Since � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MaV1
p

, the migration speed of the droplet is evaluated
as

V1 � a2
1Ma� 2al0 ln Maþ a0; ð57Þ

where

a1 ¼
1

2þ 3a

Z p

0
sin h cos ht�1ð0; hÞdh ð58Þ

and

al0 ¼
1

2þ 3a

Z p

0
sin h cos htl0ð0; hÞdh: ð59Þ

Substituting Eqs. (55) into Eq. (58), we obtain

a1 ¼
d

3
ffiffiffiffi
p
p
ð2þ 3aÞð1þ dÞ

Z p

0
sin h cos hn1=2dh

þ 2ffiffiffiffi
p
p
ð2þ 3aÞð1þ dÞ

Z p

0
sin h cos h½

Z 1

0
g0ð2n1=2fÞ

� expð�f2Þdf�dh: ð60Þ

To determine the function g0 in Eq. (60), we use the boundary con-
dition within the droplet at the front and rear stagnation points in
Eq. (52)

g0ðg0Þ ¼
d

1þd
� Bþ1

6
g0

� �
erfc

g0

2
ffiffiffi
2
p

� �
þ

ffiffiffi
2
p

3
ffiffiffiffi
p
p exp �g02

8

� �( )
þ 1

2
ffiffiffiffiffiffiffi
2p
p

�
Z 1

0
g0ðg�Þ exp �ðg

0 �g�Þ2

8

" #
þ1�d

1þd
exp �ðg

0 þg�Þ2

8

" #( )
dg�:

ð61Þ
The integral of the third term on the right-hand side of Eq. (61) is
approximated asZ 1

0
g0ðg�Þhðg0;g�Þdg� ¼

Z g�
l

0
g0ðg�Þhðg0;g�Þdg� þ g0ðg�l Þ

�
Z 1

g�
l

hðg0;g�Þdg�: ð62Þ

Then, Eq. (61) is evaluated in a linear system of equations
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where g�Nþ1 ¼ g�l and Dg� ¼ g�l =N. The physical coefficients used in
the space experiment [12] with the uniform temperature gradient
G ¼ 12 K/cm for the continuous phase of Fluorinert FC-75 and the
droplet of 5cst silicon oil at T ¼ 333 K are adopted here to yield
a ¼ 0:342;b ¼ 0:571 and k ¼ 0:299. A typical value for g�l is chosen
as 3. Using the trial and error method to satisfy the above approx-
imation, we determine the unknown constant B ¼ 0:1935 and
obtain the dependence of g0 on g0 as shown in Fig. 3. From Eq.
(60), we can determine the root-mean-square of the leading order
term of the migration speed as

a1 ¼ 1:15� 10�2: ð64Þ

Although equations and boundary conditions describing the second
order term of the migration speed can be obtained, we are unable to
find an analytical result for tl0 in Eq. (56). Under the truncation after
the leading order term in Eq. (57), we obtain the migration speed of
the droplet

V1 � 1:3� 10�4 Ma: ð65Þ
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By using the migration speed V1, the adding thermal source X in
Eq. (22) can be determined as

X ¼ Gv0V1 1þ k
2b

� �
� 0:1 Ma K=s: ð66Þ
4. Conclusions and discussion

In this paper, the conservative integral thermal flux across the
surface for a steady thermocapillary droplet migration in a uniform
temperature gradient at large Re and Ma numbers has been guar-
anteed by adding a thermal source in the droplet. Under the
assumptions of quasi-steady state and non-deformation of the
droplet, we have made an analytical result for the steady thermo-
capillary migration of droplet with the thermal source at large Re
and Ma numbers. The result shows that the thermocapillary drop-
let migration speed slowly increases with the increase of Ma
number.

We emphasize that the modeling of the adding thermal source
in the droplet is used to investigate the effect of integral thermal
flux across the surface on the thermocapillary droplet migration
process. It is one of the physical means to satisfy the conservative
integral thermal flux boundary condition in the steady migration
process at large Ma numbers[15]. On the one hand, in general,
when the droplet moves forward under the uniform temperature
gradient, the thermal energy in the droplet is imported from the
upper surface of the droplet and exported from the lower surface.
The adding thermal source in the droplet can decrease/increase the
inner thermal flux from the interface/inside to the inside/interface
at the upper/lower surface of the droplet and satisfy the thermal
flux boundary condition at the surface of droplet for the steady
migration process. On the other hand, at large Ma numbers, the
heat advection around the droplet is a more significant mechanism
for heat transfer across/around the droplet. It is always keeping the
weak transport of thermal energy from outside of the droplet to
inside. Thus, the adding thermal source is conducive to providing
the thermal energy in the droplet to meet the requirement put for-
ward by the quasi-steady migration process. Meanwhile, the heat
transport across the droplet surface becomes weaker than the heat
convection as Ma number increases. To reach the steady migration
process, more thermal energy in the droplet will be provided. The
proportional relationship of the thermal source to Ma number in
Eq. (66) qualitatively confirms the above requirement of more
thermal energy in the droplet.

In final, some suggestions are provided in order that the ther-
mal source in the droplet can be implementend in a real experi-
ment. As given in Eqs. (1) and (66) and shown in Fig. 1, the
thermal source depending on Ma number will be added in the
droplet when it starts to move under the uniform temperature gra-
dient. The heat radiant technology may be one of the possible
physical means to add the thermal source in the droplet.
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